Акционерное общество "НИПИгазпереработка" **(АО "НИПИГАЗ")**

Заказчик – **ООО "Арктик СПГ 2"**

Обустройство Салмановского (Утреннего) НГКМ. Газоснабжение объектов энергообеспечения нужд строительства, гидронамыва грунта и бурения

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 8 "Перечень мероприятий по охране окружающей среды"

Часть 2 "Оценка воздействия на атмосферный воздух"

Книга 2 "Период эксплуатации. Приложения расчетные"

120.ЮР.2017-2010-02-ООС2.2 2010-P-NG-PDO-08.00.02.02.00-00

Том 8.2.2

Акционерное общество "НИПИгазпереработка" **(АО "НИПИГАЗ")**

Заказчик — **ООО "Арктик СПГ 2"**

Обустройство Салмановского (Утреннего) НГКМ. Газоснабжение объектов энергообеспечения нужд строительства, гидронамыва грунта и бурения

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 8 "Перечень мероприятий по охране окружающей среды"

Часть 2 "Оценка воздействия на атмосферный воздух"

Книга 2 "Период эксплуатации. Приложения расчетные"

120.ЮР.2017-2010-02-ООС2.2 2010-P-NG-PDO-08.00.02.02.00-00

Том 8.2.2

Руководитель направления Главный инженер проекта

Р.А. Беркутов

И.Н. Дубровин

Инв. № подл. Подпись и дата

Взам. инв. №

ООО "ИНСТИТУТ ЮЖНИИГИПРОГАЗ"

Заказчик – **ООО "Арктик СПГ 2**"

Обустройство Салмановского (Утреннего) НГКМ. Газоснабжение объектов энергообеспечения нужд строительства, гидронамыва грунта и бурения

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 8 "Перечень мероприятий по охране окружающей среды"

Часть 2 "Оценка воздействия на атмосферный воздух"

Книга 2 "Период эксплуатации. Приложения расчетные"

120.ЮP.2017-2010-02-ООС2.2 2010-P-NG-PDO-08.00.02.02.00-00

Том 8.2.2

Взам. инв. №	Главный инженер		С.М. Верещагин
Подпись и дата	Главный инженер проекта		С.Г. Вишняков
одл.		0040	

			Обозначение						Наименование		2 Примечание
	120.ЮР.2017-2010-02-СП				010-02	2-СП	Coo	тав проектной документации		Выпускается отдельным документом	
				ЮР.2 22.2-0		010-02	2-	Сод	ержание тома 8.2.2		Лист 2
				ЮР.2 2.2.T		010-02	2-	Тек	стовая часть		Лист 3
эванс											
Согласовано											
T		Ш									
2	₽. 										
	рзам. инв.										
٥	Ď										
1	подп. и дата										
	ПОДП								120.ЮР.2017-2010-02-	.നന്നു	2-C TU
	1			Кол.уч	Лист	№док.	Подп.	Дата	120.101 .2011 -2010-02		
	подл.		Разра		Переп			19.11.18		Стадия Лис	
1 2	= 2		Пров Зав.г		Марче Мирон			19.11.18 19.11.18	Содержание тома	П	1
	VIHB. N		Н.кон		Распол			19.11.18	8.2.2		О "ИНСТИТУТ
5	Z		Гл.сп		Распог			19.11.18		ЮЖН	НИИГИПРОГАЗ"

																			4
					гоне-до														
١					іуатациі														8'
١	При	іложеі	ние Л	•	ательно	•					•								
١					тмосфе		при	рабо		устан		-	ОМПЛ		-	-	ическ		
١		_			врежива							-	-			•			
					ращени														
١	2 C	сылоч	ные н	норма ⁻	гивные ,	докум	енты.											8	32
١																			
١																			
l																			
l																			
l																			
l																			
l																			
l																			
l																			
1																			
ı																			
ı																			
ı																			
ı																			
1																			
					1		1											1 -	
							120	JЮ	P 2	2017	7-20	<u>)</u> 10	_ 0 2	2-0	റ്റ	2 2	TL		Іист
	Изм.	Кол.уч	Лист	№док.	Подп.	Дата	`		• • •										2

Взам. инв. №

Подп. и дата

Инв. № подл.

Введение

Проектная документация выполнена в соответствии с Заданием на разработку проектной и рабочей документации по объекту "Обустройство Салмановского (Утреннего) нефтегазоконденсатного месторождения".

В соответствии с п.10.1 "Задания на разработку проектной документации..." для обеспечения топливным газом объектов энергообеспечения нужд строительства, гидронамыва грунта и бурения Салмановского (Утреннего) НГКМ предусматриваются следующие объекты:

- куст газоконденсатных скважин №16 (с обвязкой двух скважин);
- газопровод шлейф от куста газоконденсатных скважин №16 до Энергоцентра №2;
- Энергоцентр №2.

Временный Энергоцентр №2 будет построен на базе передвижных автоматизированных электростанций ПАЭС-2500 и предусмотрен для обеспечения электроэнергией буровых, строительных работ и земснарядов на весь период проведения указанных работ.

Газоснабжение Энергоцентра №2 предусматривается от газоконденсатных скважин №1601 и №1602, расположенных на кустовой площадке №16.

В обвязку куста газовых скважин входят следующие технологические объекты:

- обвязка устьев скважин (1601 и 1602);
- горизонтальное горелочное устройство;
- узел подключения мобильной сепарационной установки.

На площадке Энергоцентра №2 будут расположены:

- передвижные автоматизированные электростанции (ПАЭС);
- блок подготовки сырого газа;
- блок подготовки топливного газа;
- свечевое и факельное хозяйство;
- метанольное хозяйство;
- маслохозяйство;
- резервуары хранения дизельного топлива для АДЭС;
- азотное хозяйство.

Производительность оборудования по подготовке газа в составе Энергоцентра №2 (Блок подготовки сырого газа) по пластовому газу составляет 1 млн. нм³/сут. Ввод в эксплуатацию всех перечисленных выше объектов предусматривается в 1 этап – в 2019 г.

Ввод ПАЭС в эксплуатацию предусмотрен в 2 этапа в зависимости от необходимости электроснабжения объектов строительства:

- 1 этап (июнь 2019 г.) ввод 8-ми ПАЭС;
- 2 этап (июнь 2020 г.) дополнительный ввод еще 8-ми ПАЭС.

Проект выполнен с учетом требований, определенных Постановлением

Подп. и дат	
Инв. № подл.	

NHB.

Взам.

g

						120.ЮР.2017-2010-02-ООС2.2.Т ^L
Изм.	Кол.уч	Лист	№док.	Подп.	Дата	

Правительства РФ №87 от 16.02.2008 г. "О составе разделов проектной документации и требованиях к их содержанию" в редакции, действующей на момент выполнения проектной документации.

Оценка воздействия на атмосферный воздух выполнена на периоды строительства и эксплуатации объектов энергообеспечения нужд строительства, гидронамыва грунта и бурения Салмановского (Утреннего) НГКМ.

Раздел "Оценка воздействия на атмосферный воздух" разработан с учетом требований законодательных и нормативно-методических документов, действующих в Российской Федерации на момент выпуска проектной документации:

Федерального закона РФ "Об охране окружающей среды" от 10.01.2002 №7-ФЗ Федерального закона РФ "Об охране атмосферного воздуха" от 04.05.1999 №96-ФЗ Федерального закона "О санитарно-эпидемиологическом благополучии населения" от 30.03.1999 №52-ФЗ

Федерального закона РФ "Об экологической экспертизе" от 23.11.1995 №174-ФЗ

Положения об оценке воздействия намечаемой хозяйственной и иной деятельности на окружающую среду в Российской Федерации, утвержденного Приказом Госкомэкологии РФ от 16.05.2000 №372

Постановления Правительства РФ "Положение о составе разделов проектной документации и требованиях к их содержанию" от 16 февраля 2008 №87.

В томе 8.2.1 приведена оценка воздействия на атмосферный воздух в период эксплуатации объектов энергообеспечения нужд строительства, гидронамыва грунта и бурения Салмановского (Утреннего) НГКМ, включая:

- краткое описание климатических условий района строительства и условий, определяющих рассеивание загрязняющих веществ в приземном слое атмосферы;
- фоновое загрязнение атмосферного воздуха;
- краткую характеристику проектируемого предприятия как источника загрязнения атмосферы;
- перечень загрязняющих веществ, поступающих в атмосферу;
- обоснование данных о выбросах загрязняющих веществ, поступающих в атмосферу;
- таблицу параметров источников загрязнения атмосферы;
- расчеты рассеивания загрязняющих веществ в приземном слое атмосферы и анализ результатов расчетов;
- предложения по нормативам предельно допустимых выбросов (ПДВ) загрязняющих веществ;
- контроль за соблюдением нормативов ПДВ на источниках загрязнения атмосферы;

Инв. № подл. Подп. и дата Взам. инв. №

120.HOP.2017-2010-02-OOC2.2.TY

Лист

- акустические расчеты;
- размеры санитарно-защитной зоны;
- размер платы за выбросы загрязняющих веществ в атмосферу.

В данном томе приведены расчеты количества загрязняющих веществ, поступающих в атмосферу при эксплуатации проектируемых объектов энергообеспечения нужд строительства, гидронамыва грунта и бурения Салмановского (Утреннего) НГКМ:

- при сжигании газа на УГГ продувки скважин куста газоконденсатных скважин №16 при регламентных продувках скважин №1601, 1602;
- при сжигании газа на УГГ Энергоцента №2 при регламентных продувках шлейфа от куста газоконденсатных скважин№16;
- за счет возможных утечек через неплотности фланцев, установленных на оборудовании и трубопроводах на площадках куста №16 и Энергоцентра №2;
- при "дыхании" емкостного оборудования (резервуара слива дизтоплива 039-Т-001 и резервуара дизтоплива 039-Т-002 для аварийной ДЭС, маслобаков ПАЭС-2500, резервуаров слива отработанного масла 039-Т-004, емкости дренажной 004-V-002, топливных баков и маслобаков аварийных ДЭС);
- при работе ПАЭС-2500;
- при работе аварийных ДЭС на площадках куста газоконденсатных скважин №16 и Энергоцентра №2;
- при работе водогрейных котлов установок подогрева газа БПТПГ №1, 2 на площадке Энергоцентра №2;
- при плановом опорожнении оборудования и трубопроводов Энергоцентра №2 перед ППР;
- при работе металлообрабатывающих станков, установленных в вагоне-доме ремонтной мастерской Энергоцентра №2;
- при работе установки (комплекса) термического обезвреживания жидких отходов.

В томе 8.2.3 приведены карты рассеивания загрязняющих веществ в приземном слое атмосферы при эксплуатации проектируемых объектов энергообеспечения нужд строительства, гидронамыва грунта и бурения Салмановского (Утреннего) НГКМ и отчет с результатами расчетов рассеивания.

В томе 8.2.3 также приведены справочные материалы:

- копии писем по климатологии (по данным метеостанции Тадебяяха по письму Федерального государственного бюджетного учреждения "Северное управление по гидрометеорологии и мониторингу окружающей среды "Обь-Иртышское управление по гидрометеорологии и мониторингу окружающей среды" от 25.01.2018 №08-07-23/36),
- копия письма по фоновому загрязнению атмосферы (письмо Ямало-Ненецкого

07-23/36), - копия письма п - копия письма п - изм. Кол.уч Лист №док. Подп.

NHB.

Взам.

Подп. и дата

подл.

읟

MB.

120.HOP.2017-2010-02-OOC2.2.TY

Центра по гидрометеорологии и мониторингу окружающей среды – филиала Федерального государственного бюджетного учреждения "Обь-Иртышское управление по гидрометеорологии и мониторингу окружающей среды" (Ямал-Ненецкий ЦГМС – филиал ФГБУ "Обь-Иртышское УГМС") от 29.01.2018 №53-14-26/34);

выкопировка из документации завода-изготовителя с техническими и экологическими характеристиками ПАЭС-2500.

В томе 8.2.4 приведена оценка воздействия на атмосферный воздух в период строительства проектируемых объектов энергообеспечения нужд строительства, гидронамыва грунта и бурения Салмановского (Утреннего) НГКМ, включая:

- краткое описание климатических условий района строительства и условий, определяющих рассеивание загрязняющих веществ в приземном слое атмосферы;
- фоновое загрязнение атмосферного воздуха;
- краткую характеристику проектируемого предприятия как источника загрязнения атмосферы;
- перечень загрязняющих веществ, поступающих в атмосферу;
- обоснование данных о выбросах загрязняющих веществ, поступающих в атмосферу;
- таблицу параметров источников загрязнения атмосферы;
- расчеты рассеивания загрязняющих веществ в приземном слое атмосферы и анализ результатов расчетов;
- предложения по нормативам предельно допустимых выбросов (ПДВ) загрязняющих веществ;
- контроль за соблюдением нормативов ПДВ на источниках загрязнения атмосферы;
- акустические расчеты;
- размер платы за выбросы загрязняющих веществ в атмосферу;
- карты рассеивания.

NHB.

Взам.

Подп. и дата

подл.

읟

MB.

Количество загрязняющих веществ, поступающих в атмосферу в период строительства проектируемых объектов энергообеспечения нужд строительства, гидронамыва грунта и бурения Салмановского (Утреннего) НГКМ рассчитано для следующих источников загрязнения атмосферы:

- при разгрузке грунта, щебня из кузовов самосвалов в отвал;
- при работе передвижных дизельных электростанций на площадке строительства, на площадках ВЗиС №1, 2 и Временного водозабора;

при выполнении сварочных работ и газовой сварки и резки металла; при выполнении окрасочных работ и сушке окрашенных поверхностей: при работе дорожно-строительной техники на площадке строительства; 120.ЮP.2017-2010-02-OOC2.2.TY Изм. Кол.уч Лист №док. Подп.

при заправке баков строительной техники топливом.

Оценка воздействия на недра, почвы и земельные ресурсы, водную среду, растительность, животный мир и социальную среду, нормативы образования и лимиты размещения отходов, рекультивация земель, производственный экологический мониторинг приведены в соответствующих разделах проектной документации

Проект СЗЗ для проектируемых объектов энергообеспечения нужд строительства, гидронамыва грунта и бурения Салмановского (Утреннего) НГКМ выполнен отдельным томом.

Взам. инв. Подп. и дата подл. 윋 Лист 120.ЮР.2017-2010-02-OOC2.2.ТЧ MHB. Кол.уч Лист №док. Подп.

Приложение A (обязательное)

Расчеты количества загрязняющих веществ, поступающих в атмосферу при регламентных продувках газоконденсатных скважин куста №16 Салмановского (Утреннего) НГКМ со сжиганием газа на УГГ продувки скважин в период эксплуатации

В таблице А.1 приведен усредненный состав пластового газа от проектируемого куста газоконденсатных скважин №16 Салмановского (Утреннего) НГКМ, принятый по данным технологической части проекта.

Таблица И.1 – Усредненный состав пластового газа от проектируемого куста газоконденсатных скважин №16 Салмановского (Утреннего) НГКМ

Наименование показателя	Молеку- лярная	Плотность компонентов газа,	Коэф- фициент	Газовая постоян-	Низшая теплота сгорания компо-	Содержание тов в	
TIORASATOJI/I	масса,	кг/м ³ , при стан-	адиаба-	ная	нентов газа	% мол	% масс
	г/моль	дартных усло-	ТЫ		ккал/м³, при стан-	/0 IVIOJ1	70 Wacc
		виях (Р=0,1013			дартных условиях		
		МПа,			(P=0,1013 MΠa,		
		T=293,15K),			T=293,15K)		
Состав газа:							
- метан	16,043	0,6682	1,31	52,89	7980	95,90144	93,099041
- этан	30,07	1,2601	1,2	28,21	14300	1,345318	2,447903
- пропан	44,097	1,8641	1,14	19,24	20670	0,052664	0,140526
- изобутан	58,123	2,488	1,11	14,59	27180	0,053197	0,187104
- бутан	58,123	2,4956	1,1	14,59	27290	0,015804	0,055585
- изопентан	72,15	3,147	1,08	11,75	34400	0,029085	0,126983
- пентан	72,15	3,174	1,08	11,75	34400	0,006097	0,026621
- смесь углеводородов						0,0554	0,333592
предельных C_6 - C_{10} , в							
том числе:							
– гексан	86,177	3,898	1,06	9,84	38540	0,016463	0,078538
- гептан	100,204	4,755	1,053	8,46	44630	0,015646	0,087485
- октан	114,231	5,812	1,046	7,42	50690	0,010641	0,067418
- нонан	128,258	7,254	1,04	6,61	57030	0,006878	0,051078
- декан	142,285	9,494	1,03	5,96	63005	0,005818	0,049073
- алканы C ₁₂ -C- ₁₉	170,338	11,366	1,03	4,98	63005	0,008576	0,091103
- бензол	78,114	3,546	1,13	10,86	31469	0,00001	0,000048
- метилбензол	92,141	4,389	1,09	9,2	37449	0,000087	0,000486
- диметилбензол	106,167	5,495	1,13	7,99	43451	0,00063	0,004051
- этилбензол	106,167	5,39	1,13	7,99	43559	0,000207	0,00133
- водород	2,0519	0,0838	1,41	420,6	2399	0,000059	0,000007
- гелий	4,0026	0,16631	1,67	211,86	-	0,011611	0,00285
- азот	28,0135	1,1649	1,4	30,26	-	0,796549	1,350235
- углерода диоксид	44,01	1,8393	1,3	19,27	-	0,106129	0,282631
- вода	18,0153	0,787	1,33	47,06	-	1,514448	1,650929
- метанол	32,042	1,587	1,25	26,47	7466	0,102645	0,199018
Всего	-	-	-	-		100,00	100,00

В таблице А.2 приведены свойства пластового газа Салмановского (Утреннего) НГКМ.

Таблица А.2 – Свойства пластового газа Салмановского (Утреннго) НГКМ

Наименование показателя	Величина
Свойства газа:	

						120.ЮР.2017-2010-02-ООС2.2.ТЧ
Изм.	Кол.уч	Лист	№док.	Подп.	Дата	

Взам. инв.

Подп. и дата

№ подл.

	11
Наименование показателя	Величина
Молекулярный вес, кг/кмоль	(16,043 × 95,90144+30,07×1,345318+44,097×0,052664+58,123×(0,053192+0,015804) + 72,15 × (0,029085+0,006097)+86,177×0,016463+100,204×0,015646+114,231×0,010641+128,258× 0,006878+142,285×0,005818+170,338×0,008576+78,114×0,00001+92,141 × 0,000087+106,167 × 0,00063+106,167 × 0,000207+2,0159 × 0,000059+4,0026 × 0,011611+28,0135 × 0,796549+44,01 × 0,106129+18,0153 × 1,514448+32,042 × 0,102645)/100) = 16,529
Плотность газа	
- при стандартных условиях (Р= 1,033 кг/см², Т=293,15 K), кг/м³	(0,6682 × 95,90144+1,2601 × 1,345318+1,8641 × 0,052664+2,488 × 0,053197+2,4956 × 0,015804 +3,147×0,029085+3,174×0,006097+3,898×0,016463+4,755×0,015646+5,812×0,010641+7,254 × 0,006878+9,494×0,005818+11,366×0,008576+3,546×0,00001+4,389×0,000087+5,495×0,00063+ +5,39×0,000207+0,0838×0,000059+0,16631×0,011611+1,1649×0,796549+1,8393×0,106129+ +0,787 × 1,514448+1,587 × 0,102645)/100) = 0,69
- при нормальных условиях (Р=	(0,707 × 1,074440 1,007 × 0,102040),100)
1,033 кг/см ² , T=273,15 K), кг/нм ³	0,69 × 293,15 / 273,15 = 0,741
Коэффициент адиабаты	(1,31 × 95,90144+1,2 × 1,345318+1,14 × 0,052664+1,1 × (0,053197+ 0,015804) +1,08 × (0,029085 +0,006097)+1,06×0,016463+1,053× 0,015646+1,046×0,0010641+1,04×0,006878+1,03× 0,005818 +1,03×0,008576+1,13×0,00001+1,09×0,000087+1,13×0,00063+1,13 × 0,000207+1,41 × 0,000059 +1,67×0,011611+1,4×0,796549+ 1,3 × 0,106129+1,33 × 1,514448+1,25 × 0,102645)/100) = 1,309
Газовая постоянная, кГм/кг×град	$ \begin{array}{l} (52.89\times95,90144+28,21\times1,345318+19,24\times0,052664+14,59\times(0,053197+0,015804)+11,75\times(0,029085+0,006097)+9,84\times0,016463+8,46\times0,015646+7,42\times0,010641+6,61\times0,006878+5,96\times0,005818+4,98\times0,008576+10,86\times0,00001+9,2\times0,000087+7,99\times0,00063+7,99\times0,000207+420,6\times0,000059+211,86\times0,011611+30,26\times0,796549+19,27\times0,106129+47,06\times1,514448+26,47\times0,102645)/100=52,157 \end{array} $
Низшая теплота сгорания, ккал/м³, при стандартных условиях (Р=0,1013 МПа, Т=293,15К)	(7980×95,90144+14300×1,345318+20670×0,052664+27180×0,053197+27290×0,015804+34400 ×(0,029085+0,006097)+38540×0,016463+44630 × 0,015646+50690 × 0,010641+57030 × 0,006878 +63005×0,005818+63005×0,008576+31469 × 0,00001+37449 × 0,000087+43451 × 0,00063+43559 × 0,000207 +2399 × 0,000059 + 7466 × 0,102645) / 100=7927
Низшая теплота сгорания, ккал/нм³, при нормальных усло- виях (Р= 1,033 кг/см², Т=273,15 K)	7927× 293,15 / 273,15 = 8507

В соответствии с данными технологической части проекта ввод в эксплуатацию проектируемой скважины №1601 намечен на 2019 год, скважины №1602 – на 2020 год.

Продувки скважин осуществляются со сжиганием газа:

- разово при вводе скважин в эксплуатацию. При этом каждая вновь вводимая в эксплуатацию скважина продувается при вводе в эксплуатацию средним дебитом скважины в течение 3 суток (72 часов);
- ежегодно для ликвидации гидратных пробок и перед исследованиями. Для ликвидации гидратных пробок каждая эксплуатационная скважина продувается 1 раз в год в течение 0,5 суток (12 ч) производительностью равной 30% от среднего дебита скважины. При исследованиях каждая эксплуатационная скважина продувается 2 раза в год в течение 4 ч средним дебитом скважины.

Продувки газоконденсатных скважин куста №16 Салмановского (Утреннего) НГКМ предусматривается осуществлять на устройство горелочное горизонтальное типа УГГ500-08A, располагаемое на кусте газовых скважин.

В соответствии с паспортными данными на УГГ расход сжигаемого газа составляет от 1500 до 45000 нм³/ч (при нормальных условиях P=0,1013 МПа, T=273,15K).

УГГ продувки скважин располагаются в земляном амбаре. Размер амбара УГГ составляет 37,0 × 27 м. Высота источника загрязнения атмосферы - 2,0 м.

В таблице А.3 приведены средние дебиты проектируемых газоконденсатных скважин куста №16 Салмановского (Утреннего) НГКМ по годам эксплуатации, принятые по данным технологической части проекта.

Инв. № подл. Подп. и дата Взам. инв.

Изм. Кол.уч Лист №док. Подп. Дата

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Таблица А.3 – Средние дебиты проектируемых газоконденсатных скважин куста № 16 Салмановского (Утреннего) НГКМ по годам эксплуатации

№ скважины	Средние	Средние дебиты проектируемых скважин по годам эксплуатации, м³/сутки (при стандартных							
	условиях Р=0,10413 МПа, Т=293,15К)					5K)			
	2019 г.	2020 г.	2021 г.	2022 г.	2023 г.	2024 г.	2025 г.	2026 г.	2027 г.
скважина 1601	235000	235000	200000	200000	534217	615662	334927	365150	275175
скважина 1602	-	257000	257000	487000	225000	102000	160000	646145	603263

В таблице А.4 приведены объемы газа, сжигаемого на УГГ куста скважин №16 при регламентных продувках скважин в период эксплуатации.

Таблица А.4 – Объемы газа, поступающего на сжигание на УГГ куста газоконденсатных скважин №16 при регламентных продувках проектируемых скважин в период эксплуатации

Годы экс-	Регламентные операции, сопровож-	Объемы газа, сжигаемого на УГГ продувки скважин куста при				
плуатации	дающиеся сжиганием газа на УГГ	регламентных продувках скважин, м ³ /год (при стандартных				
		условиях P = 1,033 кг/см ² , T=293,15 K)				
2019 г.	Ввод скважин в эксплуатацию	705000				
	Ликвидация гидратных пробок	35250				
	Перед исследованием	78333				
	Всего:	818583				
2020 г.	Ввод скважин в эксплуатацию	771000				
	Ликвидация гидратных пробок	73800				
	Перед исследованием	164000				
	Bcezo:	1008800				
2021 г.	Ввод скважин в эксплуатацию	-				
	Ликвидация гидратных пробок	68550				
	Перед исследованием	152333				
	Всего:	220883				
2022 г.	Ввод скважин в эксплуатацию	-				
	Ликвидация гидратных пробок	103050				
	Перед исследованием	229000				
	Bceso:	332050				
2023 г.	Ввод скважин в эксплуатацию	-				
	Ликвидация гидратных пробок	113883				
	Перед исследованием	253072				
	Всего:	366955				
2024 г.	Ввод скважин в эксплуатацию	-				
	Ликвидация гидратных пробок	107649				
	Перед исследованием	239221				
	Всего:	346870				
2025 г.	Ввод скважин в эксплуатацию	-				
	Ликвидация гидратных пробок	24000				
	Перед исследованием	164976				
	Всего:	188976				
2026 г.	Ввод скважин в эксплуатацию	-				
	Ликвидация гидратных пробок	151694				
	Перед исследованием	337098				
	Bceso:	488792				
2027 г.	Ввод скважин в эксплуатацию	-				
	Ликвидация гидратных пробок	131766				
	Перед исследованием	292813				
	Bceso:	424579				

В таблице А.5 приведены расчеты количества загрязняющих веществ, поступающих в атмосферу при сжигании газа на УГГ куста скважин №16 при регламентных продувках газоконденсатных скважин в период эксплуатации с 2019 г. по 2027 г.

						120.ЮР.2017-2010-02-ООС2.2.ТЧ
Изм.	Кол.уч	Лист	№док.	Подп.	Дата	

Взам. инв.

Подп. и дата

№ подл.

ZHB.

Лист

Инв. № подл.	Подп. и дата	Взам.инв.№

Таблица А.5 – Расчеты количества загрязняющих веществ, поступающих в атмосферу при сжигании газа на УГГ куста скважин №16 при регламентных продувках газоконденсатных скважин в период эксплуатации с 2019 г. по 2027 г.

Наименование показателя					Величина				1
	2019 год	2020 год	2021 год	2022 год	2023 год	2024 год	2025 год	2026 год	2027 год
Объем сжигаемого газа м ³ /сут (при стандартных условиях P = 1,033 кг/см2, T=293,15 K)	235000	257000	257000	487000	534217	615662	334927	646145	603263
 – м³/ч (при стандартных условиях Р = 1,033 кг/см², Т = 293,15 К) 	235000 / 24 = =9791,667	257000 / 24 = =10708,333	257000 / 24 = =10708,333	487000 /24 = =20291,667	53421 / 24 = =22259,042	615662 / 24 = =25652,583	334927 / 24 = =13955,292	646145 / 24 = =26922,708	603263 / 24 = =25135,958
 – м³/с (при стандартных условиях Р = 1,033 кг/см², Т = 293,15 К) 	9791,667 / 3600 =2,72	10708,333 / 3600 =2,975	10708,333 / 3600 =2,975	20291,667 / 3600 =5,637	22259,042 / 3600 =6,183	25652,583 / 3600 =7,126	13955,292 / 3600 =3,876	26922,708 / 3600 =7,479	25135,958 / 3600 =6,982
- м ³ /год (при стандартных условиях P = 1,033 кг/см ² , T = 293,15 K)	818583	1008800	220883	332050	366955	346870	188976	488792	424579
Годовое время работы, ч/год	818583/9791,667 =84	1008800 / /10708,333 =94	220883 / /10708,333 = 21	332050 / /20291,667 = 16	366955 / /22259,042 = 16	346870 / /25652,583 = 14	188976 / /13955,292 = 14	488792 / /26922,708 = 18	424579 / /25135,958 = 17
Плотность газа (при стандартных условиях $P = 1,033 \text{ кг/см}^2$, $T=293,15 \text{ K}$), кг/нм^3		0,69							
Молекулярный вес газа, кг/кмоль					16,529				
Количество газа, сжигаемого на УГГ куста при регламентных продувках, г/с	2,72 × 0,69 × ×1000=1876,800	2,975 × 0,69 × ×1000=2052,570	2,975 × 0,69 × ×1000=2052,570	5,637 × 0,69 × ×1000=3889,530	6,183 × 0,69 × ×1000=4226,27	7,126 × 0,69 × ×1000=4916,940	3,876 × 0,69 × ×1000=2674,440	7,479 × 0,69 × ×1000=5160,510	6,982 × 0,69 × ×1000=4817,580
Годовое количество газа, сжигаемого на УГГ куста при регламентных продувках, т/год	818583 × 0,69 /1000=564,822	1008800× 0,69 /1000=696,072	220883× 0,69 /1000=152,409	332050 × 0,69 /1000=229,115	366955 × 0,69 /1000 =253,199	346870 × 0,69 /1000=239,340	188976 × 0,69 /1000=130,393	488792 × 0,69 /1000=337,266	424579 × 0,69 /1000=292,960
Показатель адиабаты					1,309				
Газовая постоянная, кГм/кг×град кГм/кмоль×град				52	52,157 2,157 × 16,647 = 862	,1			
Скорость распространения звука в сжигаемой смеси, $W_{\mbox{\tiny 3B.}}$, м/с				91,5× \	$1,309 \times \frac{4 + 273,1}{16,529}$	5 =429			
Скорость истечения сжигаемой смеси, Wист, м/с		0,5 × [2 × 9,81 ×(1,309 /1,309+1)× 862,1 × (4+273) / 16,529] ^{0.5} = 198,765							
Проверка условий бессажевого сжигания W _{ист} / W _{зв} > 0,2				198,765 / 427 = 0,46	> 0,2 - при горении	сажа не образуется			
Коэффициент избытка воздуха					1				
Доля энергии, теряемой за счет излучения факела				0	.48 × 16,529 ^{0,5} =0,19	5			

Изм.	Кол.уч	Лист	№док.	Подп.	Дата

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Лист

Инв. № подл.	Подп. и дата	Взам.инв.№

								14
			-	Величина				
				2023 год				2027 год
			+(10+22/4)×0,00581	8+(12+26/4)×0,0085	76+(6+6/4)×0,00001			
	1 + 9,45 = 10,45							
				8507				
				0,9984				
				0,39				
		минус 2	4÷ плюс 32 (для рас	счетов принята сред	цняя температура п.	пюс 4°С)		
			850	7 ×(1 - 0,195) × 0,998	84			
			4 +	10,45 × 0,39	—= 1682			
2,72 × 10,45 ×	2,975 × 10,45 ×	2,975× 10,45 ×	5,637× 10,45 ×	6,183 × 10,45 ×	7,126 × 10,45 ×	3,876 × 10,45 ×	7,479 × 10,45 ×	6,982 × 10,45 ×
(273,15+1682)/	(273,15+1682)/	(273,15+1682)/	(273,15+1682)/	(273,15+1682)/	(273,15+1682)/	(273,15+1682)/	(273,15+1682)/	(273,15+1682)/
/273,15=203,453	/273,15=222,527	/273,15=222,527	/273,15=421,641	/273,15=462,482	/273,15=533,017	/273,15=289,921	/273,15=559,421	/273,15=522,246
			0,011611 + 0,796	549 + 0,106129 + 1,5	514448 = 2,428737			
100 × 12 × (1 × 95,9	90144 + 2 × 1.34531	8 + 3 × 0.052664 + 4	× (0.053197+0.0158	304) + 5 × (0.029085	+0.006097) + 6 × 0.0	016463 + 7 × 0.0156	46 + 8 × 0.010641 +	9 × 0.006878 + 10 >
,								,
						,		
				133				
				0,15				
			0,26 × 1	98,765 ² × 0,69 / 0,15	= 47251			
			1.74 × 0	1.15 × 47251 ^{0,17} × 133	$3^{0,59} = 29$			
				· · · · · · · · · · · · · · · · · · ·	,			
				0,282631				
				0.4				
				-,				
0,003 × 1876,800 =5.63	0,003 × 2052,750 =6.158	0,003 × 2052,750 =6.158	0,003 ×3889,530 =11.669	0,003 × 4266,270 =12.799	0,003 × 4916,940 =14.751	0,003 × 2674,440 =8.023	0,003 × 5160,510 =15.482	0,003 × 4817,580 =14,453
5,63×0,4=2,252	6,158×0,4=2,463	6,158×0,4=2,463	11,669×0,4=4,668	12,799×0,4=5,12	14,751×0,4=5,9	8,023×0,4=3,209	15,482×0,4=6,193	14,453×0,4=5,781
5,63×0,65×(1-0,4)	6,158×0,65×(1-	6,158×0,65×(1-	11,669×0,65×(1-	12,799×0,65×(1-	14,751× 0,65×(1-	8,023×0,65×(1-	15,482×0,65×(1-	14,453×0,65×(1-
	0,4)=2,402	0,4)=2,402	0,4)=4,551	0,4)=4,992	0,4) =5,753	0,4)=3,129	0,4)=6,038	0,4)=5,637
=2,196								
=2,196 0,02 × 1876,800	0,02 × 2052,750	0,02 × 2052,750	0,02 × 3889,530	0,02 ×4266,270	0,02 ×4916,940	0,02 × 2674,440	0,02 ×5160,510	0,02 × 4817,580
	2,72 × 10,45 × (273,15+1682)//273,15=203,453 100 × 12 × (1 × 95, 0,003 × 1876,800 = 5,63 5,63×0,4=2,252	(0,0476 × (1,5 × 0 + (1+4/4) × 95,9014 (7+16/4)×0,015646+(8+18/4)×0,010641 2,72 × 10,45 × (273,15+1682)/ /273,15=203,453 /273,15=222,527 100 × 12 × (1 × 95,90144 + 2 × 1,34531 0,005818 + 12 × 0 0,003 × 1876,800 0,003 × 2052,750 =5,63 =6,158 5,63×0,4=2,252 6,158×0,4=2,463	(0,0476 × (1,5 × 0 + (1+4/4) × 95,90144 + (2+6/4) × 1,3453 (7+16/4) × 0,015646+(8+18/4) × 0,010641+(9+20/4) × 0,006878 (7+16/4) × 0,015646+(8+18/4) × 0,010641+(9+20/4) × 0,006878 (7+16/4) × 0,015646+(8+18/4) × 0,010641+(9+20/4) × 0,006878 (7+16/	(0,0476 × (1,5 × 0 + (1+4/4) × 95,90144 + (2+6/4) × 1,345318 + (3+8/4) × 0,055 (7+16/4) × 0,015646+ (8+18/4) × 0,010641+ (9+20/4) × 0,006878+ (10+22/4) × 0,00581 (1+ (1+4/4) × 0,015646+ (8+18/4) × 0,010641+ (9+20/4) × 0,006878+ (10+22/4) × 0,00581 (1+4/4) × 0,015646+ (8+18/4) × 0,010641+ (9+20/4) × 0,006878+ (10+22/4) × 0,00581 (1+4/4) × 0,01641+ (9+20/4) × 0,006878+ (10+22/4) × 0,005818 + 12 × 0,006878+ (10+22/4) × 0,0058197+ (10+22/4) × 0,01611+ 0,7961 (10+22/4) × 0,01611+ 0,7961 (10+22/4) × 0,005818 + 12 × 0,008576 + 6 × 0,00001 + 7 × 0,000087 + (10+22/4) × 0,005818 + 12 × 0,008576 + 6 × 0,00001 + 7 × 0,000087 + (10+22/4) × 0,01611 + 0,7961 (10+22/4) × 0,005818 + 12 × 0,008576 + 6 × 0,00001 + 7 × 0,000087 + (10+22/4) × 0,005818 + 12 × 0,008576 + 6 × 0,00001 + 7 × 0,000087 + (10+22/4) × 0,005818 + 12 × 0,008576 + 6 × 0,00001 + 7 × 0,000087 + (10+22/4) × 0,005818 + 12 × 0,008576 + 6 × 0,00001 + 7 × 0,000087 + (10+22/4) × 0,005818 + 12 × 0,008576 + 6 × 0,00001 + 7 × 0,000087 + (10+22/4) × 0,005818 + 12 × 0,003 × 2052,750 × 0,003 × 3889,530 × 0,142,2463 × 0,158 × 0,442,463 × 0,158 × 0,442,463 × 0,1669 × 0,444,668 × 0,444,444 × 0,444,444 × 0,444,444 × 0,444,444 × 0,444,444 × 0,444,444 × 0,444,444 × 0,444,444 × 0	2019 год 2020 год 2021 год 2022 год 2023 год	2019 год 2020 год 2021 год 2022 год 2023 год 2023 год 2024 год (0,0476 × (1,5 × 0 + (1+44/4) × 95,90144 + (2+6/4) × 1,345318 + (3+8/4) × 0,052664 + (4+10/4) × (0,053197+0,015804) + (7+16/4) × 0,015646+(8+18/4) × 0,010641+(9+20/4) × 0,006878+(10+22/4) × 0,005818+(12+26/4) × 0,008576+(66/4) × 0,00001 (1+4/4) × 0,010646+(8+18/4) × 0,010641+(9+20/4) × 0,006878+(10+22/4) × 0,005818+(12+26/4) × 0,008576+(66/4) × 0,00001 (1+4/4) × 0,102645-0) = 9,45	2019 год 2020 год 2021 год 2022 год 2023 год 2024 год 2025 год (0,0476 × (1,5 × 0 + (1+44/4) × 95,90144 + (2+64/4) × 1,345318 + (3+81/4) × 0,052664 + (4+10/4) × (0,05876+(6+6/4) × 0,0008576+(6+6/4) × 0,0008576+(6+6/4) × 0,0008576+(6+6/4) × 0,0008576+(6+6/4) × 0,0008576+(6+6/4) × 0,0008576+(6+6/4) × 0,0008576+(6+6/4) × 0,0008576+(6+6/4) × 0,0008576+(6+6/4) × 0,0000874 × (1+4/4) × 0,102645-0) = 9,45	2019 rog 2020 rog 2020 rog 2021 rog 2023 rog 2023 rog 2024 rog 2025 rog 2026 rog (0.0476 × (1,5 × 0 + (1+4/4) × 95,90144 + (2+6/4) × 1,34518 + (3+8/4) × 0,052664 + (4+10/4) × (0.053197 + (5+12/4) × (0.029085 + 0,006097) + (6+10/4) × (0.051646 + (8+18/4) × 0,010641 + (9+20/4) × 0,006878 + (10+22/4) × 0,008576 + (6+6/4) × 0,00001 + (7+8/4) × 0,000087 + (8+10/4) × 0,00087 + (8+10/4) × 0,00087

Изм. Кол.уч Лист №док. Подп. Дата

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Лист

Инв. № подл.	Подп. и дата	Взам.инв.№

15

Наименование показателя					Величина				
	2019 год	2020 год	2021 год	2022 год	2023 год	2024 год	2025 год	2026 год	2027 год
- метан	0,0005 × 1876,800	0,0005×2052,750	0,0005×2052,750	0,0005×3889,530	0,0005×4266,270	0,0005×4916,940	0,0005×2674,440	0,0005×5160,510=	0,0005×4817,580
	=0,938	=1,026	=1,026	=1,945	=2,133	=2,458	=1,337	2,58	=2,409
- углерод диоксид	0,01×1876,800×	0,01×2052,750×	0,01×2052,750×	0,01×3889,530×	0,01×4266,270×	0,01×4916,940×	0,01×2674,440×	0,01×5160,510×	0,01×4817,580×
	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×
	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-
	37,536-0,938	41,055- 1,026	41,055- 1,026	77,791-1,945	85,325-2,133	98,339-2,458	53,489-1,337	103,21-2,58	96,352-2,409
	=5086,909	=5563,807	=5563,807	=10542,244	=11563,368	=13326,954	=7248,845	=13987,13	=13057,646
Годовой выброс загрязняющих									
веществ, поступающих в атмо-									
сферу при продувке скважин,									
т/год:									
– оксидов азота, в том числе:	0,003 × 564,822	0,003 × 696,072	0,003 × 152,409	0,003 × 229,115	0,003 × 253,199	0,003 × 239,430	0,003 × 130,393	0,003 × 337,266	0,003 × 292,960
	=1,694	=2,088	=0,457	=0,687	=0,76	=0,718	=0,391	=1,012	=0,879
– азота диоксид	1,694×0,4=0,678	2,088×0,4=0,835	0,457×0,4=0,183	0,687×0,4=0,275	0,76×0,4=0,304	0,718×0,4=0,287	0,391×0,4=0,156	1,012×0,4=0,405	0,879×0,4=0,352
– азот (II) оксид	1,694×0,65×(1-	2,088×0,65×(1-	0,457×0,65×(1-	0,687×0,65×(1-	0,76×0,65×(1-	0,718×0,65×(1-	0,391 ×0,65×(1-	1,012×0,65×(1-0,4)	0,879×0,65×(1-
	0,4)=0,661	0,4)=0,814	0,4)=0,178	0,4)=0,268	0,4)=0,296	0,4)=0,28	0,4)=0,152	=0,395	0,4)=0,343
- углерода оксид	0,02 × 564,822	0,02 × 696,072	0,02 × 152,409	0,02 × 229,115	0,02 × 253,199	0,02 × 239,430	0,02 × 130,393	0,02 × 337,266	0,02 × 292,960
	=11,296	=13,921	=3,048	=4,582	=5,064	=4,787	=2,608	=6,745	=5,859
- метан	0,0005 × 564,822	0,0005 × 696,072	0,0005 × 152,409	0,0005 × 229,115	0,0005 × 253,199	0,0005 × 239,430	0,0005 × 130,393	0,0005 ×337,266	0,0005 ×292,960
	=0,282	=0,348	=0,0762	=0,115	=0,127	=0,12	=0,0652	=0,169	=0,146
- углерод диоксид	0,01 × 564,822×	0,01×696,072×	0,01×152,409×	0,01×229,115×	0,01×253,199×	0,01×239,430×	0,01×130,393×	0,01×337,266×	0,01×292,960×
	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×
	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-
	11,296- 0,282	13,921-0,348	3,048-0,0762	4,582-0,115	5,064-0,127	4,787-0,12 =648,71	2,608-0,0652	6,745-0,169	5,859-0,146
	=1530,904	=1886,645	=413,092	=620,997	=686,274	4,707-0,12 -040,71	=353,419	=914,131	=794,044

Изм.	Кол.уч	Лист	№док.	Подп.	Дата

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Лист

Приложение Б (обязательное)

Расчеты количества загрязняющих веществ, поступающих в атмосферу при регламентных продувках шлейфа от проектируемого куста газоконденсатных скважин №16 Салмановского (Утреннего) НГКМ со сжиганием газа на УГГ ЭЦ №2 в период эксплуатации

В таблице Б.1 приведен состав пластового газа от проектируемого куста газоконденсатных скважин №16 Салмановского (Утреннего) НГКМ, принятый по данным технологической части проекта.

Таблица Б.1 – Состав пластового газа от проектируемого куста газоконденсатных скважин №16 Салмановского (Утреннего) НГКМ

Наименование	Молеку-	Плотность ком-	Коэф-	Газовая	Низшая теплота	Содержание	компонен-
показателя	лярная	понентов газа,	фициент	постоян-	сгорания компо-	тов в	газе
	масса,	кг/м ³ , при стан-	адиаба-	ная	нентов газа	% мол	% масс
	г/моль	дартных усло-	ТЫ		ккал/м ³ , при стан-	70 111031	70 Mago
		виях (Р=0,1013			дартных условиях		
		МПа,			(P=0,1013 MΠa,		
		T=293,15K),			T=293,15K)		
Состав газа:							
- метан	16,043	0,6682	1,31	52,89	7980	95,90144	93,099041
- этан	30,07	1,2601	1,2	28,21	14300	1,345318	2,447903
- пропан	44,097	1,8641	1,14	19,24	20670	0,052664	0,140526
- изобутан	58,123	2,488	1,11	14,59	27180	0,053197	0,187104
- бутан	58,123	2,4956	1,1	14,59	27290	0,015804	0,055585
- изопентан	72,15	3,147	1,08	11,75	34400	0,029085	0,126983
- пентан	72,15	3,174	1,08	11,75	34400	0,006097	0,026621
- смесь углеводородов							
предельных С ₆ -С ₁₀ , в						0,0554	0,333592
том числе:							
– гексан	86,177	3,898	1,06	9,84	38540	0,016463	0,078538
- гептан	100,204	4,755	1,053	8,46	44630	0,015646	0,087485
- октан	114,231	5,812	1,046	7,42	50690	0,010641	0,067418
- нонан	128,258	7,254	1,04	6,61	57030	0,006878	0,051078
- декан	142,285	9,494	1,03	5,96	63005	0,005818	0,049073
- алканы C ₁₂ -C- ₁₉	170,338	11,366	1,03	4,98	63005	0,008576	0,091103
- бензол	78,114	3,546	1,13	10,86	31469	0,00001	0,000048
- метилбензол	92,141	4,389	1,09	9,2	37449	0,000087	0,000486
- диметилбензол	106,167	5,495	1,13	7,99	43451	0,00063	0,004051
- этилбензол	106,167	5,39	1,13	7,99	43559	0,000207	0,00133
- водород	2,0519	0,0838	1,41	420,6	2399	0,000059	0,000007
- гелий	4,0026	0,16631	1,67	211,86	-	0,011611	0,00285
- азот	28,0135	1,1649	1,4	30,26	-	0,796549	1,350235
- углерод диоксид	44,01	1,8393	1,3	19,27	-	0,106129	0,282631
- вода	18,0153	0,787	1,33	47,06	-	1,514448	1,650929
- метанол	32,042	1,587	1,25	26,47	7466	0,102645	0,199018
Всего	-	-	-	-		100,00	100,00

В таблице Б.2 приведены свойства пластового газа Салманоского (Утреннего) НГКМ.

Изм. Кол.уч Лист №док. Подп.

Взам. инв.

Подп. и дата

подл. 읟

MHB.

120.ЮP.2017-2010-02-OOC2.2.TY

Таблица Б.2 – Свойства пластового газа Салмановского (Утреннго) НГКМ

Наименование показателя	Величина
Молекулярный вес, кг/кмоль	(16,043 × 95,90144+30,07×1,345318+44,097×0,052664+58,123×(0,053192+0,015804) + 72,15 × × (0,029085+0,006097)+86,177×0,016463+100,204×0,015646+114,231×0,010641+128,258× ×0,006878+142,285×0,005818+170,338×0,008576+78,114×0,00001+92,141 × 0,000087+106,167× × 0,00063+106,167 × 0,000207+2,0159 × 0,000059+4,0026 × 0,011611+28,0135 × 0,796549+ +44,01 × 0,106129+18,0153 × 1,514448+32,042 × 0,102645)/100) = 16,529
Плотность газа	
- при стандартных условиях (Р= 1,033 кг/см², Т=293,15 K), кг/м³	(0,6682 × 95,90144+1,2601 × 1,345318+1,8641 × 0,052664+2,488 × 0,053197+2,4956 × 0,015804+ +3,147×0,029085+3,174×0,006097+3,898×0,016463+4,755×0,015646+5,812×0,010641+7,254 × × 0,006878+9,494×0,005818+11,366×0,008576+3,546×0,00001+4,389×0,000087+5,495×0,00063+ +5,39×0,000207+0,0838×0,000059+0,16631×0,011611+1,1649×0,796549+1,8393×0,106129+ +0,787 × 1,514448+1,587 × 0,102645)/100) = 0,69
- при нормальных условиях (Р=	
1,033 кг/см ² , T=273,15 К), кг/нм ³	0,69 × 293,15 / 273,15 = 0,741
Коэффициент адиабаты	$ \begin{array}{l} (1,31\times95,90144+1,2\times1,345318+1,14\times0,052664+1,11\times(0,053197+0,015804)+1,08\times(0,029085+0,006097)+1,06\times0,016463+1,053\times0,015646+1,046\times0,0010641+1,04\times0,006878+1,03\times0,005818+1,03\times0,008576+1,13\times0,00001+1,09\times0,000087+1,13\times0,00063+1,13\times0,000207+1,41\times0,000059+1,67\times0,011611+1,4\times0,796549+1,3\times0,106129+1,33\times1,514448+1,25\times0,102645)/100) = 1,309 \end{array} $
Газовая постоянная, кГм/кг×град	$ \begin{array}{l} (52,89\times95,90144+28,21\times1,345318+19,24\times0,052664+14,59\times(0,053197+0,015804)+11,75\times(0,029085+0,006097)+9,84\times0,016463+8,46\times0,015646+7,42\times0,010641+6,61\times0,006878+5,96\times0,005818+4,98\times0,008576+10,86\times0,00001+9,2\times0,000087+7,99\times0,00063+7,99\times0,000207+420,6\times0,000059+211,86\times0,011611+30,26\times0,796549+19,27\times0,106129+47,06\times1,514448+26,47\times0,102645)/100=52,157 \end{array} $
Низшая теплота сгорания,	(7980×95,90144+14300×1,345318+20670×0,052664+27180×0,053197+27290×0,015804+34400
ккал/м ³ , при стандартных усло-	×(0,029085+0,006097)+38540×0,016463+44630 × 0,015646+50690 × 0,010641+57030 × 0,006878
виях (Р=0,1013 МПа, Т=293,15К)	+63005×0,005818+63005×0,008576+31469 × 0,00001+37449 × 0,000087+43451 × 0,00063+43559 × 0,000207 +2399 × 0,000059 + 7466 × 0,102645) / 100=7927
Низшая теплота сгорания, ккал/нм ³ , при нормальных усло- виях (Р= 1,033 кг/см ² , T=273,15 K)	7927× 293,15 / 273,15 = 8507

В соответствии с данными технологической части проекта ввод в эксплуатацию проектируемой скважины №1601 намечен на 2019 год, скважины №1602 – на 2020 год.

Продувки шлейфа от куста газоконденсатных скважин №16 осуществляется:

- разово при выводе шлейфа на режим при вводе в эксплуатацию. При этом принято, что продувка шлейфа производится в течение 72 ч средней производительностью одной скважины;
- ежегодно для ликвидации гидратных пробок и при опорожнении газопромысловых коллекторов перед ППР и при выводе на режим после ППР. Принимается, что для ликвидации гидратных пробок шлейф продувается, в течение 6 ч средней производительностью одной скважины. Опорожнение шлейфа перед ППР выполняется ежегодно. Перед вводом в эксплуатацию после ППР, шлейф продувается в течение 3 суток средней производительностью одной скважины.

Продувки шлейфа от куста газоконденсатных скважин №16 предусматривается осуществлять на УГГ, расположенное на площадке ЭЦ №2.

В соответствии с паспортными данными на УГГ расход сжигаемого газа составляет от 1500 до 45000 нм³/ч (при нормальных условиях P=0,1013 МПа, T=273,15К).

УГГ продувки шлейфов располагается в земляном амбаре. Размер амбара УГГ составляет 37,0 × 27 м. Высота источника загрязнения атмосферы - 2,0 м.

В таблице Б.3 приведены средние дебиты проектируемых газоконденсатных скважин куста №16 Салмановского (Утреннего) НГКМ по годам эксплуатации, принятые по данным технологической части проекта.

ICX	יו וטו נטר	INCURU	ли час	ти прое
Изм.	Кол.уч	Лист	№док.	Подп.

NHB.

Взам.

Подп. и дата

№ подл.

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Лист

Таблица Б.3 – Средние дебиты проектируемых скважин куста № 16 Салмановского (Утреннего) НГКМ по годам эксплуатации

№ скважины	Средние	Средние дебиты проектируемых скважин по годам эксплуатации, м ³ /сутки (при стандартных условиях P=0.10413 МПа. T=293.15К)							
	2019 г.	2020 г.	2021 г.	2022 г.	2023 г.	2024 г.	2025 г.	2026 г.	2027 г.
скважина 1601	235000	235000	200000	200000	534217	615662	334927	365150	275175
скважина 1602	-	257000	257000	487000	225000	102000	160000	646145	603263

В таблице Б.4 приведены объемы газа, сжигаемого на УГГ ЭЦ №2 при регламентных продувках шлейфа от куста газоконденсатных скважин №16 в период эксплуатации.

Регламентные операции, сопровождающиеся сжи-

ганием газа на УГГ

Годы

эксплу-

атации

NHB.

Взам.

Подп. и дата

№ подл.

MHB.

Таблица Б.4 – Объемы газа, поступающего на сжигание на УГГ ЭЦ №2 при регламентных продувках шлейфа от куста газоконденсатных скважин №16 в период эксплуатации

Объемы газа, сжигаемого на УГГ продувки скважин ку-

ста при регламентных продувках скважин, м 3 /год (при стандартных условиях P = 1,033 кг/см 2 , T=293,15 K)

2019	Вывод шлейфа на режим при вводе в эксплуатацию	705000
год	Ликвидация гидратных пробок	-
	Опорожнение перед ППР	-
	Вывод шлейфа на режим после ППР	-
	Всего:	705000
2020	Вывод шлейфа на режим при вводе в эксплуатацию	-
год	Ликвидация гидратных пробок	64250
	Опорожнение перед ППР	25601
	Вывод шлейфа на режим после ППР	771000
	Всего:	860851
2021	Вывод шлейфа на режим при вводе в эксплуатацию	-
год	Ликвидация гидратных пробок	64250
	Опорожнение перед ППР	25601
	Вывод шлейфа на режим после ППР	771000
	Всего:	860851
2022	Вывод шлейфа на режим при вводе в эксплуатацию	-
год	Ликвидация гидратных пробок	121750
	Опорожнение перед ППР	25601
	Вывод шлейфа на режим после ППР	1461000
	Всего:	1608351
2023	Вывод шлейфа на режим при вводе в эксплуатацию	-
год	Ликвидация гидратных пробок	133554
	Опорожнение перед ППР	25601
	Вывод шлейфа на режим после ППР	1602651
	Всего:	1761806
2024	Вывод шлейфа на режим при вводе в эксплуатацию	-
год	Ликвидация гидратных пробок	153916
	Опорожнение перед ППР	25601
	Вывод шлейфа на режим после ППР	1846986
	Всего:	2026503
2025	Вывод шлейфа на режим при вводе в эксплуатацию	-
год	Ликвидация гидратных пробок	83732
	Опорожнение перед ППР	25601
	Вывод шлейфа на режим после ППР	1004781
	Всего:	1114114
2026	Вывод шлейфа на режим при вводе в эксплуатацию	-
год	Ликвидация гидратных пробок	161536
	Опорожнение перед ППР	25601
	Вывод шлейфа на режим после ППР	1938435
	Всего:	2125572
2027	Вывод шлейфа на режим при вводе в эксплуатацию	-
год	Ликвидация гидратных пробок	150816
	Опорожнение перед ППР	25601

Подп.

Изм. Кол.уч Лист №док.

120.ЮР.2017-2010-02-OOC2.2.TY

Лист

		19
Годы	Регламентные операции, сопровождающиеся сжи-	Объемы газа, сжигаемого на УГГ продувки скважин ку-
эксплу-	ганием газа на УГГ	ста при регламентных продувках скважин, м ³ /год (при
атации		стандартных условиях $P = 1,033 \text{ кг/см}^2$, $T = 293,15 \text{ K}$)
	Вывод шлейфа на режим после ППР	1809789
	Bceso:	1986206

В таблице Б.5 приведены расчеты количества загрязняющих веществ, поступающих в атмосферу при сжигании газа на УГГ ЭЦ №2 при регламентных продувках шлейфа от куста скважин газоконденсатных скважин №16 в период эксплуатации с 2019 г. по 2027 г.

Взам. инв. №								
Подп. и дата								
№ подл.								Лист
NHB. №	Изм.	Кол.уч	Лист	№док.	Подп.	Дата	120.ЮР.2017-2010-02-ООС2.2.ТЧ	17
	120.ЮІ	P.2017-	2010-0	2-00C2	2.2.TY_05	D	Формат А	4

Инв. № подл.	Подп. и дата	Взам.инв.№

20

Таблица Б.5 – Расчеты количества загрязняющих веществ, поступающих в атмосферу при сжигании газа на УГГ ЭЦ №2 при продувке шлейфа от куста газовых скважин №16 в период эксплуатации с 2019 г. по 2027 г.

Наименование показателя	Величина										
	2019 год	2020 год	2021 год	2022 год	2023 год	2024 год	2025 год	2026 год	2027 год		
Объем сжигаемого газа м ³ /сут (при стандартных условиях Р = 1,033 кг/см2, Т=293,15 К)	235000	257000	257000	487000	534217	615662	334927	646145	603263		
 – м³/ч (при стандартных условиях Р = 1,033 кг/см², Т = 293,15 К) 	235000 / 24 = =9791,667	257000 / 24 = =10708,333	257000 / 24 = =10708,333	487000 /24 = =20291,667	53421 / 24 = =22259,042	615662 / 24 = =25652,583	334927 / 24 = =13955,292	646145 / 24 = =26922,708	603263 / 24 = =25135,958		
 – м³/с (при стандартных условиях Р = 1,033 кг/см², Т = 293,15 К) 	9791,667 / 3600 =2,72	10708,333 / 3600 =2,975	10708,333 / 3600 =2,975	20291,667 / 3600 =5,637	22259,042 / 3600 =6,183	25652,583 / 3600 =7,126	13955,292 / 3600 =3,876	26922,708 / 3600 =7,479	25135,958 / 3600 =6,982		
- M^3 /год (при стандартных условиях P = 1,033 кг/с M^2 , T = 293,15 K)	705000	860851	860851	1608351	1761806	2026503	1114114	2125573	1986206		
Годовое время работы, ч/год	705000/9791,667 =72	860851 / /10708,333 =80	860851 / /10708,333 =80	1608351 / /20291,667 = 79	1761806 / /22259,042 = 79	2026503 / /25652,583 = 79	1114114 / /13955,292 = 80	2125573 / /26922,708 = 79	1986206 / /25135,958 = 79		
Плотность газа (при стандартных условиях $P = 1,033 \text{ кг/cm}^2,$ $T=293,15 \text{ K}), \text{ кг/hm}^3$	ных условиях $P = 1,033 \text{ кг/см}^2$, 0,69										
Молекулярный вес газа, кг/кмоль	Молекулярный вес газа,										
Количество газа, сжигаемого на УГГ при регламентных продув- ках, г/с	2,72 × 0,69 × ×1000=1876,800	2,975 × 0,69 × ×1000=2052,570	2,975 × 0,69 × ×1000=2052,570	5,637 × 0,69 × ×1000=3889,530	6,183 × 0,69 × ×1000=4226,27	7,126 × 0,69 × ×1000=4916,940	3,876 × 0,69 × ×1000=2674,440	7,479 × 0,69 × ×1000=5160,510	6,982 × 0,69 × ×1000=4817,580		
Годовое количество газа, сжи- гаемого на УГГ при регламент- ных продувках, т/год	705000 × 0,69 /1000=486,450	860851× 0,69 /1000=593,987	860851× 0,69 /1000=593,987	1608351 × 0,69 /1000=1109,762	1761806 × 0,69 /1000=1215,6469	2026503 × 0,69 /1000=1398,287	1114114 × 0,69 /1000=768,739	2125573 × 0,69 /1000=1466,645	1986206 × 0,69 /1000=1370,482		
Показатель адиабаты					1,309						
Газовая постоянная, кГм/кг×град кГм/кмоль×град				52	52,157 2,157 × 16,647 = 862	,1					
Скорость распространения звука в сжигаемой смеси, $W_{\scriptscriptstyle 3B.}$, м/с		$91.5 \times \sqrt{1,309 \times \frac{4 + 273.15}{16.529}} = 429$									
Скорость истечения сжигаемой смеси, Wист, м/с	0,5 × [2 × 9,81 ×(1,309 /1,309+1)× 862,1 × (4+273) / 16,529] ^{0.5} = 198,765										
Проверка условий бессажевого сжигания $W_{\text{ист}}$ / $W_{\text{зв}}$ > 0,2	198,765 / 427 = 0,46 > 0,2 - при горении сажа не образуется										
Коэффициент избытка воздуха		1									
Доля энергии, теряемой за счет излучения факела				0	.48 × 16,529 ^{0,5} =0,19	5					

Изм. Кол.уч Лист №док. Подп. Дата

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Лист

Инв. № подл.	Подп. и дата	Взам.инв.№

21 Наименование показателя Величина 2019 год 2020 год 2021 год 2022 год 2023 год 2024 год 2025 год 2026 год 2027 год $(0.0476 \times (1.5 \times 0 + (1+4/4) \times 95.90144 + (2+6/4) \times 1.345318 + (3+8/4) \times 0.052664 + (4+10/4) \times (0.053197 + 0.015804) + (5+12/4) \times (0.029085 + 0.006097) + (6+14/4) \times 0.016463 + (2+6/4) \times 0.016464 + (2+6/4) \times 0.01644 + (2+6/4) \times 0.01644$ Стехиометрическое количество $(7+16/4)\times0,015646+(8+18/4)\times0,010641+(9+20/4)\times0,006878+(10+22/4)\times0,005818+(12+26/4)\times0,008576+(6+6/4)\times0,00001+(7+8/4)\times0,0000087+(8+10/4)\times0,00063+(8+10/4)\times0,000207+(8+10/4)\times0,00001+(10-10/4)\times0,$ воздуха, необходимого для сжигания 1 M^3 газа, V_0 , M^3/M^3 $(1+4/4)\times0,102645-0) = 9,45$ Объем газовоздушной смеси, полученной при сжигании газа, 1 + 9,45 = 10,45 $V_{n.c.}, M^3/M^3$ Низшая теплота сгорания, 8507 ккал/м3 0.9984 Полнота сгорания газа Теплоемкость продуктов сгора-0.39 ния, ккал/м3*°С минус 24÷ плюс 32 (для расчетов принята средняя температура плюс 4°C) Температура газа, оС 8507 ×(1 - 0,195) × 0,9984 = 1682 Температура дымовых газов, °С 10,45 × 0,39 3,876 × 10,45 × 2.72 × 10.45 × 2,975 × 10,45 × 2,975× 10,45 × 6,183 × 10,45 × 7,479 × 10,45 × 6.982 × 10.45 × Объем продуктов сгорания, 5,637× 10,45 × 7,126 × 10,45 × (273,15+1682)/ (273,15+1682)(273,15+1682)/ (273,15+1682)/ (273,15+1682)/ (273, 15+1682)/ (273,15+1682)/ (273,15+1682)/ (273,15+1682)/ поступающих в атмосферу при /273,15=203,453 /273,15=222,527 /273,15=222,527 /273,15=421,641 /273,15=462,482 /273,15=533,017 /273,15=289,921 /273,15=559,421 /273,15=522,246 сгорании газа, м³/с Общее содержание негорючих 0,011611 + 0,796549 + 0,106129 + 1,514448 = 2,428737примесей в газе, % об. $100 \times 12 \times (1 \times 95,90144 + 2 \times 1,345318 + 3 \times 0,052664 + 4 \times (0,053197 + 0,015804) + 5 \times (0,029085 + 0,006097) + 6 \times 0,016463 + 7 \times 0,015646 + 8 \times 0,010641 + 9 \times 0,006878 + 10 \times 10 \times 10^{-2}$ Содержание углерода в газе, % $0.005818 + 12 \times 0.008576 + 6 \times 0.00001 + 7 \times 0.000087 + 8 \times 0.00063 + 8 \times 0.000207 + 1 \times 0.102645) / (100-2,428737) \times 16,529 = 74,454$ Отношение стехиометрической 133 длины факела к диаметру выходного сопла L_{cx}/d 0.15 Диаметр сопла, м $0.26 \times 198,765^2 \times 0.69 / 0.15 = 47251$ Критерий Архимеда $1,74 \times 0,15 \times 47251^{0,17} \times 133^{0,59} = 29$ Дли<u>на факела, м</u> Диаметр факела, м $0.14 \times 29 + 0.4 \times 0.15 = 4.1$ Содержание диуглерода окси-0,282631 да, % масс. Коэффициент трансформации 0,4 Максимально разовый выброс загрязняющих веществ, поступающих в атмосферу при продувке скважин, г/с: 0.003 × 1876.800 0.003 × 2052.750 | 0.003 × 2052.750 0.003 ×3889.530 0.003 × 4266.270 0.003 × 4916.940 | 0.003 × 2674.440 0.003 × 5160.510 0.003 × 4817.580 - оксидов азота, в том числе: =5.63=6.158=6.158=11.669 =12.799 =14.751 =8.023 =15.482 =14.453 5.63×0.4=2.252 6.158×0.4=2.463 6.158×0.4=2.463 11,669×0,4=4,668 12.799×0.4=5.12 14,751×0,4=5,9 8,023×0,4=3,209 15,482×0,4=6,193 14,453×0,4=5,781 азота диоксид - азот (II) оксид 5,63×0,65×(1-0,4) 6,158×0,65×(1-6,158×0,65×(1-11,669×0,65×(1-12,799×0,65×(1-14,751× 0,65×(1-8,023×0,65×(1-15,482×0,65×(1-14,453×0,65×(1-=2,196 0,4)=2,4020,4)=2,4020,4)=4,5510,4)=4,9920,4) = 5,7530,4)=3,1290,4)=6,0380,4)=5,6370.02 × 1876,800 $0.02 \times 2052,750$ $0.02 \times 2052,750$ $0,02 \times 3889,530$ 0.02 ×4266,270 0.02 ×4916,940 $0.02 \times 2674,440$ 0.02 ×5160,510 $0.02 \times 4817,580$ - углерода оксид =41,055 =37,536 =41,055 =77,791 =85,325 =98,339 =53,489 =103,21 =96,352

Изм.	Кол.уч	Лист	№док.	Подп.	Дата

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Инв. № подл.	Подп. и дата	Взам.инв.№	

22

Наименование показателя		Величина							
	2019 год	2020 год	2021 год	2022 год	2023 год	2024 год	2025 год	2026 год	2027 год
- метан	0,0005 × 1876,800	0,0005×2052,750	0,0005×2052,750	0,0005×3889,530	0,0005×4266,270	0,0005×4916,940	0,0005×2674,440	0,0005×5160,510=	0,0005×4817,580
	=0,938	=1,026	=1,026	=1,945	=2,133	=2,458	=1,337	2,58	=2,409
- углерод диоксид	0,01×1876,800×	0,01×2052,750×	0,01×2052,750×	0,01×3889,530×	0,01×4266,270×	0,01×4916,940×	0,01×2674,440×	0,01×5160,510×	0,01×4817,580×
	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×
	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-	74,454+0,282631)-
	37,536-0,938	41,055- 1,026	41,055- 1,026	77,791-1,945	85,325-2,133	98,339-2,458	53,489-1,337	103,21-2,58	96,352-2,409
	=5086,909	=5563,807	=5563,807	=10542,244	=11563,368	=13326,954	=7248,845	=13987,13	=13057,646
Годовой выброс загрязняющих									
веществ, поступающих в атмо-									
сферу при продувке скважин,									
т/год:									
– оксидов азота, в том числе:	0,003 × 486,540	0,003 × 593,987	0,003 × 593,987	0,003 × 1109,762	0,003 × 1215,646	0,003 × 1398,287	0,003 × 768,739	0,003 × 1466,645	0,003 × 1370,482
	=1,459	=1,782	=1,782	=3,329	=3,647	=4,195	=2,306	=4,400	=4,111
– азота диоксид	1,459×0,4=0,584	1,782×0,4=0,713	1,782×0,4=0,713	3,329×0,4=1,332	3,647×0,4=1,459	4,195×0,4=1,678	2,306×0,4=0,922	4,40×0,4=1,76	4,111×0,4=1,644
– азот (II) оксид	1,459×0,65×(1-	1,782×0,65×(1-	1,782×0,65×(1-	3,329×0,65×(1-	3,647×0,65×(1-	4,195×0,65×(1-	2,306 ×0,65×(1-	4,40×0,65×(1-0,4)	4,111×0,65×(1-
	0,4)=0,569	0,4)=0,695	0,4)=0,695	0,4)=1,298	0,4)=1,422	0,4)=1,636	0,4)=0,899	=1,716	0,4)=1,603
- углерода оксид	0,02 × 486,540	0,02 × 593,987	0,02 × 593,987	0,02 × 1109,762	0,02 × 1215,646	0,02 × 1398,287	0,02 × 768,739	0,02 × 1466,645	0,02 × 1370,482
	=9,729	=11,880	=11,880	=22,195	=24,313	=27,966	=15,375	=29,333	=27,41
- метан	0,0005 × 486,540	0,0005 × 593,987	0,0005 × 593,987	0,0005×1109,762	0,0005×1215,646	0,0005×1398,287	0,0005 × 768,739	0,0005×1466,645	0,0005×1370,482
	=0,243	=0,297	=0,297	=0,555	=0,608	=0,699	=0,384	=0,733	=0,685
- углерод диоксид	0,01 × 486,540×	0,01×593,987×	0,01×593,987×	0,01×1109,762×	0,01×1215,646×	0,01×1398,287×	0,01×768,739×	0,01×1466,645×	0,01×1370,482×
	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×	(3,67×0,9984×
	74,237+0,231)-	74,237+0,231)-	74,237+0,231)-	74,237+0,231)-	74,237+0,231)-	74,237+0,231)-	74,237+0,231)-	74,237+0,231)-	74,237+0,231)-
	9,729- 0,243	11,880-0,297	11,880-0,297	22,195-0,555	24,313-0,608	27,966-0,699	15,375-0,384	29,333-0,733	27,41-0,685
	=1318,482	=1609,952	=1609,952	=3007,917	=3294,906	=3789,94	=2083,603	=3975,219	=3714,576

Изм.	Кол.уч	Лист	№док.	Подп.	Дата

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Лист 20

120.ЮР.2017-2010-02-ООС2.2.ТЧ_05D Формат A4

Приложение В (обязательное)

Расчет количества загрязняющих веществ, поступающих в атмосферу за счет возможных утечек через неплотности фланцев, устанавливаемых на оборудовании и трубопроводах в период эксплуатации

Следует отметить, что трубопроводах проектируемых объектов трубопроводная арматура всех видов и типов с герметичностью затвора класса А.

В соответствии с ГОСТ 9544-2015 для затворов класса герметичности А трубопроводной арматуры всех видов (запорной, обратной, предохранительной, регулирующей, распределительно-смесительной, фазоразделительной) и всех типов (задвижки, клапаны, краны, дисковые затворы), а также комбинированной арматуры номинальными диаметрами от 3 до 2000 мм при номинальных давлениях от 1 до 420 кг/см² отсутствуют видимые утечки в течение времени выдержки.

Поэтому при расчетах выбросы загрязняющих веществ, поступающих в атмосферу за счет утечек через неплотности трубопроводной арматуры всех видов и типов с герметичностью затвора класса А, приняты равными нулю.

В таблице В.1 приведены исходные данные для расчета выбросов загрязняющих веществ, поступающих в атмосферу за счет утечек через неплотности фланцев, установленных в обвязке газопроводов и метанолопроводов на площадке куста газовых скважин №16 и объектов энергообеспечения нужд строительства, гидронамыва грунта и бурения в период эксплуатации с 2019 г. по 2027 г..

Таблица В.1 – Исходные данные для расчета количества загрязняющих веществ, поступающих в атмосферу за счет возможных утечек через неплотности фланцев, установленных на оборудовании и трубопроводах проектируемых объектов энергообеспечения

	Наименование площадки	Среда	Суммарное количество фланцев,			
		·	через которые утечки могут			
			поступить в атмосферу, штук			
OI	1 K	уст №16 с 2-мя эксплуатационными скважи	нами			
₽.	Куст №16 с 2-мя	Газ сырьевой природный	86			
инв.	эксплуатационными скважинами	Метанол	145			
		2 Объекты энергообеспечения				
Взам.		2.1 Блок подготовки сырого газа				
B	Сепараторы сырого и сбросного	Газ сырьевой природный	154			
_	газа 004-V-001A/B, 004-V-002	Метанол (95% концентрации)	71			
		Дренажи (углеводородный конденсат)	103			
_	Емкость дренажная 004-V-001	Дренажи (углеводородный конденсат)	28			
дата		2.2 Блок подготовки топливного газа				
	Блок подготовки топливного газа	Газ природный	6			
Ξ	№1 050-U-001	Газ топливный	12			
Подп.		Дренажи (углеводородный конденсат)	4			
\sqsubseteq						
۱.						
подл.						
5			ļ			

120.ЮP.2017-2010-02-OOC2.2.TY 05D

Изм. Кол.уч Лист №док. Подп.

120.HOP.2017-2010-02-OOC2.2.TY

		24
Наименование площадки	Среда	Суммарное количество фланцев,
		через которые утечки могут
		поступить в атмосферу, штук
Блок подготовки топливного газа	Газ природный	6
№2 050-U-002	Газ топливный	12
11-2 333 3 332	Дренажи (углеводородный конденсат)	4
Система подачи	Газ топливный	317
подготовленного топливного	T do Totaliani	
газа к потребилям		
Tada K Horpeovisiiii	2.3 ГФУ продувки шлейфов	
ГФУ 060-U-001	Газ сырьевой природный	15
1 47 000 0 001	Метанол (95% концентрации)	5
	2.4 Блок метанольного хозяйства	<u> </u>
Емкости метанола и слива	Метанол (95% концентрации)	167
метанола 020-Т-001/002/003,	Пиетанол (95% концентрации)	107
020-T-004		
Технологическая насосная	Метанол (95% концентрации)	218
метанола 020-U-001	тметанол (95 % концентрации)	210
Метанола 020-0-001	2.5 Склад дизельного топлива	
Decembrant Europe Europe		126
Резервуары дизтоплива и слива	Дизтопливо	120
дизтоплива 039-Т-002/003, 039- Т-001		
	Management	87
Блок подготовки масла 039-U-	Масло минеральное нефтяное	87
001 и резервуары слива		
отработанного масла 039-Т-		
004/005/006	I A A	00
Резервуары слива	Масло минеральное нефтяное	83
отработанного масла 039-Т-		
007/008		

В таблице В.2 приведены составы сред, которые могут поступить в атмосферу за счет утечек через неплотности фланцев, установленных на оборудовании и трубопроводах куста газовых скважин №16 и объектов энергообеспечения нужд строительства, гидронамыва грунта и бурения Салмановского (Утреннего) НГКМ, принятые по данным технологической части проекта.

Таблица В.2 – Составы сред, которые могут поступить в атмосферу за счет утечек через неплотности фланцев, установленных на оборудовании и трубопроводах объектов энергообеспечения нужд строительства, гидронамыва грунта и бурения Салмановского (Утреннего) НГКМ

		Наименование компонентов в средах Содержание компонентов, % масс.									
읟			Газ природ- ный сырье- вой	Углеводо- родный кон- денсат	Газ топ- ливный	Метанол	Дизтоп- ливо	Масло минераль- ное			
								нефтяное			
инв.		Метан	93,099041	0,8185	95,10309	-	-	-			
		Этан	2,447903	0,125478	2,498339	-	-	-			
Взам.		Пропан	0,140526	0,025656	0,14302	-	-	-			
М		Изобутан	0,187104	0,08272	0,189371	-	-	-			
		Бутан	0,055585	0,03591	0,056012	-	-	-			
		Пентан	0,153604	0,246654	0,151583	-	-	-			
ġ		Смесь углеводородов предельных С ₆ -С ₁₀	0,333592	7,321073	0,181844	-	-	-			
дата		Алканы C ₁₂ -C ₁₉	0,091103	4,247039	0,000845	-	-	-			
Z		Бензол	0,000048	0,000376	0,000041	-	-	-			
댪		Метилбензол	0,000486	0,0094	0,000292	ı	-	-			
Подп.		Диметилбензол	0,004051	0,136116	0,001183	ı	-	-			
		Этилбензол	0,00133	0,040909	0,00047	ı	-	-			
		Водород	0,000007	0,0000	0,000007		-	_			
\vdash	-	Гелий	0,002812	0,000009	0,002873	ı	-	-			
ДЛ.											

Лист 22

윋

Наименование компонентов в средах	Содержание компонентов, % масс.						
	Газ природ-	Углеводо-	Газ топ-	Метанол	Дизтоп-	Масло	
	ный сырье-	родный кон-	ливный		ливо	минераль-	
	вой	денсат				ное	
						нефтяное	
Азот	1,350235	0,006989	1,379407	-	-	-	
Углерод диоксид	0,282631	0,030625	0,288104	-	-	-	
Вода	1,650929	77,57372	0,002117	5	-	-	
Метанол	0,199018	9,298824	0,001398	95	-	-	
Дизтопливо	-	-	-	-	100	-	
Масло минеральное нефтяное	-	-	-	-	-	100	
Итого:	100,00	100,00	100,00	100,00	100,00	100,00	

В таблице В.3 приведены расчеты количества загрязняющих веществ, поступающих в атмосферу за счет утечек через неплотности фланцев, установленных на оборудовании и трубопроводах объектов энергообеспечения нужд строительства, гидронамыва грунта и бурения Салмановского (Утреннего) НГКМ в период эксплуатации с 2019 г. по 2027 г..

Взам. инв. №								
Подп. и дата								
подл.								
Инв. №	Moss	l(on viv	Пиот	Nonov	Попп	Пото	120.ЮР.2017-2010-02-ООС2.2.ТЧ	Лист 23
_		Кол.уч D 2017		№док.	Подп. 2 тч ль	Дата	Формат А4	

Инв. № подл.	Подп. и дата	Взам.инв.№

26

Таблица В.3 – расчеты количества загрязняющих веществ, поступающих в атмосферу за счет утечек через неплотности фланцев, установленных на оборудовании и трубопроводах объектов энергообеспечения нужд строительства, гидронамыва грунта и бурения Салмановского (Утреннего) НГКМ в период эксплуатации

Наименование	Максимально разовое количество	Годовой валовый выброс загрязняющих веществ, пост	упающих в атмосферу за счет возможных утечек, т/го
загрязняющих веществ,	загрязняющих веществ, поступающих в	2019 г.	2020 г. ÷ 2027 г. (ежегодно)
оступающих в атмосферу	атмосферу за счет возможных утечек, г/с		
1 Утечки через неплотн	ости фланцев, установленных на оборудо	рвании и трубопроводах куста №16 с 2-мя эксплуата	ционными скважинами (выброс неорганизованный
		ста. Высота источника – 2 м, размеры площадки – 45 м	× 50 м)
аз сырьевой природный,	$0,00073 \times 0,03 \times 86 \times 1000 / 3600 = 0,000523$	0,00073 × 0,03 × 86 × 5136 × 0,001 =0,00967	$0,00073 \times 0,03 \times 86 \times 8760 \times 0,001 = 0,0165$
том числе:			
метан	$0,000523 \times 93,099041/100 = 0,000487$	$0,00967 \times 93,099041/100 = 0,00900$	$0.0165 \times 93.099041/100 = 0.0154$
этан	0,000523 ×2,447903/100 = 0,0000128	0,00967 ×2,447903/100 =0,000237	0,0165 ×2,447903/100 = 0,000404
пропан	$0,000523 \times 0,140526/100 = 0,000000735$	0,00967 × 0,140526/100 =0,0000136	0,0165 × 0,140526/100 =0,0000232
изобутан	$0,000523 \times 0,187104/100 = 0,000000979$	$0,00967 \times 0,187104/100 = 0,0000181$	$0,0165 \times 0,187104/100 = 0,0000309$
бутан	$0,000523 \times 0,055585/100 = 0,000000291$	$0,00967 \times 0,055585/100 = 0,00000538$	$0.0165 \times 0.055585/100 = 0.00000917$
пентан	$0,000523 \times 0,153604/100 = 0,000000803$	0,00967 × 0,153604/100 =0,0000149	$0,0165 \times 0,153604/100 = 0,0000253$
смесь углеводородов	$0,000523 \times 0,333592/100 = 0,00000174$	0,00967 × 0,333592/100 =0,0000323	$0.0165 \times 0.333592/100 = 0.0000550$
предельных С ₆ -С ₁₀			
алканы С ₁₂ -С- ₁₉	$0,000523 \times 0,091103/100 = 0,000000476$	$0,00967 \times 0,091103/100 = 0,00000881$	$0.0165 \times 0.091103/100 = 0.0000150$
бензол	0,000523 × 0,000048/ 100 =0,000000000251	$0,00967 \times 0,000048 / 100 = 0,00000000464$	0,0165× 0,000048 / 100 = 0,00000000792
метилбензол	$0,000523 \times 0,000486/100 = 0,00000000254$	$0,00967 \times 0,000486/100 = 0,0000000470$	$0.0165 \times 0.000486/100 = 0.0000000802$
диметилбензол	$0,000523 \times 0,004051/100 = 0,0000000212$	$0,00967 \times 0,004051/100 = 0,000000392$	$0.0165 \times 0.004051/100 = 0.000000668$
этилбензол	0,000523 × 0,00133/100 = 0,00000000696	$0,00967 \times 0,00133/100 = 0,000000129$	$0.0165 \times 0.00133/100 = 0.000000219$
углерод диоксид	$0,000523 \times 0,282631/100 = 0,00000148$	0,00967 × 0,282631/100 =0,0000273	$0,0165 \times 0,282631/100 = 0,0000466$
метанол	0,000523 × 0,199018/100 = 0,00000104	0,00967 × 0,199018/100 = 0,0000192	0,0165 × 0,199018/100 = 0,0000328
1етанол	0,00038 × 0,05 × 122 × 0,95 × 1000 / 3600 =	0,00038× 0,05 × 122 × 0,95 ×5136 × 0,001= 0,0113	$0,00038 \times 0,05 \times 122 \times 0,95 \times 8760 \times 0,001 = 0,0193$
	= 0,000611		
Суммарное количество	загрязняющих веществ, поступающих в	з атмосферу через неплотности фланцев, устано	вленных на кусте №16 с 2-мя эксплуатационны
		скважинами	
Летан	0,000487	0,00900	0,0154
Этан	0,0000128	0,000237	0,000404
Іропан	0,00000735	0,0000136	0,0000232
1зобутан	0,00000979	0,0000181	0,0000309
Бутан	0,00000291	0,0000538	0,0000917
І ентан	0,00000803	0,0000149	0,0000253
месь углеводородов редельных C ₆ -C ₁₀	0,0000174	0,0000323	0,0000550

Дата

Подп.

Кол.уч Лист №док.

120.ЮР.2017-2010-02-OOC2.2.TY 05D

Инв. № подл.	Подп. и дата	Взам.инв.№

27 Наименование Максимально разовое количество Годовой валовый выброс загрязняющих веществ, поступающих в атмосферу за счет возможных утечек, т/год 2020 г. ÷ 2027 г. (ежегодно) 2019 г. загрязняющих веществ, загрязняющих веществ, поступающих в поступающих в атмосферу атмосферу за счет возможных утечек, г/с 0.00000881 Алканы C₁₂-C-₁₉ 0.00000476 0.0000150 0,000000000251 0.00000000464 0,00000000792 Бензол Метилбензол 0.0000000254 0.000000470 0.0000000802 0,0000000212 0,000000392 0,000000668 Диметилбензол 0.000000129 0.0000000696 0.000000219 Этилбензол 0,00000148 0,0000273 0,0000466 Углерод диоксид 0,000612 0,0113 0,0193 Метанол

2 Утечки через неплотности фланцев, установленных на оборудовании и трубопроводах объектов Энергоцеха №2

2.1 Утечки через неплотности фланцев, установленных на оборудовании и трубопроводах блока подготовки сырого и сбросного газов (выброс неорганизованный в пределах площадки. Высота источника – 2 м, размеры площадки – 50 м × 20 м)

Газ сырьевой природный,	$[0,00073 \times 0,03 \times 154 \times 1000 / 3600 = 0,000937]$	0,00073×0,03 × 154 ×5136 × 0,001= 0,0173	0,00073×0,03 × 154 × 8760 × 0,001= 0,0295
в том числе:			
- метан	0,000937 × 93,099041/100 = 0,000872	0,0173 × 93,099041/100 = 0,0161	0,0295 × 93,099041/100 = 0,0275
- этан	0,000937 × 2,447903/100 = 0,0000229	0,0173 × 2,447903/100 = 0,000423	0,0295 × 2,447903/100 = 0,000722
- пропан	0,000937 × 0,140526/100 = 0,00000132	$0.0173 \times 0.140526/100 = 0.0000243$	0,0295 × 0,140526/100 = 0,0000415
- изобутан	0,000937 × 0,187104/100 = 0,00000175	$0.0173 \times 0.187104/100 = 0.0000324$	0,0295 × 0,187104/100 = 0,0000552
- бутан	0,000937 × 0,055585/100 = 0,000000521	0,0173 × 0,055585/100 =0,00000962	0,0295 × 0,055585/100 = 0,0000164
- пентан	0,000937 × 0,153604/100 = 0,00000144	$0,0173 \times 0,153604/100 = 0,0000266$	0,0295 × 0,153604/100 = 0,0000453
- смесь углеводородов	$0,000937 \times 0,333592/100 = 0,00000313$	$0,0173 \times 0,333592/100 = 0,0000577$	0,0295 × 0,333592/100= 0,0000984
предельных С ₆ -С ₁₀			
- алканы C ₁₂ -C- ₁₉	0,000937 × 0,091103/100 = 0,000000854	$0.0173 \times 0.091103/100 = 0.0000158$	0,0295 × 0,091103/100 = 0,0000269
- бензол	0,000937 × 0,000048/100 = 0,00000000045	0,0173 × 0,000048/100= 0,00000000830	0,0295 × 0,000048/100= 0,0000000142
- метилбензол	0,000937 × 0,000486/100 = 0,00000000455	$0.0173 \times 0.000486/100 = 0.0000000841$	0,0295 × 0,000486/100 = 0,000000143
- диметилбензол	0,000937 × 0,004051/100 = 0,0000000380	$0.0173 \times 0.004051/100 = 0.000000701$	0,0295 × 0,004051/100 = 0,00000120
- этилбензол	0,000937 × 0,00133/100 = 0,0000000125	$0.0173 \times 0.00133/100 = 0.000000230$	0,0295 × 0,00133/100 = 0,000000392
- углерод диоксид	0,000937 × 0,282631/100 = 0,00000265	0,0173 × 0,282631/100 =0,0000489	0,0295 × 0,282631/100 = 0,0000834
- метанол	0,000937 × 0,199018/100 = 0,00000186	$0,0173 \times 0,199018/100 = 0,0000344$	0,0295 × 0,199018/100 = 0,0000587
Метанол	0,00038 × 0,05 × 71 × 0,95 × 1000 / 3600 =		
	= 0,000356	$0,00038 \times 0,05 \times 71 \times 0,95 \times 5136 \times 0,001 = 0,00658$	$0,00038 \times 0,05 \times 71 \times 0,95 \times 8760 \times 0,001 = = 0,0112$
Дренажи (углеводород-	0,00038 × 0,05 × 103 × 1000 / 3600=	0,00038× 0,05 × 103 × 5136 × 0,001= 0,0101	0,00038× 0,05 × 103 × 8760 × 0,001= 0,0171
ный конденсат)	=0,000544		
в том числе:			
- метан	0,000544 × 0,8185/100 = 0,00000445	$0.0101 \times 0.8185/100 = 0.0000827$	0,0171 × 0,8185/100 = 0,000133
- этан	0,000544 × 0,125478/100 = 0,000000683	$0.0101 \times 0.125478/100 = 0.0000127$	0,0171 × 0,125478/100 = 0,0000205
- пропан	0,000544 × 0,025656/100 = 0,000000140	$0,0101 \times 0,025656/100 = 0,00000259$	0,0171 × 0,025656/100 = 0,00000418
- изобутан	$0,000544 \times 0,08272/100 = 0,000000450$	$0,0101 \times 0,08272/100 = 0,00000835$	$0,0171 \times 0,08272/100 = 0,0000135$

Изм.	Кол.уч	Лист	№док.	Подп.	Дата

120.ЮР.2017-2010-02-OOC2.2.TY

Лист

Инв. № подл.	Подп. і	и дата	Взам.инв.№						
						28			
Наимено			имально разовое			упающих в атмосферу за счет возможных утечек, т/год			
загрязняющи			іющих веществ, г		2019 г.	2020 г. ÷ 2027 г. (ежегодно)			
поступающих в	атмосферу		ру за счет возмож						
- бутан		- ,	4 × 0,03591/100 =	-,	$0.0101 \times 0.03591/100 = 0.00000363$	$0.0171 \times 0.03591/100 = 0.00000585$			
- пентан		0,000544	4 × 0,246654/100	= 0,00000134	0,0101 × 0,246654/100 = 0,0000249	$0.0171 \times 0.246654/100 = 0.0000402$			
- смесь угл предельны	еводородов x C ₆ -C ₁₀	0,00054	14 × 7,321073/100	= 0,0000398	0,0101 × 7,321073/100 = 0,000739	0,0171 × 7,321073/100 = 0,00119			
 алканы С₁₂ 	-C- ₁₉	0,00054	14 × 4,247039/100	= 0,0000231	0,0101 × 4,247039/100 = 0,000429	$0.0171 \times 4.247039/100 = 0.000692$			
- бензол			× 0,000376/100 =		$0,0101 \times 0,000376/100 = 0,0000000380$	$0.0171 \times 0.000376/100 = 0.0000000613$			
- метилбенз			4 × 0,0094/100 =		$0.0101 \times 0.0094/100 = 0.000000949$	$0.0171 \times 0.0094/100 = 0.00000153$			
- диметилбе			4 × 0,136116/100		$0,0101 \times 0,136116/100 = 0,0000137$	0,0171 × 0,136116/100 = 0,0000222			
- этилбензол			I × 0,040909/100 =		$0.0101 \times 0.040909/100 = 0.00000413$	$0.0171 \times 0.040909/100 = 0.00000667$			
- углерод дис	ксид		4 × 0,030625/100		$0.0101 \times 0.030625/100 = 0.00000309$	$0.0171 \times 0.030625/100 = 0.00000499$			
- метанол			44 × 9,298824/100		0,0101 × 9,298824/100 = 0,000939	0,0171 × 9,298824/100 = 0,00152			
Суммарное	количеств	о загрязня	нощих вещест е	, поступающих	с в атмосферу за счет утечек через неплотности о	рланцев, установленных в обвязке сепараторов			
					сырого и сбросного газов				
Метан		0,000876			0,0162	0,0276			
Этан		0,0000236			0,000436	0,000743			
Пропан			0,00000146		0,0000269	0,0000457			
Изобутан			0,00000220		0,0000408	0,0000687			
Бутан		0,00000716			0,0000133	0,0000223			
Пентан		0,0000278			0,0000515	0,0000855			
	водородов	0,0000429				0,00129			
предельных С					0,000797				
Алканы C ₁₂ -C-	19	0,000024			0,000445	0,000719			
Бензол			0,000000002		0,000000463	0,000000755			
Метилбензол			0,00000055		0,0000103	0,00000167			
Диметилбензо	ОЛ		0,000000778		0,0000144	0,0000234			
Этилбензол			0,000000230	6	0,0000436	0,0000706			
Углерод диок	сид		0,00000282		0,0000520	0,0000884			
Метанол			0,000408		0,00755	0,0128			
2.2 Утечки че	2.2 Утечки через неплотности фланцев, установленных в обвязке емкости дренажной 004-V-001 (выброс неорганизованный в пределах площадки размещения емкости. Высота источника – 2 м, размеры площадки 12 м× 5 м)								
Дренажи (уг	певолород	0 00038 × 0	0,05 × 28 × 1000 /			0,00038× 0,05 × 28 × 8760 × 0,001= 0,00466			
ный конденсат		0,00000 ^ (5,00 A 20 A 1000 /	0000 - 0,000140	0,00038× 0,05 × 28 × 5136 × 0,001= 0,002/3				
в том числе:	,								
- метан		0.00014	48 × 0,8185/100 =	0.00000121	0,00273 × 0,8185/100 = 0,0000223	0,00466 × 0,8185/100 = 0,0000381			
- этан			3 × 0,125478/100 =		$0.00273 \times 0.125478/100 = 0.00000223$	0,00466 × 0,125478/100 = 0,00000585			
Jidii			0,120470/100		0,00270 × 0,125470/100 = 0,00000040	0,00400 ~ 0,125470/100 - 0,00000505			

Изм. Кол.уч Лист №док. Подп. Дата

120.ЮР.2017-2010-02-ООС2.2.ТЧ

 $0,00273 \times 0,025656/100 = 0,000000700$

 $0,00273 \times 0,08272/100 = 0,00000226$

 $0,00273 \times 0,03591/100 = 0,000000980$

Лист

26

пропан

изобутан бутан $0,000148 \times 0,025656/100 = 0,0000000380$

 $0,000148 \times 0,08272/100 = 0,000000122$

 $0,000148 \times 0,03591/100 = 0,0000000531$

 $0.00466 \times 0.025656/100 = 0.00000120$

 $0,00466 \times 0,08272/100 = 0,00000385$

 $0,00466 \times 0,03591/100 = 0,00000167$

Инв. № подл. Подп.		и дата	Взам.инв.№							
								2	29	
Наименование		Макси	мально разовое	количество	Годовой валовы	й выброс загряз	няющих веществ, пос	гупающих в атмосферу за счет возможных утечек, т/год	Д	
загрязняющи	х веществ,		ющих веществ, п			2019 г.		2020 г. ÷ 2027 г. (ежегодно)		
поступающих в	з атмосферу	атмосфер	ру за счет возмож	ных утечек, г/с						
- пентан		0,000148	× 0,246654/100 =	0,00000365	0,00273	× 0,246654/100 =	= 0,00000673	0,00466 × 0,246654/100 = 0,0000115		
- смесь угл предельны	еводородов их С ₆ -С ₁₀	0,00014	8 × 7,321073/100	= 0,0000108	0,0027	3 × 7,321073/100	= 0,000200	0,00466 × 7,321073/100 = 0,000341		
- алканы C ₁₂		0,00014	8 × 4,247039/100	= 0,00000629	0,0027	3 × 4,247039/100) =0,000116	0,00466 × 4,247039/100 = 0,000198		
- бензол		0,000148 ×	0,000376/100 = (0,000000000556	0,00273	< 0,000376/100 =	0,000000103	$0.00466 \times 0.000376/100 = 0.0000000175$		
- метилбенз	ол	0,000148	$3 \times 0,0094/100 = 0$	0,000000139	0,00273	× 0,0094/100 =	0,000000257	$0,00466 \times 0,0094/100 = 0,000000438$		
- диметилбе	нзол	0,000148	3 × 0,136116/100 =	0,000000201	0,00273	× 0,136116/100 =	0,00000372	$0,00466 \times 0,136116/100 = 0,000000634$		
- этилбензол	П	0,000148	× 0,040909/100 =	0,0000000605	0,00273	× 0,040909/100 =	= 0,00000112	$0.00466 \times 0.040909/100 = 0.00000191$		
- углерод дис	оксид	0,000148	× 0,030625/100 =	0,000000453	0,00273	× 0,030625/100 =	0,000000836	$0,00466 \times 0,030625/100 = 0,00000143$		
- метанол		0,00014	48 × 9,298824/100	=0,0000138	0,0027	3 × 9,298824/100	=0,000254	0,00466 × 9,298824/100 =0,00043333		
Суммарное	количество	загрязняі	ощих веществ,	поступающих		счет утечек ч й 004-V-001	нерез неплотности	фланцев, установленных в обвязке емкости дре-	-	
Метан			0,00000121		Пажно	0,0000223		0,000381		
Этан			0,00000121			0.00000343		0.0000585		
Пропан			0,000000038		0,00000700			0,00000120		
Изобутан		0,00000122			0,00000226			0,0000385		
Бутан		0,000000122			0,00000980			0,0000167		
Пентан		0.00000031			0.0000673			0.0000115		
	водородов	0,0000000				0,00000073		0,0000113		
предельных (водородов Сс-С40	0,0000108			0,000200			0,000341		
Алканы С ₁₂ -С-		0.0000629			0,000116			0.000198		
Бензол	13	0.0000000556			0.000000103			0.000000175		
Метилбензол			0,000000139		0,00000257			0,00000438		
Диметилбензо		0,00000201			0,0000372			0,0000634		
Этилбензол	031	0,00000005			0,00000112			0,0000191		
Углерод диок	СИП	0,00000003			0,00000836			0,00000131		
Углерод диок Метанол	СИД		0,0000138	,		0,000254	,	0,000433		
Wetanoji	2 2 V-			ISHIIOD VOTSHOD	BOULLIN HO OFON		SOUDOBOUS SUCKED			
2 2 1 VTOUVIA								юдготовки топливного газа №1, 2 вного газа №1 050-U-001 (Дефлектор: высота – 5 м,		
2.3.1 УТЕЧКИ		•	диаметр 0,355	м, производите	льность вентил:	яционной устан	овки – 0,3 м³/с, темп	ература – 10 ⁰ С)		
Газ сырьевой г	природный,	$0,00073 \times 0$),03 × 6 × 1000 / 3	600 = 0,0000365	$0,00073 \times 0$,03 × 6 × 5136 × 0	0,001 = 0,000675	$0,00073 \times 0,03 \times 6 \times 8760 \times 0,001 = 0,00115$		
в том числе:										
			5 × 93,099041/100		,	5 × 93,099041/10	•	$0,00115 \times 93,099041/100 = 0,00107$		
- этан		-,	5 ×2,447903/100 =	-,	-,	5 ×2,447903/100	-,	0,00115 ×2,447903/100 = 0,0000282		
- пропан		,	5 × 0,140526/100 =	•	-,	× 0,140526/100 =	-,	0,00115 × 0,140526/100 = 0,00000162		
- изобутан		-,	5 × 0,187104/100 =	-,	-,	5 × 0,187104/100	-,	$0,00115 \times 0,187104/100 = 0,00000215$		
- бутан		*	5 × 0,055585/100 =	•		× 0,055585/100 =		$0,00115 \times 0,055585/100 = 0,000000639$		
- пентан		0,0000365	5 × 0,153604/100 =	= 0,000 <u>0000561</u>	0,000678	5 × 0,153604/100	=0,00000104	0,00115 × 0,153604/100 = 0,00000177		
									ист	
							420 LOD 3	2017-2010-02-OOC2.2.T4		
				14014 160	уль Пиот Молок	Поля	120.00.2	.011-2010-02-0062.2.19 2	27	

Подп.

Изм. Кол.уч Лист №док.

Инв. № подл.	Подп. и дата	Взам.инв.№

•			30
Наименование	Максимально разовое количество	Годовой валовый выброс загрязняющих веществ, посту	упающих в атмосферу за счет возможных утечек, т/год
загрязняющих веществ,	загрязняющих веществ, поступающих в	2019 г.	2020 г. ÷ 2027 г. (ежегодно)
поступающих в атмосферу	атмосферу за счет возможных утечек, г/с		, , ,
- смесь углеводородов	$0.0000365 \times 0.333592/100 = 0.000000122$	0,000675 × 0,333592/100 = 0,00000225	0,00115 × 0,333592/100 = 0,00000384
предельных С ₆ -С ₁₀	,	, , ,	. ,
- алканы C ₁₂ -C- ₁₉	0,0000365 × 0,091103/100 = 0,0000000333	0,000675 × 0,091103/100 = 0,000000615	0,00115 × 0,091103/100 = 0,00000105
- бензол	0,0000365×0,000048/100 = 0,0000000000175	0,000675 × 0,000048/100 = 0,000000000324	0,00115 × 0,000048/100 = 0,00000000552
- метилбензол	$0.0000365 \times 0.000486/100 = 0.000000000177$	0,000675 × 0,000486/100 =0,00000000328	$0,00115 \times 0,000486/100 = 0,00000000559$
- диметилбензол	$0,0000365 \times 0,004051/100 = 0,00000000148$	$0,000675 \times 0,004051/100 = 0,0000000273$	0,00115 × 0,004051/100 = 0,0000000466
- этилбензол	$0,0000365 \times 0,00133/100 = 0,000000000485$	0,000675 × 0,00133/100 = 0,00000000898	0,00115 × 0,00133/100 = 0,0000000153
- углерод диоксид	0,0000365 × 0,282631/100 = 0,000000103	0,000675 × 0,282631/100 = 0,00000191	0,00115 × 0,282631/100 = 0,00000325
- метанол	0,0000365× 0,199018/100 = 0,0000000726	0,000675 × 0,199018/100 = 0,00000134	$0,00115 \times 0,199018/100 = 0,00000229$
Газ топливный,	0,00073× 0,03 × 12 × 1000 / 3600 =0,0000730	0,00073× 0,03 × 12 ×5136 × 0,001= 0,00135	0,00073× 0,03 × 12 × 8760 × 0,001= 0,00230
в том числе:			
- метан	0,0000730 × 95,10309/100 = 0,0000694	0,00135 × 95,10309/100 = 0,00128	0,00230 × 95,10309/100 = 0,00219
- этан	0,0000730 × 2,498339 /100 =0,00000182	0,00135 × 2,498339 /100 =0,0000337	0,00230 × 2,498339 /100 =0,0000575
- пропан	0,0000730 × 0,14302 /100 =0,000000104	0,00135 × 0,14302 /100 =0,00000193	0,00230 × 0,14302 /100 =0,00000329
- изобутан	0,0000730 × 0,189371 /100 =0,000000138	0,00135 × 0,189371 /100 =0,00000256	0,00230 × 0,189371 /100 =0,00000436
- бутан	0,0000730 × 0,056012 /100 =0,0000000409	0,00135 × 0,056012 /100 =0,000000756	0,00230 × 0,056012 /100 =0,00000129
- пентан	0,0000730 × 0,151583 /100 =0,000000111	0,00135 × 0,151583 /100 =0,00000205	0,00230 × 0,151583 /100 =0,00000349
- смесь углеводородов предельных C ₆ -C ₁₀	0,0000730 × 0,181844 /100 =0,000000133	0,00135 × 0,181844 /100 =0,00000245	0,00230 × 0,181844 /100 =0,00000418
- алканы С ₁₂ -С- ₁₉	0.0000730 × 0.000845 /100 =0.000000000617	0.00135 × 0.000845 /100 =0.0000000114	0.00230 × 0.000845 /100 =0.0000000194
- бензол	0,0000730×0,000041/100 =0,00000000000299	0,00135 × 0,000041 /100 =0,000000000554	0,00230 × 0,000041 /100 =0,000000000943
- метилбензол	0.0000730 × 0.000292 /100 =0.0000000000213	0,00135 × 0,000292 /100 =0,00000000394	0,00230 × 0,000292 /100 =0,000000000672
- диметилбензол	0,0000730 × 0,001183 /100 =0,000000000864	0,00135 × 0,001183 /100 =0,0000000160	0,00230 × 0,001183 /100 =0,0000000272
- этилбензол	0,0000730 × 0,00047 /100 =0,000000000343	0.00135 × 0.00047 /100 =0.00000000635	0,00230 × 0,00047 /100 =0,0000000108
- углерод диоксид	0,0000730 × 0,288104 /100 =0,000000210	0.00135 × 0.288104 /100 =0.000003894	0,00230 × 0,288104 /100 =0,00000663
- метанол	0,0000730 × 0,001398 /100 =0,00000000102	0,00135 × 0,001398 /100 =0,0000000189	0,00230 × 0,001398 /100 =0,0000000322
Дренажи (углеводород-	0.00038 × 0.05 × 4 × 1000 / 3600 = 0.0000211	0.00038× 0.05 × 4×5136 × 0.001=0.000390	0.00038× 0.05 × 4× 8760 × 0.001=0.000666
ный конденсат)	3,00 1 1000 1 0000 0,0000211	2,55550 0,55 1 5 105 0,55 1 5,500000	5,55555 5,55 1 5155 5,555
в том числе:			
- метан	0,0000211 × 0,8185/100 = 0,000000173	$0.000390 \times 0.8185/100 = 0.00000319$	$0.000666 \times 0.8185/100 = 0.00000545$
- этан	0,0000211 × 0,125478/100 = 0,0000000265	0,000390 × 0,125478/100 = 0,000000489	0.000666 × 0.125478/100 = 0.000000836
- пропан	0,0000211 × 0,025656/100 = 0,00000000541	0,000390 × 0,025656/100 = 0,000000100	0,000666 × 0,025656/100 = 0,000000171
- изобутан	0,0000211 × 0,08272/100 = 0,0000000175	0.000390 × 0.08272/100 = 0.000000323	0,000666 × 0,08272/100 = 0,000000551
- бутан	$0.0000211 \times 0.03591/100 = 0.00000000758$	$0,000390 \times 0,03591/100 = 0,000000140$	$0.000666 \times 0.03591/100 = 0.000000239$
- пентан	$0.0000211 \times 0.246654/100 = 0.0000000520$	$0,000390 \times 0,246654/100 = 0,000000962$	$0,000666 \times 0,246654/100 = 0,00000164$
- смесь углеводородов		0,000390 × 7,321073/100 =0,0000286	0,000666 × 7,321073/100 =0,0000488
предельных С ₆ -С ₁₀	0,0000211 × 7,321073/100 = 0,00000154	,	
- алканы C ₁₂ -C ₁₉	0,0000211 × 4,247039/100 = 0,000000896	0,000390 × 4,247039/100 =0,0000166	0,000666 × 4,247039/100 =0,0000283

Подп.

Изм. Кол.уч Лист №док.

Лист

28

120.ЮР.2017-2010-02-ООС2.2.ТЧ_05D

Инв. № подл.	Полп	и дата Взам.инв.№								
тіодіі.		лдата	Bodinishi Birti							
Наименование		Макси	имально разовое	количество	Годовой валов	ый выброс загря	зняющих веществ. пос	тупающих в атмосферу за счет возможных утечек, т/г		
загрязняющи		загрязняющих веществ, поступающих в			- одоления	2019 г.		2020 г. ÷ 2027 г. (ежегодно)		
поступающих в								(
- бензол		0,0000211×0,000376/100= 0,0000000000793			0.000390	× 0.000376/100	= 0,0000000147	0,000666 × 0,000376/100 = 0,0000000025		
- метилбензол		0,0000211×0,000076/100= 0,000000000198			· · · · · · · · · · · · · · · · · · ·	0 × 0,0094/100 :	•	$0.000666 \times 0.0094/100 = 0.0000000626$		
- диметилбе	нзол	0,0000211 × 0,136116/100 = 0,0000000287				90 × 0,136116/10		0,000666 × 0,136116/100 = 0,000000907		
- этилбензол	П	0,0000211	× 0,040909/100 =	0,0000000863	0,00039	0 × 0,040909/10) = 0,00000160	$0,000666 \times 0,040909/100 = 0,000000272$		
- углерод дис	оксид		× 0,030625/100 =			0 × 0,030625/10		$0,000666 \times 0,030625/100 = 0,000000204$		
- метанол			11 × 9,298824/100			390 × 9,298824/1		0,000666 × 9,298824/100 =0,0000619		
Суммарное к	оличество	загрязняю	ощих веществ,					рланцев, установленных на оборудовании и труб		
Метан			0,000104	провосах с	лока пооготнов	0,00191	ea3a №1 050-U-001	0.00327		
Этан		0,0000274				0,000050	7	0,000865		
Пропан			0,000000161		0,0000298			0,0000508		
Изобутан			0,000000224			0,0000041	4	0,0000706		
Бутан		0,000000688			0,0000127			0,00000217		
Пентан		0,00000219			0,0000405			0,000069		
	водородов	0,000018						0,000568		
предельных (0,0000333					
Алканы C ₁₂ -C	- 19	0,0000093			0,0000172			0,0000294		
Бензол		0,00000000127			0,0000000235			0,0000000896		
Метилбензол		0,0000000237				0,00000004		0,000000749		
Диметилбенз	ол	0,00000031				0,000005		0,00000981		
Этилбензол		0,0000000946				0,000001		0,00000298		
Углерод диок	сид	0,00000319				0,0000059		0,0000101		
Метанол		0,00000203				0,000037		0,0000642		
2.3.2 Утечки	через непл	отности фл	панцев, установ.	пенных на обор	удовании и тру	бопроводах бл	ока подготовки топли	івного газа №2 050-U-002 (Дефлектор: высота – 5 і		
		0.0070					новки – 0,875 м ³ /с, тем			
	природныи,	0,00073 × 0,03 × 6 × 1000 / 3600 = 0,0000365			0,00073 ×	0,03 × 6 × 5136	< 0,001 = 0,000675	$0,00073 \times 0,03 \times 6 \times 8760 \times 0,001 = 0,00115$		
в том числе: - метан		0,0000365 × 93,099041/100 = 0,0000340			0.0006	75 × 93,099041/	00 = 0.000628	0,00115 × 93,099041/100 = 0,00107		
- этан		0,0000365 × 93,099041/100 = 0,0000340 0,0000365 ×2,447903/100 = 0,000000893				675 ×2,447903/10	The state of the s	0,00115 × 33,0330417100 = 0,00107		
- пропан		0,0000365 × 0,140526/100 = 0,0000000513			0,000675 × 0,140526/100 = 0,000000949			0,00115 × 0,140526/100 = 0,00000162		
- изобутан		0,0000365 × 0,187104/100 = 0,0000000683			$0,000675 \times 0,187104/100 = 0,00000126$			0,00115 × 0,187104/100 = 0,00000215		
- бутан		0,0000365 × 0,055585/100 = 0,0000000203			0,000675 × 0,055585/100 = 0,000000375			0,00115 × 0,055585/100 = 0,000000639		
- пентан			0,0000365 × 0,153604/100 = 0,0000000561			75 × 0,153604/10		0,00115 × 0,153604/100 = 0,00000177		
- смесь углеводородов					0,000675 × 0,333592/100 = 0,00000225			0,00115 × 0,333592/100 = 0,00000384		
предельных С ₆ -С ₁₀		,				•				
- алканы С ₁₂ -С- ₁₉		0,0000365 × 0,091103/100 = 0,0000000333			$0,000675 \times 0,091103/100 = 0,000000615$			0,00115 × 0,091103/100 = 0,00000105		
		0,0000365×0,000048/100 = 0,000000000175			$0,000675 \times 0,000048/100 = 0,000000000324$			0,00115 × 0,000048/100 = 0,00000000552		
- метилбенз	ол	0,0000365	× 0,000486/100 =	0,000000000177	0,000675	5 × 0,000486/100	=0,00000000328	0,00115 × 0,000486/100 = 0,00000000559		
								1		
							120 KP 2	2017-2010-02-OOC2.2.TЧ		
				Изм Кол	т.уч Лист №дон	. Подп. Дат		2017-2010-02-0002.2.19		
				VISIVI. NO	т.уч лист ти≌дог	. подп. дат	a			

Инв. № подл.	Подп. и дата	Взам.инв.№

Наименование веществ, поступающих веществ, поступа				32
загрязнющих вещесть, поступающих в тальосфру за счен возможным устчем; г/с поступающих в тальосфру за счен возможным устчем; г/с поступающих в тальосфру за счен возможным устчем; г/с поступающих в тальофру за счен возможным устчем возможным в тальофру за счен возможным устчем; г/с поступающих в тальофру за счен возможным устчем возможным в том числе. — метан	Hamanaaaa	Mayayyan		<u></u>
поступаещия в атмосферу в стигосферу за счет возможных утечек, г/с диметилбензол 0,000035 × 0,000365 × 0,0000000000485 0,0000000000485 0,0000365 × 0,00133/100 = 0,0000000000485 0,000075 × 0,0000000000048 0,000075 × 0,0000000000048 0,0000055 × 0,0000000000000000000000000		l l		
диметилбензол		· · · · · · · · · · · · · · · · · · ·	2019 Γ.	2020 г. ÷ 2027 г. (ежегодно)
этипбензоп		1 1 2	0.000075 0.0040544400 0.00000070	0.00445 0.0040544400 0.000000400
- утгерод, дножжид метанноп				
метанол		· · · · · · · · · · · · · · · · · · ·		
В том числе: метан		-,	-,	-,
метан		-,	· · · · · · · · · · · · · · · · · · ·	· · · ·
метан	,	0,00073× 0,03 × 12 × 1000 / 3600 =0,0000730	0,00073× 0,03 × 12 ×5136 × 0,001= 0,00135	0,00073× 0,03 × 12 × 8760 × 0,001= 0,00230
3 тан пролан пролан пролан пролан полота № 2,48839 /100 = 0,0000182				
- пролан изобутан 0,0000730 × 0,14302 /100 = 0,000000104 0,0000730 × 0,168017 /100 = 0,0000000138 0,0000730 × 0,056012 /100 = 0,000000049 0,000730 × 0,151583 /100 = 0,000000111 0,000730 × 0,181844 /100 = 0,0000000133 0,000730 × 0,181844 /100 = 0,0000000133 0,0000730 × 0,181844 /100 = 0,0000000133 0,0000730 × 0,000845 /100 = 0,000000000114 0,0000730 × 0,000845 /100 = 0,0000000000114 0,0000730 × 0,000845 /100 = 0,000000000114 0,0000730 × 0,000845 /100 = 0,000000000114 0,0000730 × 0,000845 /100 = 0,000000000114 0,0000730 × 0,000845 /100 = 0,0000000000133 0,0000730 × 0,000845 /100 = 0,000000000014 0,0000730 × 0,000845 /100 = 0,00000000014 0,0000730 × 0,000845 /100 = 0,000000000014 0,0000730 × 0,000845 /100 = 0,000000000014 0,0000730 × 0,000845 /100 = 0,000000000014 0,0000730 × 0,000845 /100 = 0,000000000015 0,000330 × 0,000074 /100 = 0,00000000016 0,000330 × 0,00047 /100 = 0,00000000065 0,000330 × 0,00047 /100 = 0,00000000000000000000000000000000	- метан	· · · · · · · · · · · · · · · · · · ·	-,,,	.,,,
- мэгобутан	- этан			
- бутан́ пентан пента	•			
- пентан - смесь углеводородов предельных С ₉ -C ₁₀ - алканы С₁ ₂ -С−19 - алканы С₁		-,	-,,,,,	-,,,,,
Смесь углеводородов предельных С ₆ -C ₁₀ алканы С ₁₂ -C ₋₁₉ 0,0000730 × 0,181844 /100 = 0,000000133 0,00135 × 0,181844 /100 = 0,000000141 0,00030 × 0,181844 /100 = 0,000000141 0,00135 × 0,000845 /100 = 0,0000000194 0,00135 × 0,000845 /100 = 0,0000000194 0,00135 × 0,000845 /100 = 0,0000000194 0,00135 × 0,0000000000554 0,00030 × 0,000041 /100 = 0,00000000094 0,00135 × 0,0000000000000000000000000000000000	_			
предельных С ₆ -С ₁₀ плакань С ₁₂ -С ₋₁₉ (0,000730 × 0,000845 /100 =0,00000000013 (0,00135 × 0,0000845 /100 =0,0000000014 (0,000230 × 0,000845 /100 =0,00000000094 (0,00230 × 0,000845 /100 =0,00000000094 (0,00230 × 0,0000845 /100 =0,00000000094 (0,00230 × 0,0000845 /100 =0,00000000094 (0,00230 × 0,0000845 /100 =0,00000000094 (0,00230 × 0,0000845 /100 =0,00000000094 (0,00230 × 0,000183 /100 =0,00000000004 (0,00230 × 0,000183 /100 =0,000000000000000000000000000000000		-,	0,00135 × 0,151583 /100 =0,00000205	0,00230 × 0,151583 /100 =0,00000349
Передельных С ₂ -С-19		0.0000730 × 0.181844 /100 =0.000000133	0.00135 × 0.181844 /100 = 0.00000245	0.00230 × 0.181844 /100 =0.00000418
- бензол				
- метилбензол 0,000730 × 0,000292 /100 = 0,000000000213 0,00135 × 0,000292 /100 = 0,00000000034 0,000230 × 0,00047 /100 = 0,00000000072 0,000730 × 0,00047 /100 = 0,00000000034 0,000730 × 0,00047 /100 = 0,00000000034 0,000730 × 0,00047 /100 = 0,0000000034 0,000730 × 0,00047 /100 = 0,00000000034 0,000730 × 0,00047 /100 = 0,00000000034 0,000730 × 0,00047 /100 = 0,00000000034 0,000730 × 0,00047 /100 = 0,000000000034 0,00035 × 0,00047 /100 = 0,00000000035 0,00047 /100 = 0,000000000034 0,00030 × 0,00047 /100 = 0,00000000000000000000000000000000		-,	-,,,	-,,,,,,
- диметилбензол 0,0000730 × 0,001183 /100 =0,00000000864 0,000135 × 0,001183 /100 =0,0000000160 0,000230 × 0,000133 /100 =0,00000000272 0,00135 × 0,000147 /100 =0,00000000635 0,00135 × 0,00047 /100 =0,00000000108 0,000330 × 0,00047 /100 =0,00000000108 0,00135 × 0,00047 /100 =0,00000000335 0,000330 × 0,00047 /100 =0,00000000108 0,00135 × 0,000347 /100 =0,0000000335 0,000330 × 0,288104 /100 =0,00000000102 0,00135 × 0,288104 /100 =0,00000000108 0,000330 × 0,288104 /100 =0,00000000102 0,000330 × 0,001398 /100 =0,0000000012 0,00035 × 0,001398 /100 =0,0000000189 0,000330 × 0,001398 /100 =0,0000000322 0,000330 × 0,001398 /100 =0,00000000322 0,000330 × 0,001398 /100 =0,0000000322 0,000330 × 0,001398 /100 =0,0000000322 0,000330 × 0,001398 /100 =0,0000000322 0,000330 × 0,000330 × 0,000330 × 0,000330 × 0,000330 × 0,000330 × 0,0000000000		, , , , , , , , , , , , , , , , , , , ,		
- этилбензол		-,		
- углерод диоксид - метанол - оли числе: - метан - оли пропан - пропан - пентан - оли				
- метанол 0,0000730 × 0,001398 /100 = 0,00000000102 0,00135 × 0,001398 /100 = 0,0000000189 0,00230 × 0,001398 /100 = 0,0000000322 Дренажи (углеводород- ный конденсат) 0,00038 × 0,05 × 4 × 1000 / 3600 = 0,00000173 0,00038× 0,05 × 4×5136 × 0,001=0,000390 0,00038× 0,05 × 4×8760 × 0,001=0,000666 - метан ильган 0,0000211 × 0,8185/100 = 0,000000173 0,000390 × 0,8185/100 = 0,000000489 0,000666 × 0,8185/100 = 0,000000545 - пропан изобутан 0,000211 × 0,08272/100 = 0,0000000051 0,000390 × 0,08272/100 = 0,0000000175 0,000390 × 0,08272/100 = 0,000000017 - бутан инеттан илентан илен	- этилбензол	, , , , , , , , , , , , , , , , , , ,	-,,,	-,,
Дренажи (углеводород- ный конденсат) в том числе: метан	- углерод диоксид	· · · · · · · · · · · · · · · · · · ·		
Ный конденсат) В том числе: - метан			, , , , , , , , , , , , , , , , , , ,	0,00230 × 0,001398 /100 =0,0000000322
В ТОМ ЧИСЛЕ: - метан - метан - одооооооооооооооооооооооооооооооооооо		$0,00038 \times 0,05 \times 4 \times 1000 / 3600 = 0,0000211$	$0,00038 \times 0,05 \times 4 \times 5136 \times 0,001 = 0,000390$	0,00038× 0,05 × 4× 8760 × 0,001=0,000666
- метан				
- этан	в том числе:			
- пропан	- метан		-,	-,
$\begin{array}{llllllllllllllllllllllllllllllllllll$	- этан	· · · · · · · · · · · · · · · · · · ·		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		-,		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
$\begin{array}{llllllllllllllllllllllllllllllllllll$	- бутан	-,	-,	-,
предельных C_6 - C_{10} - алканы C_{12} - C_{19} - бензол - метилбензол - диметилбензол - этилбензол - оли оли от тилбензол - оли от тилбензол - оли оли от ти		· · · · · · · · · · · · · · · · · · ·		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		0,0000211 × 7,321073/100 = 0,00000154	0,000390 × 7,321073/100 =0,0000286	0,000666 × 7,321073/100 =0,0000488
- бензол 0,0000211×0,000376/100= 0,0000000000793 0,000390 × 0,000376/100 = 0,000000000147 0,000666 × 0,000376/100 = 0,00000000025 - метилбензол 0,0000211 × 0,0094/100 = 0,000000000198 0,000390 × 0,0094/100 = 0,0000000367 0,000666 × 0,0094/100 = 0,0000000626 - диметилбензол 0,0000211 × 0,136116/100 = 0,00000000287 0,000390 × 0,136116/100 = 0,0000000531 0,000666 × 0,136116/100 = 0,0000000907 - этилбензол 0,0000211 × 0,040909/100 = 0,00000000863 0,000390 × 0,040909/100 = 0,0000000160 0,000666 × 0,040909/100 = 0,0000000272		0,0000211 × 4,247039/100 = 0,000000896	0,000390 × 4,247039/100 =0.0000166	0,000666 × 4,247039/100 =0,0000283
- метилбензол 0,0000211 × 0,0094/100 = 0,00000000198 0,000390 × 0,0094/100 = 0,0000000367 0,000666 × 0,0094/100 = 0,0000000626 - диметилбензол 0,0000211 × 0,136116/100 = 0,00000000287 0,000390 × 0,136116/100 = 0,0000000531 0,000666 × 0,136116/100 = 0,0000000907 - этилбензол 0,0000211 × 0,040909/100 = 0,00000000863 0,000390 × 0,040909/100 = 0,0000000160 0,000666 × 0,040909/100 = 0,0000000272		· · · · · · · · · · · · · · · · · · ·		
- диметилбензол 0,0000211 × 0,136116/100 = 0,0000000287 0,000390 × 0,136116/100 = 0,000000531 0,000666 × 0,136116/100 = 0,000000907 0,000390 × 0,040909/100 = 0,00000011 × 0,040909/100 = 0,0000000272		0.0000211 × 0.0094/100 = 0.00000000198	$0.000390 \times 0.0094/100 = 0.0000000367$	0.000666 × 0.0094/100 = 0.0000000626
- этилбензол 0,0000211 × 0,040909/100 =0,00000000863 0,000390 × 0,040909/100 = 0,000000160 0,000666 × 0,040909/100 = 0,000000272				, , , , , , , , , , , , , , , , , , , ,
		, , , , , , , , , , , , , , , , , , , ,	-,	-,
, , , , , , , , , , , , , , , , , , , ,				
			· · · · · · · · · · · · · · · · · · ·	

Подп.

Изм. Кол.уч Лист №док.

Лист

30

Инв. № подл. Подп.		и дата Взам.инв.№									
											33
Наименование		Максимально разовое количество			Годовой валовы	Годовой валовый выброс загрязняющих веществ, поступающих в атмосферу за счет возможных утечек,					ек, т/год
загрязняющи	х веществ,	загрязняющих веществ, поступающих в			2019 г.				2020 г.	÷ 2027 г. (ежегодно)	
поступающих в атмосферу											
- метанол			11 × 9,298824/100				100 =0,0000363			9,298824/100 =0,0000619	
Суммарное к	оличество	загрязняю	ощих веществ, і	поступающих е проводах б	з атмосферу за о пока подготовки	чет утече и топливно	к через неплот го газа №2 050-	ности фл -U-002	панцев, установлен	нных на оборудовании и	ı трубо-
Метан		0,000104			0,00191				0,00327		
Этан		0,0000274			0.000507				0,000865		
Пропан		0,00000161			0,00000298				0,0000508		
Изобутан			0,000000224			0,00000	414		0,0000706		
Бутан			0,00000068		0,0000127				0,0000217		
Пентан			0,000000219			0,00000	405			0,0000069	
	водородов	ов 0,0000018								0,0000568	
предельных (·				0,00003					
Алканы C ₁₂ -C-	- 19		0,00000093		0,0000172				0,0000294		
Бензол			0,000000001		0,0000000235				0,0000000896		
Метилбензол		0,0000000237			0,000000439				0,000000749		
Диметилбенз	ОЛ	0,00000031			0,00000574				0,00000981		
Этилбензол		0,0000000946			0,00000175					0,000000298	
Углерод диок	сид	0,00000319			0,00000592					0,0000101	
Метанол			0,00000203			0,00003				0,0000642	
2.3.3 Утечки ч	нерез непло	тности фла	анцев, установл					(выброс не	еорганизованный в пр	ределах площадки. Высот	та источ-
	,				ика – 2 м, размер						
Газ топливный	l,	$0,00073 \times 0$	0,03 × 317 × 1000	/ 3600 = 0,00193	0,00073 × 0	,03 × 317× 5	136 × 0,001= 0,03	357	$0,00073 \times 0,03$	× 317× 8760 × 0,001= 0,06	508
в том числе:		0,00193 × 95,10309/100 = 0,00184			0.005	7 05 4000	// 00 00/10		0.0000	05 40000/400 0 0570	
- метан		0,00193 × 95,10309/100 = 0,00184 0,00193 × 2,498339 /100 = 0,0000482					/100 =0,0340			95,10309/100 = 0,0578	
- этан		0,00193 × 2,498339 /100 =0,0000482 0,00193 × 0,14302 /100 =0,00000276					100 =0,000892			2,498339 /100 =0,00152 0,14302 /100 =0,0000871	
- пропан - изобутан		0,00193 × 0,143027100 =0,00000276 0,00193 × 0,189371 /100 =0,00000365			0,0357 × 0,14302 /100 =0,0000511 0,0357 × 0,189371 /100 =0,0000676				-	0,189371 /100 =0,000067 1 0,189371 /100 =0,000115	
- бутан		0.00193 × 0.1893717100 =0.00000303			0.0357 × 0.056012 /100 =0.0000200				0.0608 × 0.056012 /100 =0.0000341		
- пентан		0,00193 × 0,030012 / 100 = 0,00000108 0,00193 × 0,151583 /100 = 0,00000293			0,0357 × 0,0300127100 =0,0000200 0,0357 × 0,151583 /100 =0,0000541			0,0608 × 0,151583 /100 =0,0000922			
	еволоролов								·	•	
- смесь углеводородов предельных C ₆ -C ₁₀		0,00193 × 0,181844 /100 =0,00000351			0,0357 × 0,181844 /100 =0,0000649			0,0608 × 0,181844 /100 =0,000111			
- алканы C ₁₂ -C- ₁₉		0.00193 × 0.000845 /100 =0.0000000163			0,0357 × 0,000845 /100 =0,000000302			2	0,0608 × 0,0	000845 /100 =0,000000514	
- бензол		0,00193 × 0,000041 /100 =0,000000000791			0,0357 × 0,000041 /100 =0,0000000146				00041 /100 =0,0000000249		
- метилбензол		0,00193 × 0,000292 /100 =0,00000000564			0,0357 × 0,000292 /100 =0,000000104				0,0608 × 0,0	000292 /100 =0,000000178	
- диметилбензол		0,00193 × 0,001183 /100 =0,0000000228			0,0357 × 0,001183 /100 =0,000000422			2	$0,0608 \times 0,0$	001183 /100 =0,000000719	
- этилбензол		0,00193 × 0,00047 /100 =0,00000000907			$0,0357 \times 0,00047 /100 = 0,000000168$					00047 /100 =0,000000286	
- углерод диоксид		0,00193 × 0,288104 /100 =0,00000556			$0,0357 \times 0,288104 / 100 = 0,000103$				0,0608 × 0,288104 /100 =0,000175		
- метанол		0,00193	× 0,001398 /100 =	0,0000000270	0,0357 ×	0,001398 /1	00 =0,000000499)	0,0608 × 0,0	001398 /100 =0,000000850	
											Пист

Подп.

Дата

Изм. Кол.уч Лист №док.

120.ЮР.2017-2010-02-ООС2.2.ТЧ_05D

Инв. № подл.	Подп. и	и дата	Взам.инв.№							
			•							
Наименование		Максимально разовое количество			Годовой валовы		ющих веществ, пос		реру за счет возможных утечек, т	
загрязняющих веществ,		загрязняющих веществ, поступающих в				2019 г.			2020 г. ÷ 2027 г. (ежегодно)	
поступающих в	з атмосферу	атмосфеј	ру за счет возмож	ных утечек, г/с						
Суммарное к	оличество	загрязняк	ощих веществ,	•		счет утечек чере е подачи топливн	•	ланцев, установ.	пенных на оборудовании и тр	
Метан		0,00184				0,0340			0,0578	
Этан			0,0000482			0,000892		0,00152		
Пропан			0,00000276			0,0000511		0,000871		
Изобутан			0,00000365			0,0000676		0,000115		
Бутан		0,00000108				0.0000200		0,0000341		
Пентан			0,00000293			0,0000541		0.0000922		
	водородов С ₆ -С ₁₀	-,			0,0000649			0,000111		
Алканы С ₁₂ -С-			0,00000016	3		0,000000302		0,00000514		
Бензол		0,00000000791				0,000000146		0,000000249		
Метилбензол		0.0000000564			0,00000104			0,00000178		
Диметилбензо	ол	0,000000228			0,00000422				0,000000719	
Этилбензол		0,0000000907			0,00000168				0,000000286	
Углерод диок	сид	0,0000556			0,000103				0,000175	
Метанол			0,00000027	0		0,000000499			0,00000850	
2.4 Утечки че	ерез налотн	ости флан	цев, установлен					анный в пределах г	площадки размещения ГФУ. Выс	
	ı					еры площадки – 15		1		
Газ сырьевой г	природный,	0,00073 × (0,03 × 15 × 1000 /	3600=0,0000913	0,00073 × 0	$0,03 \times 15 \times 5136 \times 0$,001= 0,00169	0,00073 × 0	,03 × 15 × 8760 × 0,001=0,00288	
в том числе:										
- метан		0,0000913 × 93,099041/100 = 0,0000850			,	69 × 93,099041/100 =	•		3 × 93,099041/100 = 0,00268	
- этан		0,0000913 ×2,447903/100 = 0,00000223			-,	69 ×2,447903/100 = 0	,		×2,447903/100 = 0,0000705	
- пропан		0,0000913 × 0,140526/100 = 0,000000128				$9 \times 0.140526/100 = 0$	•	1	× 0,140526/100 = 0,00000405	
- изобутан		0,0000913 × 0,187104/100 = 0,0000000171			0,00169 × 0,187104/100 = 0,00000316 0,00169 × 0,055585/100 = 0,00000939			-,	× 0,187104/100 = 0,00000539	
- бутан		0,0000913 × 0,055585/100 = 0,0000000507			0,00169 × 0,05585/100 = 0,000000939 0,00169 × 0,153604/100 = 0,00000260				× 0,055585/100 = 0,00000161	
- пентан	ородородор	0,0000913 × 0,153604/100 = 0,000000140 0,0000913 × 0,333592/100=0,000000305			0,00169 × 0,153604/100 = 0,00000260 0,00169 × 0,333592/100 = 0,00000564				× 0,153604/100 = 0,00000442 × 0,333592/100 = 0,00000961	
предельны	еводородов	0,00009	13 ^ 0,333392/100	-0,000000303	0,00108	9 ^ 0,333392/100 = 0	,00000304	0,00200	× 0,33392/100 = 0,00000961	
предельны	IX C6-C10	0.000001	3 × 0 001103/100	=0 0000000832	0.00160	0 × 0 001103/100 = 0	00000154	0.00288	× 0,091103/100 =0,00000262	
- алканы С ₁₂ -С- ₁₉ - бензол		0,0000913 × 0,091103/100 =0,0000000832 0,0000913 × 0,000048/100=0,0000000000438			0,00169 × 0,091103/100 = 0,00000154 0,00169 × 0,000048/100 = 0,000000000811				0,000048/100 = 0,00000000138	
 метилбензол 		$0.0000913 \times 0.00048/100 = 0.000000000438$			0.00169 × 0.000486/100 = 0.00000000821				0.000486/100 = 0.0000000140	
	$0.0000913 \times 0.004007100 = 0.0000000000444$ иметилбензол $0.0000913 \times 0.0040517100 = 0.000000000370$		0,00169 × 0,000480/100 = 0,00000000821 0,00169 × 0,004051/100 = 0,0000000085			0,00288 × 0,000486/100 = 0,0000000140				
• • •	отилбензол 0,0000913 × 0,00133/100 =0,00000000121		0.00169 × 0.00133/100 = 0.0000000225			0,00288 × 0,00133/100 = 0,0000000383				
	углерод диоксид 0,0000913 × 0,282631/100 = 0			0,00169 × 0,282631/100 = 0,00000478			0,00288 × 0,282631/100 = 0,00000814			
- метанол		0,0000913× 0,199018/100 = 0,000000182			0.00169 × 0.199018/100 = 0.00000336			0,00288 × 0,199018/100 = 0,00000573		
Метанол		0,00038 × 0,05 ×5 × 0,95 × 1000 / 3600 =			0,00038× 0,05 × 5 × 0,95 × 5136 × 0,001= 0,000464			-,	× 5 × 0,95 × 8760 × 0,001= 0,00079	
		,	=0,0000251		,	, .	, , , , , , , , , , , , , , , , , , , ,	,	, .,	
	'							•		
									,	

Подп.

Изм. Кол.уч Лист №док.

120.ЮР.2017-2010-02-ООС2.2.ТЧ_05D

32

	T =					3	
еств, поступающих в							
	т одовои	Годовой валовый выброс загрязняющих веществ, посту			іяющих веществ, пос		
загрязняющих веществ, поступающих в атмосферу за счет возможных утечек, г/с			20)19 г.		2020 г. ÷ 2027 г. (ежегодно)	
озможных утечек, г/с							
ств, поступающих	в атмосф		счет ут Г 060-U-0		рез налотности ф.	панцев, установленных на трубопроводах в обвяз	
00850				0157		0,00268	
00223	0,0000414					0,0000705	
000128			0,00	000237		0,0000405	
000171			0,00	000316		0,0000539	
000507			0,000	000939		0,0000161	
000140			0,00	000260		0,0000442	
000305			0,00	000564		0,0000961	
			•				
000832			0,00	000154		0,00000262	
00000438			0,0000	0000081	1	0,000000138	
0000444			0,000	000082	1	0,000000140	
0000370	1			0000685		0,00000117	
0000121				0000225		0,000000383	
000258		0,0000478				0,0000814	
00253	0.000467					0,000797	
	тановпен	ных на	оборудо	вании и	трубопроводах бл	ока метанольного хозяйства	
ановленных в обвяз	ке емкост	ей мета	нола и сл	тива ме	танола (выброс неог	оганизованный в пределах площадки размещения емко-	
					дки – 15 м ×30 м)	February 1 bent beneath 1	
× 0,95 × 1000 / 3600 =						0,00038× 0,05 × 167× 0,95 × 8760 × 0,001=0,0264	
цеств, поступающі	іх в атмос		ерез неп танола	лотно	сти фланцев, уста	новленных в обвязке емкостей метанола и слива	
0837				0155		0,0264	
ановленных в техно	логическо	й насос	ной мета	анола 0	20-U-001 (выброс ос	уществляется в атмосферу через вентиляционную	
сотой – 6 м, диаметр	<u>эм – 0,2 м.</u>	Произв	водитель	ность в	ентиляционной уст		
× 0,95 × 1000 / 3600=	0.000	00005	0400	05540	0 . 0 004 0 0000	0,00038× 0,05 × 218× 0,95 × 8760 × 0,001=0,0345	
00109					36 × 0,001= 0,0202		
	<u>:тв, пост</u>	упающ		<u>осферу</u> 0202	через вентиляцио	нную трубу насосной метанола 0.0345	
0109					ofonyronauwy ovro	ј 0,0345 нда дизельного топлива АДЭС	
пности фланцев, уст	anobjienn	MANAR I	руоопро	водах и	ооорудовании скла	нда дизельного топлива Адэс -T-002/003, 039-T-001 (выброс неорганизованный в пре-	
х площадки размещен	we besebe	уаров д ей Высс	TA NCTOU	ника — 2	ива дизтоплива 035. М. размеры ппошалк	-1- -002/003, 039-1-001 (выорос неорганизованный в пре-	
1000 / 3600=0.000203					0,001= 0,00375	0.00029× 0.02× 126 × 8760 × 0.001=0.00640	
,			,		, -,	,	
2 / 100 = 0,000202		0,003	375 × 99,7	2 / 100 :	= 0,00374	0,00640 × 99,72 / 100 = 0,00638	
100 = 0,000000571		0,003	$375 \times 0,28$	1/100 = 0	,0000105	$0,00640 \times 0,28/100 = 0,0000179$	
	$\overline{}$					Τ_	
						Ли	
					120 MP 2	2017-2010-02-OOC2.2.TH	
		1 -		1	1201101 12	2017-2010-02-0002.2.19 ₃	
	•	00 = 0,000000571	00 = 0,000000571 0,003	00 = 0,000000571 0,00375 × 0,28	00 = 0,000000571	00 = 0,000000571	

Инв. № подл.

Подп. и дата

Взам.инв.№

Инв. № подл.	Подп. и	і дата	Взам.инв.№	1				
				1				
						36		
Наимено	вание	Макси	имально разовое	количество	Годовой валовый выброс загрязняющих веществ, пост	упающих в атмосферу за счет возможных утечек, т/год		
загрязняющи	х веществ,	загрязня	яющих веществ, п	оступающих в	2019 г.	2020 г. ÷ 2027 г. (ежегодно)		
поступающих в	з атмосферу	атмосфег	ру за счет возмож	ных утечек, г/с		· · · · /		
Суммарное к	оличество	загрязняк	ощих веществ,		в атмосферу через неплотности фланцев, установ ва дизтоплива 039-Т-002/003, 039-Т-001	зленных в обвязке резервуаров дизтоплива и сли-		
Алканы С12-С1	19		0,000202		0,00374	0,00638		
Дигидросульс	_		0,00000571	i	0,0000105	0,0000179		
2.6.2 Утечки	нерез непло	тности фл	іанцев, установл		е подготовки масла 039-U (выброс неорганизованный в точника – 2 м, размеры площадки 12 м × 2 м	пределах площадки размещения резервуаров. Высота		
Масло минера. нефтяное	льное	0,00029×	0,02 ×87 × 1000 /		0,00029× 0,02× 87 × 5136 × 0,001= 0,00259	0,00029× 0,02× 87 × 8760 × 0,001=0,00442		
Суммарное ко) личеств о з	агрязняю	щих веществ, г	оступающих в	з атмосферу за счет утечек через неплотности фл 039-U	танцев, установленных в блоке подготовки масла		
Масло минера нефтяное	льное		0,000140		0,00259	0,00442		
2.6.3 Утечки ч	ерез неплот	гности фла			ке резервуаров слива отработанного масла 039-Т-00 вуаров. Высота источника – 2 м, размеры площадки4 м ×			
Масло минера. нефтяное	льное	0,00029× 0,02 ×83 × 1000 / 3600=0,000134					0,00029× 0,02× 83 × 8760 × 0,001=0,00422	
Суммариоо	количество	загрязня с	іющих веществ	, поступающих	х в атмосферу за счет утечек через неплотности с	рланцев, установленных в обвязке резервуаров		
Суммарное				СЛ	ива отработанного масла 039-Т-007/008			

 Изм.
 Кол.уч
 Лист
 №док.
 Подп.
 Дата

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Лист

Приложение Г (обязательное)

Расчет количества загрязняющих веществ, поступающих в атмосферу при "дыхании" емкостного оборудования (резервуара слива дизтоплива 039-Т-001 и резервуара дизтоплива 039-Т-002 для аварийной ДЭС, маслобаков ПАЭС-2500, резервуаров слива отработанного масла 039-Т-004, емкости дренажной 004-V-002, топливных баков и маслобаков аварийных ДЭС) в период эксплуатации

1 Расчет количества загрязняющих веществ, поступающих в атмосферу при "дыхании" резервуара слива дизтоплива 039-T-001 в период эксплуатации

В таблице Г.1 приведен расчет количества загрязняющих веществ, поступающих в атмосферу при "дыхании" резервуара слива дизтоплива 039-Т-001.

Таблица Г.1 – Расчеты количества загрязняющих веществ, поступающих в атмосферу при "дыхании" резервуара слива дизтоплива 039-T-001

Наименование показателя	Величина
Количество резервуаров, штук	1
Тип резервуара	Горизонтальный наземный
Режим эксплуатации	"мерник"
Суммарный годовой объем дизтоплива, поступающего в резервуар, м³/год	62,64
Наименование источника загрязнения	Дыхательный клапан
Высота источника загрязнения, м	6,3
Диаметр источника загрязнения, м	0,05
Единичный объем резервуара, м ³	5
Плотность дизтоплива, т/м ³	0,830
Годовой объем дизтоплива, поступающего в резервуар, м ³ /год	62,64
Годовое количество дизтоплива, поступающего в резервуар, т/год	62,64 × 0,830 = 51,991
Температура дизтоплива в резервуаре, °С	минус 15 ÷ плюс 30
Производительность насоса, закачивающего дизтопливо в резервуар, м ³ /ч	10 – 25 (для расчетов принята максимальная произ водительность)
Объем паров дизтоплива, поступающих в атмосферу при закачке в резервуар, м³/с	25 / 3600 = 0,000694
- при min температуре	0,00694 × (273,15 - 15) / 273,15 = 0,00656
- при тах температуре	$0,00694 \times (273,15 + 30) / 273,15 = 0,00770$
Концентрация паров дизтоплива в резервуаре (приложение 12 Методических указаний), C ₂₀ , г/м ³	2,59
Опытные коэффициенты (приложение 7 Методических указаний)	
- при min температуре, К _t ^{min}	0,26
- при тах температуре, К _t ^{max}	1,4
ные особенности резервуара, (приложение 8 "Методических	Для резервуара наземного горизонтального объемо 5 м ³
указаний")	$K_p^{\text{max}} = 1.0 , K_p^{\text{cp}} = 0.7$
Коэффициент заполнения резервуара	0,9
Полная оборачиваемость резервуара, раз в год	62,64 / (5 × 0,9) ≈ 14
Коэффициент оборачиваемости, (приложение 10 Методических указаний), K_{of}	2,5

120.ЮР.2017-2010-02-ООС2.2.TY 05D

Изм. Кол.уч Лист №док. Подп.

읟

120.ЮP.2017-2010-02-OOC2.2.TY

Лист

	38
Наименование показателя	Величина
Максимальное разовое количество паров дизтоплива, поступающих в атмосферу при "дыхании" резервуара, г/с,	2,59 × 1,4 × 1,0 × 25 / 3600 = 0,0252
в том числе: - алканы C ₁₂ -C ₁₉ - дигидросульфид	0,0252 × 99,72 / 100 = 0,0251 0,0252 × 0,28 / 100 = 0,0000706
Годовое количество паров дизтоплива, поступающих в атмо- сферу при "дыхании" резервуара, т/год	$2,59 \times (1,4 + 0,26) \times 0,7 \times 2,5 \times 51,991 / (2 \times 10^6 \times 0,830) = 0,000236$
в том числе: - алканы C ₁₂ -C ₁₉ - дигидросульфид	0,000236 × 99,72 / 100 = 0,000235 0,000236 × 0,28 / 100 = 0,00000661

2 Расчет количества загрязняющих веществ, поступающих в атмосферу при "дыхании" резервуара дизтоплива 039-T-002 в период эксплуатации

В таблице Г.2 приведен расчет количества загрязняющих веществ, поступающих в атмосферу при "дыхании" резервуара дизтоплива 039-Т-002.

Таблица Г.2 – Расчеты количества загрязняющих веществ, поступающих в атмосферу при "дыхании" резервуара дизтоплива 039-T-002

Величина

	2011.11.10
Количество резервуаров, штук	1
Тип резервуаров	Горизонтальные наземные
Режим эксплуатации	"мерник"
Суммарный годовой объем дизтоплива, поступающего в ре-	
зервуары, м ³ /год	62,64
Наименование источника загрязнения	Дыхательный клапан
Высота источника загрязнения, м	6,3
Диаметр источника загрязнения, м	0,05
Единичный объем резервуара, м ³	25
Плотность дизтоплива, т/м ³	0,830
Годовой объем дизтоплива, поступающего в каждый резер-	·
вуар, м ³ /год	62,64
Годовое количество дизтоплива, поступающего в каждый ре-	
зервуар, т/год	62,64 × 0,830 = 51,991
Температура дизтоплива в резервуарах, °С	минус 15 ÷ плюс 30
Производительность насоса, закачивающего дизтопливо в ре-	10 – 25 (для расчетов принята максимальная произ-
зервуары, м ³ /ч	водительность)
Объем паров дизтоплива, поступающих в атмосферу при	25 / 2600 = 0.000604
закачке в резервуары, м ³ /с	25 / 3600 = 0,000694
- при min температуре	0,00694 × (273,15 - 15) / 273,15 = 0,00656
- при тах температуре	0,00694 × (273,15 + 30) / 273,15 = 0,00770
Концентрация паров дизтоплива в резервуаре (приложение	
12 Методических указаний), С ₂₀ , г/м ³	2,59
Опытные коэффициенты (приложение 7 Методических ука-	
заний)	
- при min температуре, К _t ^{min}	0,26
- при тах температуре, К _t ^{max}	1,4
Опытные коэффициенты, характеризующие эксплуатацион-	Для резервуара наземного горизонтального объемом
ные особенности резервуара, (приложение 8 "Методических	25 m ³
указаний …")	$K_p^{\text{max}} = 1.0 , K_p^{\text{cp}} = 0.7$
Коэффициент заполнения резервуара	0,9
Полная оборачиваемость каждого резервуара, раз в год	62,64 / (25 × 0,9) ≈ 3
Коэффициент оборачиваемости, (приложение 10 Методиче-	2,5
ских указаний), К _{об}	· ·
Максимальное разовое количество паров дизтоплива, посту-	
пающих в атмосферу при "дыхании", г/с,	$2,59 \times 1,4 \times 1,0 \times 25 / 3600 = 0,0252$
в том числе:	
- алканы C ₁₂ -C ₁₉	0,0252 × 99,72 / 100 = 0,0251
- дигидросульфид	0,0252 × 0,28 / 100 = 0,0000706

Взам. инв.

Подп. и дата

№ подл.

MHB.

Наименование показателя

120.ЮР.2017-2010-02-OOC2.2.ТЧ

Лист

Наименование показателя	Величина
Годовое количество паров дизтоплива, поступающих в атмо-	$2,59 \times (1,4 + 0,26) \times 0,7 \times 2,5 \times 51,991 / (2 \times 10^6 \times 1)$
сферу при "дыхании" каждого резервуара, т/год	0,830) = 0,000236
в том числе:	
- алканы C ₁₂ -C ₁₉	0,000236 × 99,72 / 100 = 0,000235
- дигидросульфид	0,000236 × 0,28 / 100 = 0,000000661

3 Расчет количества загрязняющих веществ, поступающих в атмосферу при "дыхании" маслобаков ПАЭС-2500

В таблице ГМ.3 приведено количества ПАЭС, предназначенных для энергообеспечения нужд строительства, гидронамыва грунта и бурения, которые будут находиться в эксплуатации с 2019 г. по 2027 г..

Таблица Г.3 – Расчеты количества загрязняющих веществ, поступающих в атмосферу при "дыхании" маслобаков ПАЭС-2500

Годы эксплуатации	Количество ПАЭС-2500
2019 г.	6 раб. + 2 рез.
2020 г.	9 раб. + 7 рез.
2021 г.	9 раб. + 7 рез.
2022 г.	14 раб. + 2 рез.
2023 г.	1 раб. + 5 рез.
2024 г.	1 раб. + 5 рез.
2025 г.	4 раб. + 2 рез.
2026 г.	4 раб. + 2 рез.
2027 г.	4 раб. + 2 рез.

3.1 Расчет количества загрязняющих веществ, поступающих в атмосферу при "дыхании" маслобаков рабочих ПАЭС-2500

Тип маслобака – горизонтальный

Режим эксплуатации - мерник.

Объем масла в расходном маслобаке ПАЭС-2500 при первоначальном заполнении составит 160 л.

Безвозвратные потери масла составляют не более 0,8 л/ч.

По данным технологической части проекта годовой расход масла, поступающего в маслобак 1 рабочего агрегата ПАЭС-2500, составляет 7,168 м³ (с учетом первоначального заполнения и восполнения потерь за счет угара).

Сброс паров масла от маслобака двигателя осуществляется через трубу статического маслоотделителя, выведенного в дымовую трубу агрегата.

Σ	Iac	بر، دی.		, 00			delinees in the contraction	
Взам.		Вь	ісота	дымов	вой труб	бы ра	вна 6 м;	
		Ди	амет	р дымс	овой тр	убы ра	авен 1,39 м;	
ä	Плотность масла равна 870 кг/м³.							
і дата	Температура масла в маслобаке рабочего ПАЭС составляет 30 ÷ 55°С;							
Подп. и		Пр	оизв	одител	ьность	насос	а, закачивающего масло в маслобак, составляет 1,2 м³/ч	1.
По		Го	дово	е врем	я работ	ы раб	очего агрегата ПАЭС-2500 составляет 8760 ч/год:	
подл.								
Νe								Лист
Инв.							120.ЮР.2017-2010-02-ООС2.2.ТЧ	37
	Изм.	Кол.уч	Лист	№док.	Подп.	Дата		Ŭ
	120 Ю	P 2017	-2010-0	12-OOC:	2 2 TU 0!	5D	Формат А4	

инв. №

Тогда годовой расход масла, поступающего в маслобак 1 рабочего агрегата ПАЭС-2500, составит:

$$7,168 \times 0,87 = 6,236$$
 (т/год).

Режим эксплуатации маслобака для рабочих агрегатов ПАЭС – "мерник".

Концентрация паров масла в маслобаке составит C_{20} = 0,26 г/м³ (приложение 12 Методических указаний ...).

Для маслобака 1 рабочего агрегата ПАЭС-2500, эксплуатируемого в режиме "мерник" $K_p^{max} = 1,0, \; K_p^{cp} = 0,7$ (приложение 8 "Методических указаний ...").

Опытные коэффициенты при максимальной и минимальной температуре масла в маслобаке 1 агрегата ЭСН приняты по приложению 7 "Методических указаний ...") и равны K_t^{max} =2,88, K_t^{min} =1,4.

Полная оборачиваемость маслобака 1 рабочего агрегата ПАЭС-2500 составит:

$$7,168 / 0,16 \approx 45$$
 (раз в год),

Коэффициент оборачиваемости 1 маслобака $K_{\text{об}}$ рассчитан по данным Приложения 10 "Методических указаний ..." и составит 1,94.

Тогда максимально разовое количество паров масла минерального нефтяного, поступающего в атмосферу при "дыхании" маслобака двигателя 1 рабочего агрегата ПАЭС-2500, составит:

$$0.26 \times 2.88 \times 1.0 \times 1.2 / 3600 = 0.000250 (r/c),$$

Годовой валовый выброс паров масла минерального, поступающего в атмосферу при "дыхании" маслобака 1 рабочего агрегата ПАЭС-2500, составит:

$$\frac{0.26 \times (2.88+1.4) \times 0.7 \times 1.94 \times 6.236}{2 \times 10^6 \times 0.87} = 5.42 \times 10^{-6} \text{ (т/год)}$$

Объем паров масла минерального нефтяного, поступающего в атмосферу от маслобака 1 рабочего агрегата ПАЭС-2500, составит:

$$1,2 / 3600 = 0,000333 (Hm3/c),$$

При температуре 30°C объем паров масла минерального нефтяного, поступающего в атмосферу при "дыхании" маслобака 1 рабочего агрегата ПАЭС-2500, составит:

$$0,000333 \times (273,15 + 30) / 273,15 = 0,00037 (m3/c),$$

При температуре 55°C объем паров масла минерального нефтяного, поступающего в атмосферу при "дыхании" маслобака 1 рабочего агрегата ПАЭС-2500, составит:

$$0,000333 \times (273,15 + 55) / 273,15 = 0,000400 (m3/c).$$

3.2 Расчет количества загрязняющих веществ, поступающих в атмосферу от маслобака резервного агрегата ПАЭС-2500

Тип маслобака – горизонтальный

Режим эксплуатации - мерник.

Объем масла в расходном маслобаке ПАЭС-2500 при первоначальном заполнении составит 160 л.

Температура масла в маслобаке резервного ПАЭС-2500 составляет 10 - 20°С.

Подп. и дата	Инв. № подл.

Взам. инв.

						1
Изм.	Кол.уч	Лист	№док.	Подп.	Дата	

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Лист

Формат А4

Производительность насоса, закачивающего масло в маслобак, составит 1,2 м³/ч.

Годовой расход масла, поступающего в маслобак резервного агрегата ПАЭС-2500, составит 0.16 м³/год.

Концентрация паров масла в маслобаке составит C_{20} = 0,26 г/м³ (приложение 12 Методических указаний ...).

Для маслобака резервного агрегата ПАЭС-2500, эксплуатируемого в режиме эксплуатации "мерник" K_D^{max} =1,0, K_D^{cp} = 0,7.

Опытные коэффициенты при максимальной и минимальной температуре масла в маслобаке приняты по приложению 7 "Методических указаний ...") и равны K_t^{max} =1,0, K_t^{min} =0,72,

Годовое количество масла, поступающего в маслобак резервного агрегата ПАЭС-2500, составит:

$$0.16 \times 870 / 1000 = 0.139$$
 (т/год),

Полная оборачиваемость маслобака 1 резервного агрегата ПАЭС-2500 составит:

Коэффициент оборачиваемости маслобака резервного агрегата ПАЭС-2500 K_{o6} принят равным 2,5 (приложение 10 "Методических указаний ...").

Тогда максимально разовое количество паров масла минерального нефтяного, поступающего в атмосферу при "дыхании" маслобака резервного агрегата ПАЭС-2500, составит:

$$0.26 \times 1.0 \times 1.0 \times 1.2 / 3600 = 0.0000867 (r/c)$$

Годовой валовый выброс паров масла минерального, поступающего в атмосферу при "дыхании" маслобака резервного агрегата ПАЭС-2500, составит:

$$\frac{0.26 \times (1.0 + 0.72) \times 0.7 \times 2.5 \times 0.139}{2 \times 10^{6} \times 0.87} = 6.25 \times 10^{-8} \text{ (т/год)}$$

Объем паров масла минерального нефтяного, поступающего в атмосферу от маслобака 1 резервного агрегата ПАЭС-2500, составит:

$$1,2 / 3600 = 0,000333 \text{ (HM}^3/\text{c)},$$

При температуре 10°C объем паров масла минерального нефтяного, поступающего в атмосферу при "дыхании" маслобака резервного агрегата ПАЭС-2500, составит:

$$0.000333 \times (273.15 + 10) / 273.15 = 0.000346 (m3/c)$$

При температуре 30°C объем паров масла минерального нефтяного, поступающего в атмосферу при "дыхании" маслобака резервного агрегата ПАЭС-2500, составит:

$$0,000333 \times (273,15 + 20) / 273,15 = 0,000358 (m3/c)$$

4 Расчет количества загрязняющих веществ, поступающих в атмосферу при "дыхании" резервуаров слива отработанного масла 039-Т-004 в период эксплуатации

Объем отработанного масла, сливаемого в резервуары слива отработанного масла 039-T-004, по годам эксплуатации, принят по данным технологов и приведен в таблице Г.4.

Изм.	Кол.уч	Лист	№док.	Подп.	Дата

NHB.

Взам.

Подп. и дата

подл.

읟

120.HOP.2017-2010-02-OOC2.2.TY

Лист

Таблица Г.4 – Годовой объем отработанного масла, сливаемого в резервуары слива отработанного масла

Годы эксплуатации	Суммарный объем отработанного масла, сливаемого в резервуары в течение года, м ³
2019 г.	1,92
2020 г.	2,88
2021 г.	2,88
2022 г.	4,16
2023 г.	3,84
2024 г.	0,64
2025 г.	1,60
2026 г.	1,60
2027 г.	1,60

В таблице Г.5 приведен расчет количества загрязняющих веществ, поступающих в атмосферу при "дыхании" резервуаров слива отработанного масла 039-Т-004 в период эксплуатации с 2019 г. по 2027 г.

Наименование показателя

Количество резервуаров, штук

Таблица Г.5 – Расчет количества загрязняющих веществ, поступающих в атмосферу при "дыхании" резервуаров слива отработанного масла 039-Т-004

Величина

Тип резервуара	Горизонтальный наземный
Режим эксплуатации	"мерник"
Единичный объем 1 резервуара, м ³	1
Наименование источника загрязнения	Дыхательный клапан
Высота источника загрязнения, м	6,3
Диаметр источника загрязнения, м	0,05
Плотность масла, т/м ³	0,9
Суммарный годовой объем масла сливаемого в ре-	
зервуары по годам эксплуатации, м ³ /год	
- 2019 год	1,92
- 2020 год	2,88
- 2021 год	2,88
- 2022 год	4,16
- 2023 год	3,84
- 2024 год	0,64
- 2025 год	1,60
- 2026 год	1,60
- 2027 год	1,60
Суммарное годовое количество масла, сливаемого в	
резервуары по годам эксплуатации, т/год	
- 2019 год	1,92 × 0,9 = 1,728
- 2020 год	$2,88 \times 0,9 = 2,592$
- 2021 год	$2,88 \times 0,9 = 2,592$
- 2022 год	4,16 × 0,9 = 3,744
- 2023 год	$3,84 \times 0,9 = 3,456$
- 2024 год	$0.64 \times 0.9 = 0.576$
- 2025 год	1,60 × 0,9 = 1,440
- 2026 год	$1,60 \times 0,9 = 1,440$
- 2027 год	1,60 × 0,9 = 1,440
Температура масла в резервуаре, °С	5 ÷ 35
Производительность насоса, закачивающего масло в	
резервуары, м ³ /ч	6,3
Объем паров масла, поступающих от резервуара, м³/с	6,3 / 3600 = 0,00175
- при min температуре	$0,00175 \times (273,15 + 5) / 273,15 = 0,00178$
- при max температуре	$0,00175 \times (273,15 + 35) / 273,15 = 0,00197$

Изм. Кол.уч Лист №док. Подп.

Взам. инв.

Подп. и дата

подл.

윋

MHB.

120.ЮР.2017-2010-02-ООС2.2.ТЧ

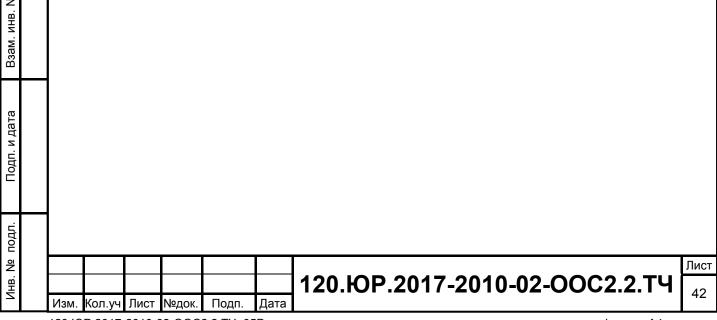
Лист

Наименование показателя	Величина
Концентрация паров масла в резервуаре (приложение 12 Методических указаний), C_{20} , r/m^3	0,26
Опытные коэффициенты (приложение 7 Методических	
указаний)	
- при min температуре, К _t ^{min}	0,59
- при тах температуре, К _t ^{max}	1,6
Опытные коэффициенты, характеризующие эксплуа-	Для резервуара наземного горизонтального объемом
тационные особенности резервуара, (приложение 8	M ³
Методических указаний)	$K_p^{\text{max}} = 1,0, K_p^{\text{cp}} = 0,7$
Максимальное разовое количество паров масла, вы-	
деляющихся при "дыхании" каждого из резервуаров,	
г/с	$0.26 \times 1.6 \times 1.0 \times 6.3 / 3600 = 0.000728$
Коэффициент заполнения емкости	0,9
Полная оборачиваемость каждого из резервуаров,	
раз в год	
- 2019 год	1,92 / (1 × 0,9 × 2) ≈ 2
- 2020 год	2,88 / (1 × 0,9 × 2) ≈ 2
- 2021 год	2,88 / (1 × 0,9 × 2) ≈ 2
- 2022 год	4,16 / (1 × 0,9 × 2) ≈ 3
- 2023 год	$3,84 / (1 \times 0.9 \times 2) \approx 3$
- 2024 год	0,64 / (1 × 0,9 × 2) ≈ 1
- 2025 год	1,60 / (1 × 0,9 × 2) ≈ 1
- 2026 год	1,60/ (1 × 0,9 × 2) ≈ 1
- 2027 год	1,60 / (1 × 0,9 × 2) ≈ 1
Коэффициент оборачиваемости, (приложение 10 Ме-	
тодических указаний), К _{об}	2,5
Суммарное годовое количество паров масла, выде- ляющихся в атмосферу при "дыхании" резервуаров, т/год	
- 2019 год	$0.26 \times (1.6 + 0.59) \times 0.7 \times 2.5 \times 1.728 / (2 \times 10^6 \times 0.9) = 0.000000957$
- 2020 год	$0.26 \times (1.6 + 0.59) \times 0.7 \times 2.5 \times 2.592/(2 \times 10^6 \times 0.9) =$ = 0.00000143
- 2021 год	$0.26 \times (1.6 + 0.59) \times 0.7 \times 2.5 \times 2.592 / (2 \times 10^6 \times 0.9) = 0.00000143$
- 2022 год	$0.26 \times (1.6 + 0.59) \times 0.7 \times 2.5 \times 3.744 / (2 \times 10^6 \times 0.9) = 0.00000207$
- 2023 год	$0.26 \times (1.6 + 0.59) \times 0.7 \times 2.5 \times 3.456 / (2 \times 10^6 \times 0.9) = 0.00000191$
- 2024 год	$0.26 \times (1.6 + 0.59) \times 0.7 \times 2.5 \times 0.576 / (2 \times 10^6 \times 0.9) =$ = 0.000000319
- 2025 год	$0.26 \times (1.6 + 0.59) \times 0.7 \times 2.5 \times 1.44 / (2 \times 10^6 \times 0.9) =$ = 0.000000797
- 2026 год	$0.26 \times (1.6 + 0.59) \times 0.7 \times 2.5 \times 1.44 / (2 \times 10^6 \times 0.9) =$ = 0.000000797
- 2027 год	$0.26 \times (1.6 + 0.59) \times 0.7 \times 2.5 \times 1.44 / (2 \times 10^6 \times 0.9) =$ = 0.000000797
Годовое количество паров масла, выделяющихся в	
атмосферу при "дыхании" каждого из резервуаров,	
т/год	0.000000057./.00.0000005705
- 2019 год	0,000000957 / 2 = 0,0000002785
	0,00000123 / 2 = 0,000000715
- 2023 год	0,00000191 / 2 = 0,000000955
- 2024 год	0,000000319 / 2 = 0,0000001595
- 2025 год	0,000000797 / 2 = 0,0000003985
- 2026 год	0,000000797 / 2 = 0,0000003985
- 2027 год	0,000000797 / 2 = 0,0000003985
- 2024 год - 2025 год - 2026 год	0,00000207 / 2 = 0,00000 0,00000191 / 2 = 0,00000 0,000000319 / 2 = 0,00000 0,000000797 / 2 = 0,00000 0,000000797 / 2 = 0,00000

Взам. инв. №

Подп. и дата

Инв. № подл.


6 Расчет количества загрязняющих веществ, поступающих в атмосферу при "дыхании" емкости дренажной 004-V-002 в период эксплуатации

В таблице Г.7 приведены состав и свойства углеводородного конденсата, поступающего в дренажную емкость 004-V-002.

Таблица Г.7 - Состав и свойства углеводородного конденсата, поступающего в дренажную емкость 004-V-002

Наименование показателя	Вели	чина
Состав углеводородного конденсата	% об.	% масс.
в том числе:		
- вода	90,674020	77,57372
- гелий	0,000047	0,000009
- азот	0,005254	0,006989
- углерода диоксид	0,014653	0,030625
- метан	1,074337	0,8185
- этан	0,08787	0,125478
- пропан	0,012252	0,025656
- изобутан	0,029968	0,08272
- бутан	0,013010	0,03591
- пентан	0,071987	0,246654
- смесь углеводородов предельных C ₆ -C ₁₀	1,359093	7,321073
в том числе:		
- гексан	0,106443	0,40127
- гептан	0,266802	1,180149
- октан	0,328418	1,644347
- нонан	0,332154	1,940194
- декан	0,325276	2,155113
- алканы C ₁₂ -C ₁₉ (принято по додекану)	0,509111	4,247039
- бензол	0,000101	0,000376
- метилбензол	0,002148	0,0094
- диметилбензол	0,026998	0,136116
- этилбензол	0,008114	0,040909
- метанол	6,111034	9,298824
Плотность конденсата, кг/м ³	975,	125
Молекулярный вес конденсата, кг/кмоль	21,1	113
Давление насыщенных паров конденсата при темпе-	175	52
ратуре 10°C, мм рт. ст.		
Давление насыщенных паров конденсата при темпе-	220	02
ратуре 30°С, мм.рт. ст		

В таблице Г.8 приведен расчет количества загрязняющих веществ, поступающих в атмосферу при "дыхании" дренажной емкости 004-V-002.

Инв. № подл.	Подп. и дата	Взам.инв.№

45

Таблица Г.8 - Расчет количества загрязняющих веществ, поступающих в атмосферу при "дыхании" емкости 004-V-002

Наименование показателя	Величина		
Количество резервуаров, штук	1		
Тип резервуара	Наземная горизонтальная		
Режим эксплуатации	мерник		
Единичный объем резервуара, м ³	50		
Наименование источника загрязнения	Клапан дыхательный		
Высота источника загрязнения, м	6		
Диаметр источника загрязнения, м	0,05		
Плотность конденсата, кг/м ³	975,12		
Температура продукта в емкости, °С	10 ÷ 30		
Максимальный объем дренажей, поступающих			
в емкость, $M^3/4$ (M^3/c)			
- 2019 г.	0,2905 (0,2905 / 3600 = 0,0000807)		
- 2020 г.	0,4797 (0,4797 / 3600 = 0,000133)		
- 2021 г.	0,4797 (0,4797 / 3600 = 0,000133)		
- 2022 г.	0,649 (0,649 / 3600 = 0,00018)		
- 2023 г.	0,602 (0,602 / 3600 = 0,000167)		
- 2024 г.	0,602 (0,602 / 3600 = 0,000167)		
- 2025 г.	0,41635 (0,41635 / 3600 = 0,000116)		
- 2026 г.	0,41635 (0,41635 / 3600 = 0,000116)		
- 2027 г.	0,41635 (0,41635 / 3600 = 0,000116)		
Годовой объем дренажей, поступающих в ем-			
кость, м ³ /год			
- 2019 г.	2544,78		
- 2020 г.	4202,172		
- 2021 г.	4202,172		
- 2022 г.	5685,24		
- 2023 г.	5273,52		
- 2024 г.	5273,52		
- 2025 г.	3647,226		
- 2026 r.	3647,226		
- 2027 r.	3647,226		
Годовой расход продукта, поступающего в ем-			
кость, т/год	0544.70 075.40 / 4000 0404.400		
- 2019 r.	2544,78 × 975,12 / 1000 = 2481,466		
- 2020 r.	4202,172 × 975,12 / 1000 = 4097,622		
- 2021 r.	4202,172 × 975,12 / 1000 =4097,622		
- 2022 г.	5685,24 × 975,12 / 1000 = 5543,791		
		Лис	
	120.ЮР.2017-2010-02-ООС2.2.ТЧ		
	120.10F.2017-2010-02-00C2.2.1 9	43	

Дата

Подп.

Изм. Кол.уч Лист №док.

Инв. № подл.	Подп. и дата	Взам.инв.№

Наименование показателя	Величина	46
- 2023 г.	5273.52 × 975.12 / 1000 = 5142.315	
- 2023 г. - 2024 г.		
- 2024 Г. - 2025 г.	5273,52 × 975,12 / 1000 = 5142,315	
	3647,226 × 975,12 / 1000 =3556,483	
- 2026 г.	3647,226 × 975,12 / 1000 = 3556,483	
- 2027 г.	3647,226 × 975,12 / 1000 = 3556,483	
Опытные коэффициенты К _р ср, К _р ^{max} (приняты по	$K_p^{cp} = 0.7$	
Приложению 8 "Методических указаний")	$K_p^{\text{max}} = 1,00$	
Коэффициент заполнения резервуара	0,9	
Годовая оборачиваемость резервуара		
- 2019 г.	2544,78 / (50 × 0,9) = 57	
- 2020 г.	$4202,172 / (50 \times 0.9) = 94$	
- 2021 r.	$4202,172 / (50 \times 0,9) = 94$	
- 2022 Γ.	5685,24 / (50 × 0,9) = 127	
- 2023 г.	5273,52 / (50 × 0,9) = 118	
- 2024 г.	$5273,52 / (50 \times 0.9) = 118$	
- 2025 г.	3647,226 / (50 × 0,9) = 81	
- 2026 г.	3647,226 / (50 × 0,9) = 81	
- 2027 г.	$3647,226 / (50 \times 0.9) = 81$	
Коэффициент оборачиваемости, Коб. (приняты		
по Приложению 10 "Методических указаний")		
- 2019 г.	1,79	
- 2020 г.	1,40	
- 2021 r.	1,40	
- 2022 г.	1,35	
- 2023 г.	1,35	
- 2024 г.	1,35	
- 2025 г.	1,49	
- 2026 г.	1,49	
- 2027 г.	1,49	
Объем паров дренажей, поступающих от ре-	1,70	
зервуара, м ³ /с		
	- при min температуре - 0,0000807 × (273,15 + 10) / 273,15=0,0000837	
- 2019 г.	- при тып температуре - 0,0000807 × (273,15 + 10) / 273,15=0,0000837 - при тах температуре 0,0000807 × (273,15 + 30) / 273,15=0,0000929	
- 2020 г.	- при min температуре - 0,000133 × (273,15 + 10) / 273,15= 0,000138	
	- при max температуре 0,000133 × (273,15 + 30) / 273,15= 0,000153	
- 2021 г.	- при min температуре - 0,000133 × (273,15 + 10) / 273,15= 0,000138	
	- при max температуре 0,000133 × (273,15 + 30) / 273,15= 0,000153	
- 2022 г.	- при min температуре - 0,00018 × (273,15 + 10) / 273,15= 0,000187	
	- при max температуре 0,00018 × (273,15 + 30) / 273,15= 0,000208	

Изм. Кол.уч Лист №док. Подп. Дата

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Лист 44

Формат А4

Инв. № подл.	Подп. и дата	Взам.инв.№	<u>]</u>	
]	
				47
- 2023 г.			- при min температуре - 0,000167 >	
- 2023 1.			- при max температуре 0,000167 ×	
- 2024 г.			- при min температуре - 0,000167 >	
202111			- при max температуре 0,000167 ×	
- 2025 г.			- при min температуре - 0,000116	
			- при max температуре 0,000116 ×	
- 2026 г.			- при min температуре - 0,000116	
			- при max температуре 0,000116 ×	
- 2027 г.			- при min температуре - 0,000116	
			- при max температуре 0,000116 ×	
		130ВОЕ КОЛИЧЕСТ!	гво загрязняющих веществ, поступающих в атмосферу при	<u> </u>
Годы эксплуата	•		2019 г.	2020 г.
	разовое количество пар			
	денсата, поступающего		445 × 2202 × 24 112 × 1 × 1 × 0 2005/100/ (272 ±2.0) = 0.109	0,445 × 2202 × 21,113 × 1 × 1 × 0,4797/100/ (273 +30) = 0,328
	хании" емкости, г/с	0,4	445 × 2202 × 21,113 × 1 × 1 × 0,2905/100/ (273 +3 0) = 0,198	0,445 × 2202 × 21,113 × 1 × 1 × 0,4181/100/ (213 +30) - 0,320
в том числе: - метана			0,198 × 0,8185 / 100 = 0,00162	0,328 × 0,8185 / 100 = 0,00269
- метана - этана			0.198 × 0.125478 / 100 = 0.000248	0,328 × 0,125478 / 100 = 0,00209
- пропана			0,198 × 0,1254767 100 =0,000246 0,198 × 0,025656 / 100 =0,0000508	0,328 × 0,1254787 100 = 0,000412 0,328 × 0,025656 / 100 = 0,000842
- изобутана			0,198 × 0,023030 / 100 =0,0000308 0,198 × 0,08272 / 100 =0,000164	0,328 × 0,023030 / 100 =0,0000842
- бутана			0.198 × 0.03591 / 100 =0.0000711	0,328 × 0,03591 / 100 =0,000271
- пентана			0,198 × 0,246654 / 100 =0,000488	0,328 × 0,246654 / 100 =0,000809
	водородов предельных	(Co-C10	0.198 × 7.321073/ 100 =0.0145	0.328 × 7.321073/ 100 =0.0240
	₁₂ -С ₁₉ (принято по додеі		0.198 × 4.247039 / 100 =0.00841	0.328 × 4.247039 / 100 = 0.0139
- бензола	2 0 18 (11611111111111111111111111111111111	Xarry,	0.198 × 0.000376 / 100 = 0.000000744	0.328 × 0.000376 / 100 =0.00000123
- метилбензо	опа		0.198 × 0.0094 / 100 =0.0000186	0.328 × 0.0094 / 100 =0.0000308
- диметилбен			0.198 × 0.136116/ 100 =0.000270	0.328 × 0.136116/ 100 =0.000446
	этилбензола		0,198 × 0,040909/ 100 =0,0000810	0.328 × 0.040909/ 100 =0.000134
- метанола			0,198 × 9,298824 / 100 =0,0184	0,328 × 9,298824 / 100 =0,0305
Годы эксплуата	 ации		2021 г.	2022 г.
_ ' '	разовое количество пар	ов углево-	-	-
•	денсата, поступающего	•		
	хании" емкости, г/с		,445 × 2202 × 21,113 × 1 × 1 × 0,4797/100/ (273 +30) = 0,328	$0,445 \times 2202 \times 21,113 \times 1 \times 1 \times 0,649/100/(273 +30) = 0,443$
в том числе:	·			
- метана			0,328 × 0,8185 / 100 = 0,00269	0,443 × 0,8185 / 100 = 0,00363
- этана			0,328 × 0,125478 / 100 =0,000412	0,443 × 0,125478 / 100 =0,000556
- пропана			0,328 × 0,025656 / 100 =0,0000842	0,443 × 0,025656 / 100 =0,000114
140061/20110			0,328 × 0,08272 / 100 =0,000271	0,443 × 0,08272 / 100 =0,000366
- изобутана			0,328 × 0,03591 / 100 =0,000118	0,443 × 0,03591 / 100 =0,000159

Изм. Кол.уч Лист №док. Подп. Дата

120.ЮР.2017-2010-02-ООС2.2.ТЧ

45

Инв. № подл.	Подп. и дата	Взам.инв.№

		48	
Наименование показателя	Величина		
- пентана	0,328 × 0,246654 / 100 =0,000809	0,443 × 0,246654 / 100 =0,00109	
- смеси углеводородов предельных C ₆ -C ₁₀	0,328 × 7,321073/ 100 =0,0240	0,443 × 7,321073/ 100 =0,0324	
- алканов C ₁₂ -C ₁₉ (принято по додекану)	0,328 × 4,247039 / 100 =0,0139	0,443 × 4,247039 / 100 =0,0188	
- бензола	0,328 × 0,000376 / 100 =0,00000123	0,443 × 0,000376 / 100 =0,00000167	
- метилбензола	0,328 × 0,0094 / 100 =0,0000308	0,443 × 0,0094 / 100 =0,0000416	
- диметилбензола	0,328 × 0,136116/ 100 =0,000446	0,443 × 0,136116/ 100 =0,000603	
- этилбензола	0,328 × 0,040909/ 100 =0,000134	0,443 × 0,040909/ 100 =0,000181	
- метанола	0,328 × 9,298824 / 100 =0,0305	0,443 × 9,298824 / 100 =0,0412	
Годы эксплуатации	2023 г.	2024 г.	
Максимально разовое количество паров углево-			
дородного конденсата, поступающего в атмо-			
сферу при "дыхании" емкости, г/с	0,445 × 2202 × 21,113 × 1 × 1 × 0,602/100/ (273 +30) = 0,411	0,445 × 2202 × 21,113 × 1 × 1 × 0,602/100/ (273 +30) = 0,411	
в том числе:			
- метана	0,411 × 0,8185 / 100 = 0,00336	0,411 × 0,8185 / 100 = 0,00336	
- этана	0,411 × 0,125478 / 100 =0,000516	0,411 × 0,125478 / 100 =0,000516	
- пропана	0,411 × 0,025656 / 100 =0,000105	0,411 × 0,025656 / 100 =0,000105	
- изобутана	0,411 × 0,08272 / 100 =0,000340	0,411 × 0,08272 / 100 =0,000340	
- бутана	0,411 × 0,03591 / 100 =0,000148	0,411 × 0,03591 / 100 =0,000148	
- пентана	0,411 × 0,246654 / 100 =0,00101	0,411 × 0,246654 / 100 =0,00101	
- смеси углеводородов предельных C ₆ -C ₁₀	0,411 × 7,321073/ 100 =0,0301	0,411 × 7,321073/ 100 =0,0301	
- алканов С ₁₂ -С ₁₉ (принято по додекану)	0,411 × 4,247039 / 100 =0,0175	0,411 × 4,247039 / 100 =0,0175	
- бензола	0,411 × 0,000376 / 100 =0,00000155	0,411 × 0,000376 / 100 =0,00000155	
- метилбензола	0,411 × 0,0094 / 100 =0,0000386	0,411 × 0,0094 / 100 =0,0000386	
- диметилбензола	0,411 × 0,136116/ 100 =0,000559	0,411 × 0,136116/ 100 =0,000559	
- этилбензола	0,411 × 0,040909/ 100 =0,000168	0,411 × 0,040909/ 100 =0,000168	
- метанола	0,411 × 9,298824 / 100 =0,0382	0,411 × 9,298824 / 100 =0,0382	
Годы эксплуатации	2025 г.	2026 г.	
Максимально разовое количество паров углево-			
дородного конденсата, поступающего в атмо-			
сферу при "дыхании" емкости, г/с	0,445 × 2202 × 21,113 × 1 × 1 × 0,41635 /100/ (273 +30) = 0,284	0,445 × 2202 × 21,113 × 1 × 1 × 0,41635 /100/ (273 +30) = 0,284	
в том числе:			
- метана	0,284 × 0,8185 / 100 = 0,00233	0,284 × 0,8185 / 100 = 0,00233	
- этана	0,284 × 0,125478 / 100 = 0,000356	0,284 × 0,125478 / 100 = 0,000356	
- пропана	0,284 × 0,025656 / 100 = 0,0000729	0,284 × 0,025656 / 100 = 0,0000729	
- изобутана	0,284 × 0,08272 / 100 = 0,000235	0,284 × 0,08272 / 100 = 0,000235	
- бутана	0,284 × 0,03591 / 100 = 0,000102	0,284 × 0,03591 / 100 = 0,000102	
- пентана	0,284 × 0,246654 / 100 = 0,000701	0,284 × 0,246654 / 100 = 0,000701	
- смеси углеводородов предельных C ₆ -C ₁₀	0,284 × 7,321073/ 100 = 0,0208	0,284 × 7,321073/ 100 = 0,0208	

Изм.	Кол.уч	Лист	№док.	Подп.	Дата

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Лист

Инв. № подл.	Подп. и дата	Взам.инв.№

Наименование показателя	Наименование показателя Величина							
- алканов С ₁₂ -С ₁₉ (принято по додекану)	0,284 × 4,247039 / 100 = 0,0121	0,284 × 4,247039 / 100 = 0,0121						
- бензола	0,284 × 0,000376 / 100 = 0,00000107	0,284 × 0,000376 / 100 = 0,00000107						
- метилбензола	$0.284 \times 0.0094 / 100 = 0.0000267$	$0.284 \times 0.0094 / 100 = 0.0000267$						
- диметилбензола	0,284 × 0,136116/ 100 = 0,000387	0,284 × 0,136116/ 100 = 0,000387						
- этилбензола	0,284 × 0,040909/ 100 = 0,000116	0,284 × 0,040909/ 100 = 0,000116						
- метанола	0,284 × 9,298824 / 100 = 0,0264	0,284 × 9,298824 / 100 = 0,0264						
Годы эксплуатации	2027 :	Г.						
Максимально разовое количество паров углево-								
дородного конденсата, поступающего в атмо-								
сферу при "дыхании" емкости, г/с	$0.445 \times 2202 \times 21.113 \times 1 \times 1 \times 0.41635 / 100 / (273 + 30) = 0.284$							
в том числе:								
- метана	$0.284 \times 0.8185 / 100 = 0.00233$							
- этана	0,284 × 0,125478 / 2	,						
- пропана	0,284 × 0,025656 / 1	•						
- изобутана	0,284 × 0,08272 / 1	*						
- бутана	0,284 × 0,03591 / 1							
- пентана	0,284 × 0,246654 / 2	,						
- смеси углеводородов предельных C ₆ -C ₁₀	0,284 × 7,321073/ 100 = 0,0208 0,284 × 4,247039 / 100 = 0,0121							
- алканов С ₁₂ -С ₁₉ (принято по додекану) - бензола								
- бензола								
- метилоензола - диметилбензола	0,284 × 0,0094 / 100 = 0,0000267 0,284 × 0,136116/ 100 = 0,000387							
- диметипоензола - этилбензола	, , ,							
- метанола 0.284 × 9.298824 / 100 = 0.0264								
	Годовое (валовое) количество загрязняющих веществ, поступающих в атмосферу при "дыхании" емкости по годам эксплуатации							

Годовое (валовое) колич	ество загрязняющих веществ, поступающих в атмосферу при "	'дыхании" емкости по годам эксплуатации
Годы эксплуатации	2019 г	2020 г.
Годовое валовое количество паров углеводо-	0,160×(2202 × 1,0 + 1752) × 21,113 × 0,7 × 1,79×2481,466	0,160×(2202 × 1,0 + 1752) × 21,113 × 0,7 × 1,40×4097,622
родного конденсата, поступающего в атмосфе-	10000×0.975×(546+30+10)	10000×0,975×(546+30+10) = 9,388
ру при "дыхании" емкости, т/год	(
в том числе:		
- метана	7,269 × 0,8185 / 100 = 0,0595	9,388 × 0,8185 / 100 = 0,0768
- этана	7,269 × 0,125478 / 100 = 0,00912	9,388 × 0,125478 / 100 = 0,0118
- пропана	7,269 × 0,025656 / 100 = 0,00186	9,388 × 0,025656 / 100 = 0,00241
- изобутана	7,269 × 0,08272 / 100 = 0,00601	9,388 × 0,08272 / 100 = 0,00777
- бутана	7,269 × 0,03591 / 100 = 0,00261	9,388 × 0,03591 / 100 = 0,00337
- пентана	7,269 × 0,246654 / 100 =0,0179	9,388 × 0,246654 / 100 =0,0232
- смеси углеводородов предельных C ₆ -C ₁₀	7,269 × 7,321073/ 100 = 0,532	9.388 × 7.321073/ 100 = 0.687

						120.К
Изм.	Кол.уч	Лист	№док.	Подп.	Дата	

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Лист 47

120.ЮР.2017-2010-02-OOC2.2.TY_05D

Инв. № подл.	Подп. и дата	Взам.инв.№

		50
Наименование показателя	Вели	чина
- алканов C ₁₂ -C ₁₉ (принято по додекану)	7,269 × 4,247039 / 100 = 0,309	9,388 × 4,247039 / 100 = 0,398
- бензола	7,269 × 0,000376 / 100 = 0,0000273	9,388 × 0,000376 / 100 = 0,0000353
- метилбензола	7,269 × 0,0094 / 100 = 0,000683	9,388 × 0,0094 / 100 = 0,000882
- диметилбензола	7,269 × 0,136116/ 100 = 0,00989	9,388 × 0,136116/ 100 = 0,0128
- этилбензола	7,269 × 0,040909/ 100 = 0,00297	9,388 × 0,040909/ 100 = 0,00384
- метанола	7,269 × 9,298824 / 100 = 0,676	9,388 × 9,298824 / 100 = 0,873
Годы эксплуатации	2021 г.	2022 г.
Годовое валовое количество паров углеводо-	0,160×(2202 × 1,0 + 1752) × 21,113 × 0,7 × 1,40×4097,622 	0,160×(2202 × 1,0 + 1752) × 21,113 × 0,7 × 1,35×5543,791
родного конденсата, поступающего в атмосфе-	10000×0,975×(546+30+10)	$\frac{0.000 \times 0.975 \times (546+30+10)}{10000 \times 0.975 \times (546+30+10)} = 12,248$
ру при "дыхании" емкости, т/год		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
в том числе:		
- метана	9,388 × 0,8185 / 100 = 0,0768	12,248 × 0,8185 / 100 = 0,100
- этана	9,388 × 0,125478 / 100 = 0,0118	12,248 × 0,125478 / 100 = 0,0154
- пропана	9,388 × 0,025656 / 100 = 0,00241	12,248 × 0,025656 / 100 =0,00314
- изобутана	9,388 × 0,08272 / 100 = 0,00777	12,248 × 0,08272 / 100 = 0,0101
- бутана	9,388 × 0,03591 / 100 = 0,00337	12,248 × 0,03591 / 100 = 0,00440
- пентана	9,388 × 0,246654 / 100 =0,0232	12,248 × 0,246654 / 100 =0,0302
- смеси углеводородов предельных C ₆ -C ₁₀	9,388 × 7,321073/ 100 = 0,687	12,248 × 7,321073/ 100 = 0,897
- алканов C ₁₂ -C ₁₉ (принято по додекану)	9,388 × 4,247039 / 100 = 0,398	12,248 × 4,247039 / 100 = 0,520
- бензола	9,388 × 0,000376 / 100 = 0,0000353	12,248 × 0,000376 / 100 = 0,0000461
- метилбензола	9,388 × 0,0094 / 100 = 0,000882	12,248 × 0,0094 / 100 = 0,00115
- диметилбензола	9,388 × 0,136116/ 100 = 0,0128	12,248 × 0,136116/ 100 = 0,0167
- этилбензола	9,388 × 0,040909/ 100 = 0,00384	12,248 × 0,040909/ 100 = 0,00501
- метанола	9,388 × 9,298824 / 100 = 0,873	12,248 × 9,298824 / 100 = 1,139
Годы эксплуатации	2023 г.	2024 г.
Годовое валовое количество паров углеводо-	$\frac{0.160 \times (2202 \times 1.0 + 1752) \times 21,113 \times 0.7 \times 1,35 \times 5142,315}{1.360 \times 1.360 \times 1.360 \times 1.360 \times 1.360} = 11,360$	$\frac{0.160 \times (2202 \times 1.0 + 1752) \times 21,113 \times 0.7 \times 1.35 \times 5142,315}{1.360} = 11,360$
родного конденсата, поступающего в атмосфе-	10000×0,975×(546+30+10)	10000×0,975×(546+30+10)
ру при "дыхании" емкости, т/год		
в том числе:		
- метана	11,360 × 0,8185 / 100 =0,0930	11,360 × 0,8185 / 100 =0,0930
- этана	11,360 × 0,125478 / 100 =0,0143	11,360 × 0,125478 / 100 =0,0143
- пропана	11,360 × 0,025656 / 100 = 0,00292	11,360 × 0,025656 / 100 = 0,00292
- изобутана	11,360 × 0,08272 / 100 = 0,00940	11,360 × 0,08272 / 100 = 0,00940
- бутана	11,360 × 0,03591 / 100 = 0,00408	11,360 × 0,03591 / 100 = 0,00408
- пентана	11,360 × 0,246654 / 100 =0,0280	11,360 × 0,246654 / 100 =0,0280
- смеси углеводородов предельных С ₆ -С ₁₀	11,360 × 7,321073/100 = 0,832	11,360 × 7,321073/ 100 = 0,832
- алканов C ₁₂ -C ₁₉ (принято по додекану)	11,360 × 4,247039 / 100 = 0,483	11,360 × 4,247039 / 100 = 0,483

						120.Ю
Изм. К	ол.уч	Лист	№док.	Подп.	Дата	

120.ЮР.2017-2010-02-OOC2.2.ТЧ

48

Инв. № подл.	Подп. и дата	Взам.инв.№

		51
Наименование показателя	Велич	
бензоламетилбензоладиметилбензолаэтилбензоламетанола	11,360 × 0,000376 / 100 = 0,0000427 11,360 × 0,0094 / 100 = 0,00107 11,360 × 0,136116/ 100 = 0,0155 11,360 × 0,040909/ 100 = 0,00465 11,360 × 9,298824 / 100 = 1,0563	11,360 × 0,000376 / 100 = 0,0000427 11,360 × 0,0094 / 100 = 0,00107 11,360 × 0,136116/ 100 = 0,0155 11,360 × 0,040909/ 100 = 0,00465 11,360 × 9,298824 / 100 = 1,0563
Годы эксплуатации	2025 г.	2026 г.
Годовое валовое количество паров углеводородного конденсата, поступающего в атмосферу при "дыхании" емкости, т/год в том числе:	$\frac{0,160 \times (2202 \times 1,0 + 1752) \times 21,113 \times 0,7 \times 1,49 \times 3556,483}{10000 \times 0,975 \times (546 + 30 + 10)} = 8,672$	$\frac{0,160\times(2202\times1,0+1752)\times21,113\times0,7\times1,49\times3556,483}{10000\times0,975\times(546+30+10)}=8,672$
- метана - этана - пропана - изобутана - бутана - пентана - смеси углеводородов предельных С ₆ -С ₁₀ - алканов С ₁₂ -С ₁₉ (принято по додекану) - бензола - метилбензола - диметилбензола - этилбензола	8,672 × 0,8185 / 100 = 0,0710 8,672 × 0,125478 / 100 = 0,0109 8,672 × 0,025656 / 100 = 0,00222 8,672 × 0,08272 / 100 = 0,00717 8,672 × 0,03591 / 100 = 0,00311 8,672 × 0,246654 / 100 = 0,0214 8,672 × 7,321073/ 100 = 0,635 8,672 × 4,247039 / 100 = 0,368 8,672 × 0,000376 / 100 = 0,0000326 8,672 × 0,0094 / 100 = 0,000815 8,672 × 0,136116/ 100 = 0,0118 8,672 × 0,040909/ 100 = 0,00355	8,672 × 0,8185 / 100 = 0,0710 8,672 × 0,125478 / 100 = 0,0109 8,672 × 0,025656 / 100 = 0,00222 8,672 × 0,08272 / 100 = 0,00717 8,672 × 0,03591 / 100 = 0,00311 8,672 × 0,246654 / 100 = 0,0214 8,672 × 7,321073/ 100 = 0,635 8,672 × 4,247039 / 100 = 0,368 8,672 × 0,000376 / 100 = 0,0000326 8,672 × 0,0094 / 100 = 0,000815 8,672 × 0,136116/ 100 = 0,0118 8,672 × 0,040909/ 100 = 0,00355
- метанола Годы эксплуатации	8,672 × 9,298824 / 100 = 0,806	8,672 × 9,298824 / 100 = 0,806
Годовое валовое количество паров углеводородного конденсата, поступающего в атмосферу при "дыхании" емкости, т/год в том числе:	0,160×(2202 × 1,0 + 1752) × 21,11 10000×0,975×(546	13 × 0,7 × 1,49×3556,483 6+30+10) = 8,672
- метана - этана - пропана - изобутана - бутана - пентана - смеси углеводородов предельных С ₆ -С ₁₀ - алканов С ₁₂ -С ₁₉ (принято по додекану) - бензола - метилбензола - диметилбензола - этилбензола - метанола	8,672 × 0,8185 8,672 × 0,125478 8,672 × 0,025656 8,672 × 0,08272 8,672 × 0,03591 8,672 × 0,246654 8,672 × 7,32107 8,672 × 4,24703 8,672 × 0,000376 / 8,672 × 0,0094 / 8,672 × 0,13611 8,672 × 0,040909 8,672 × 9,29882	78 / 100 = 0,0109 6 / 100 = 0,00222 2 / 100 = 0,00717 / 100 = 0,00311 54 / 100 = 0,0214 073/ 100 = 0,635 39 / 100 = 0,368 / 100 = 0,0000326 / 100 = 0,000815 16/ 100 = 0,00118 19/ 100 = 0,00355

Изм.	Кол.уч	Лист	№док.	Подп.	Дата

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Лист

9 Расчет количества загрязняющих веществ, поступающих в атмосферу от топливный баков аварийных ДЭС мощностью 250 кВт, устанавливаемых на площадке Энергоцентра №2

В таблице Г.9 приведен расчет количества загрязняющих веществ, поступающих в атмосферу от топливных баков аварийных дизельных электростанций мощностью 250 кВт.

Таблица Г.9 - Расчет количества загрязняющих веществ, поступающих в атмосферу от топливных баков аварийных дизельных электростанций мощностью 250 кВт

Наименование показателя	Величина
Номинальная мощность аварийной ДЭС, кВт	250
Высота свечи топливного бака, м	3,5
Диаметр свечи топливного бака, м	0,05
Плотность дизтоплива, поступающего в топливный бак, кг/м ³	830
Объем топливного бака, м ³	0,99
Тип резервуара	вертикальный наземный
Режим эксплуатации	"мерник"
Объем дизтоплива, поступающего в топливный бак, т/год м ³ /год	13,74 13,74 × 1000 / 830 = 16,357
Температура дизтоплива, поступающего в топлив- ный бак, [°] С	плюс 7 ÷ плюс 20
Производительность насоса, закачивающего диз- топливо в бак, м ³ /ч	4
Объем паров дизтоплива, поступающих в атмосферу от топливного бака аварийной ДЭС (при н. у.), нм³/с	4 / 3600 = 0,00111
- при температуре плюс 7°С, м³/с - при температуре плюс 20°С, м³/с	0,00111 × (273,15 + 7) / 273,15 = 0,00114 0,00111 × (273,15 + 20) / 273,15 = 0,00119
Концентрация паров дизтоплива в емкости (приложение 12 Методических указаний), С ₂₀ , г/м ³	2,59
Опытные коэффициенты, характеризующие эксплуатационные особенности резервуара	Для наземного вертикального резервуара объемом менеє 100 м 3 К $_p^{max}$ = 0,9, К $_p^{cp}$ = 0,63 (приняты по приложению 8 Методических указаний)
Опытные коэффициенты при максимальной и минимальной температуре дизтоплива в баке	K _t ^{max} = 1,0, K _t ^{min} = 0,64 (приняты по приложению 7 Методиче ских указаний)
Полная оборачиваемость резервуара при заполнении на 95%, раз в год	16,357 / (0,99 × 0,95) ≈ 18
Коэффициент оборачиваемости резервуара (приложение 10 Методических указаний)	2,5
Максимально разовое количество паров дизтоплива, поступающего в атмосферу, г/с, в том числе:	2,59 × 1 × 0,9 × 4 / 3600 = 0,00259
- алканов C ₁₂ -C ₁₉ - дигидросульфида	0,00259 × 99,72 / 100=0,002583 0,00259 × 0,28 / 100 = 0,000007
Суммарный годовой валовый выброс паров дизтоп- лива, поступающего в атмосферу при "дыхании" топ- ливного бака аварийной ДЭС, т/год в том числе:	$2,59 \times (1+0,64) \times 0,63 \times 2,5 \times 13,74 / 2 \times 10^{6} \times 0,83 =$ =0,0000554
- алканов С ₁₂ -С ₁₉ - дигидросульфида	0,0000554 × 99,72/100 = 0,0000552 0,000554 × 0,28 / 100 = 0,00000155

10 Расчет количества загрязняющих веществ, поступающих в атмосферу от топливного бака аварийной ДЭС мощностью 100 кВт, устанавливаемой в БКЭС на площадке куста скважин №16

В таблице Г.10 приведен расчет количества загрязняющих веществ, поступающих в атмосферу от топливного баков аварийной дизельной электростанции мощностью 100 кВт.

							120.ЮР.2017-2010-02-ООС2.2.ТЧ
ľ	Изм.	Кол.уч	Лист	№док.	Подп.	Дата	

NHB.

Взам.

Подп. и дата

подл.

읟

MHB.

Таблица Г.10 - Расчет количества загрязняющих веществ, поступающих в атмосферу от топливного бака аварийной дизельной электростанции мощностью 100 кВт

Наименование показателя	Величина
Тип бака	наземный горизонтальный
Объем бака, м ³	1
Режим работы бака	"мерник"
Наименование источника загрязнения	дыхательный клапан
атмосферы	дыхательный клапан
	2.4
Высота источника, м	2,4 0,05
Диаметр источника, м	,
Наименование продукта, поступающего в бак	дизтопливо
Удельный расход топлива для работы	30,7
ДЭС, л/ч	55,1
Плотность дизтоплива, т/м ³	0,830
Время работы аварийной ДЭС, ч/год	240
Расход топлива для работы ДЭС, т/год	30,7 × 830 × 240 /1000000 = 6,115
Объем дизтоплива, хранимого в топлив-	30,7 × 030 × 240 / 1000000 = 0,110
ном баке, м ³ /год	30,7 × 240 /1000 = 7,368
Температура продукта, поступающего в	7 ÷ плюс 20
бак, °С	7 - 15100 20
Опытные коэффициенты К _р ^{max} , К _р ^{ср}	Для наземного горизонтального резервуара объемом 1 м ³ опытные
(приняты по приложению 8 Методических	коэффициенты составляют
указаний)	$K_p^{\text{max}} = 1, K_p^{\text{cp}} = 0.7$
Максимальный объем паровоздушной	Производительность насоса, закачивающего дизтопливо в бак V _ч ^{max} =
смеси, вытесняемой из топливного бака	2,1 м ³ /ч. Тогда:
во время его закачки:	$V = 2.1 / 3600 = 0.000583 (\text{m}^3/\text{c})$
Концентрация паров дизтоплива в емко-	2,59
сти C ₂₀ , г/м ³	(принята по приложению 12 Методических указаний)
Опытный коэффициент К _t (принят по при-	$K_t^{max} = 1,0, K_t^{min} = 0,64$ (приняты по приложению 7 Методических указа-
ложению 9 Методических указаний)	ний)
Коэффициент заполнения топливного	0,9
бака	
Годовая оборачиваемость бака, раз в год	7,368 / (1 × 1) ≈ 8 (раз в год)
Коэффициент оборачиваемости	2,5
К _{об} (принят по приложению 10 Методических	
указаний)	
Максимально разовое количество паров	
дизтоплива, поступающих в атмосферу	2,59 × 1 × 1 × 2,1 / 3600 = 0,00151
при "дыхании" топливного бака, г/с	
в том числе:	
- алканов C ₁₂ -C ₁₉	0,00151 × 99,72 / 100 = 0,001506
- дигидросульфида	0,00151 × 0,28 / 100 = 0,000004
Объем паров дизтоплива, поступающих в	
атмосферу от топливного бака ДЭС:	
- при температуре 5°C, м³/с	0,000583 × (273,15 + 7) / 273,15 = 0,000598
- при температуре 20°C, м³/с	0,000583 × (273,15 + 20) / 273,15 = 0,000626
Годовой валовый выброс паров дизтопли-	2,59×(1,0+0,64)×0,7×2,5×6,115
ва, поступающих в атмосферу при "дыха-	$\frac{2 \times 10^6 \times 0.830}{2 \times 10^6 \times 0.830} = 0,0000374$
нии" топливного бака, т/год:	2 ~ 10 ~ 0,000
в том числе:	0.0000074 00.70 / 400 0.000070
- алканов C ₁₂ -C ₁₉	0,0000374 × 99,72 / 100 = 0,0000273
- дигидросульфида	0,0000274 × 0,28 / 100 = 0,0000001

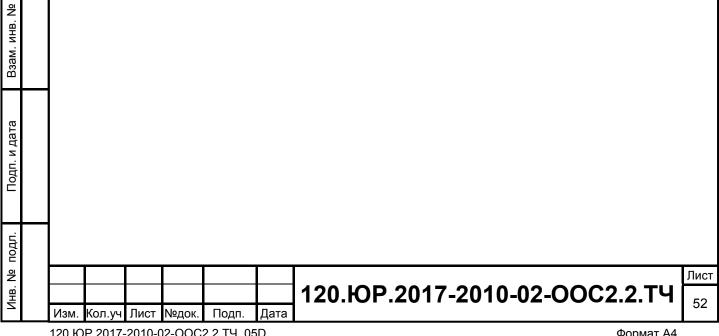
11 Расчет количества загрязняющих веществ, поступающих в атмосферу от маслобаков аварийных ДЭС

В таблице Г.11 приведен расчет количества загрязняющих веществ, поступающих в атмосферу от маслобаков аварийных дизельных электростанций мощностью 250 кВт.

						120
Изм.	Кол.уч	Лист	№док.	Подп.	Дата	

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Лист


Взам. инв.

Подп. и дата

. № подл.

Таблица Г.11 - Расчет количества загрязняющих веществ, поступающих в атмосферу ОТ маслобаков аварийных дизельных электростанций мощностью 250 кВт

Наименование показателя	Величина
Номинальная мощность аварийной ДЭС, кВт	240
Высота свечи маслобака, м	3,5
Диаметр свечи маслобака, м	0,05
Плотность масла, поступающего в маслобак,	886
кг/м ³	
Единичный объем одного маслобака, м ³	0,080
Тип резервуара	Вертикальный наземный
Режим эксплуатации	"мерник"
Годовой объем масла, поступающего в	
маслобак 1 аварийной ДЭС, м ³ /год	0,0336
Годовой расход масла, поступающего в	0,0336 × 886 / 1000 = 0,0298
маслобак 1 аварийной ДЭС, т/год	
Температура масла, поступающего в маслобак, °C	плюс 7 ÷ плюс 50
Производительность насоса, закачивающего	
масло в маслобак, л/мин	0,00233
M ³ /4	0,00233 × 60 / 1000 = 0,14
Объем паров масла, поступающих в атмосфе-	
ру от маслобака аварийной ДЭС (при н. у.),	0,14 / 3600 = 0,0000389
HM ³ /C	0.0000000 (070.45 ; 7) (070.45 , 0.0000000
- при температуре плюс 7°C, м³/с	0,0000389 × (273,15 + 7) / 273,15 = 0,0000399
- при температуре плюс 50°C, м³/с	0,0000389 × (273,15 + 50) / 273,15 = 0,0000460
Концентрация паров масла в емкости (приложение 12 Методических указаний), С ₂₀ , г/м ³	0,26
мение 12 Методических указании), C_{20} , г/м Опытные коэффициенты, $K_p^{max} = K_p^{cp}$	Для наземного вертикального резервуара объемом менее 100 м ³
Опытные коэффициенты, $\kappa_p = -$, κ_p	для наземного вертикального резервуара ооъемом менее 100 м $K_p^{max} = 0.9, K_p^{cp} = 0.63$ (приняты по приложению 8 Методических
	к _р = 0,9, к _р = 0,03 (приняты по приложению в іметодических указаний)
Опытные коэффициенты при максимальной и	улазапии,
минимальной температуре масла в баке, K _t ^{max} ,	K_t^{max} = 2,5, K_t^{min} = 0,64 (приняты по приложению 7 Методических
Kt ^{min}	указаний)
Полная оборачиваемость резервуара при за-	0,0336 / (0,24 × 0,95) ≈ 1
полнении на 95%, раз в год	, , ,
Коэффициент оборачиваемости резервуара	2,5
(приложение 10 Методических указаний)	
Максимально разовое количество паров мас-	0,26 × 2,5 × 0,9 × 0,14/ 3600 = 0,0000228
ла, поступающего в атмосферу при "дыхании"	
маслобака аварийной ДЭС, г/с	
Годовой валовый выброс паров масла, посту-	$0.26 \times (2.5 + 0.64) \times 0.63 \times 2.5 \times 0.0298 / 2 \times 10^6 \times 0.886 =$
пающего в атмосферу при "дыхании" маслоба-	=0,000000216
ка аварийной ДЭС, т/год	

Приложение Д (обязательное)

Расчет количества загрязняющих веществ, поступающих в атмосферу при работе ПАЭС-2500 в период эксплуатации

В таблице Д.1 приведено количества ПАЭС, предназначенных для энергообеспечения нужд строительства, гидронамыва грунта и бурения, которые будут находиться в эксплуатации с 2019 г. по 2027 г. Ввод ПАЭС в эксплуатацию предусматривается с 1 июня 2019 года.

Таблица Д.1 – Количество ПАЭС-2500, которые будут находиться в эксплуатации с 2019 г. по 2027 г.

Годы эксплуатации	Количество ПАЭС-2500		
2019 г.	6 раб. + 2 рез.		
2020 г.	9 раб. + 7 рез.		
2021 г.	9 раб. + 7 рез.		
2022 г.	14 раб. + 2 рез.		
2023 г.	1 раб. + 5 рез.		
2024 г.	1 раб. + 5 рез.		
2025 г.	4 раб. + 2 рез.		
2026 г.	4 раб. + 2 рез.		
2027 г.	4 раб. + 2 рез.		

В таблице Д.2 приведен расчет количества загрязняющих веществ, поступающих в атмосферу при работе ПАЭС-2500 в период эксплуатации.

Наименование характеристик

Таблица Д.2 – Расчет количества загрязняющих веществ, поступающих в атмосферу при работе 1 ПАЭС-2500 в период эксплуатации

Мощность номинальная электрическая 1 ПАЭС-2500, кВт	2500
Тип двигателя	газотурбинный, на базе АИ-20
К. п. д. двигателя, %	24
Количество выхлопных труб на 1 ПАЭС-2500, штук	1
Плотность топливного газа, кг/нм ³ (при нормальных условиях - при 0°С и 0,1013 МПа)	0,736
Высота дымовой трубы, м	6,0
Диаметр дымовой трубы, м	1,39 (1420 мм × 16 мм)
Расход топливного газа на номинальном режиме работы 1 ПАЭС-2500, кг/ч	836
кг/с	836 / 3600 = 0,232
нм³/ч (при нормальных условиях - при 0°С и 0,1013 МПа)	836 / 0,747 = 1135,87
Массовый расход продуктов сгорания на срезе выхлопной трубы при номинальном режиме работы, кг/с	20,8
Температура продуктов сгорания на срезе выхлопной трубы при номинальном режиме работы, °С	520
Плотность выхлопных газов при нормальных условиях, кг/м ³ (при нормальных условиях - при 0°С и 0,1013 МПа)	1,2942

Изм. Кол.уч Лист №док. Подп Дата

Взам.

Подп. и дата

№ подл.

120.HOP.2017-2010-02-OOC2.2.TY

Величина

Наименование успантавистии	Белицина
Наименование характеристик	Величина
Объем выхлопных газов, поступающих в атмосферу при рабо- те 1 ПАЭС на номинальном режиме работы:	-
- при 0°C и 0,1013 МПа, нм³/с	20,8 / 1,2942 = 16,0717
	$16,0717 \times (273,15+520) / 273,15 = 46,66$
- при фактической температуре, м³/с	10,0717*(273,15+520)7273,15 = 40,00
Приведенная концентрация оксидов азота (при условной кон-	
центрации кислорода 15% в сухих продуктах сгорания), С _{NOх} 15,	04 (44 4)
мг/нм ³ (ppm)	91 (44,4)
Приведенная концентрация углерода оксида (при условной	
концентрации кислорода 15% в сухих продуктах сгорания),	407 (07.0)
C_{co}^{15} , мг/нм 3 (ppm)	107 (85,6)
Максимально разовое количество оксидов азота, поступающих	
в атмосферу при номинальном режиме работы 1 ПАЭС, г/с	$0.832 \times 10^{-3} \times (2.5 / 0.24) \times 91.0 = 0.789$
в том числе:	
- азота диоксид	$0.789 \times 0.4 = 0.316$
- азота (II) оксид	$0.789 \times 0.65 \times (1 - 0.4) = 0.308$
Максимально разовое количество углерода оксида, поступаю-	
щего в атмосферу при номинальном режиме работы 1 ПАЭС-	
2500, M _{CO} , г/с	$0.832 \times 10^{-3} \times (2.5 / 0.24) \times 107 = 0.927$
Максимально разовое количество диуглерода оксида, поступа-	
ющего в атмосферу при номинальном режиме работы 1 ПАЭС-	
2500, M _{CO2} , r/c	0,511 × 1119,143 = 580,43
Годовое время работы 1 ПАЭС-2500, ч/год	В 2019 г. – 5136 ч/год
	В 2020 г. и в последующие годы – 876
	ч/год
2019 год	
Годовое валовое количество оксидов азота, поступающих в ат-	0,789 × 3600 × 5136 × 0,000001 =14,58
мосферу при номинальном режиме работы 1 ПАЭС, т/год	
в том числе:	
- азота диоксид	0,316× 3600 × 5136 × 0,000001 = 5,843
- азота (II) оксид	$0.308 \times 3600 \times 5136 \times 0.000001 = 5.694$
Годовое валовое количество углерода оксида, поступающего в	0,927 × 3600 × 5136 × 0,000001 =17,14
атмосферу при номинальном режиме работы 1 ПАЭС-2500, М _{со} ,	
т/год	,
Годовое валовое количество диуглерода оксида, поступающего и	В
атмосферу при номинальном режиме работы 1 ПАЭС-2500,	580,43 × 3600 × 5136 × 0,000001 =
М _{СО2} , т/год	=10731,919
2020 г. – 2027 г.	,
Годовое валовое количество оксидов азота, поступающих в ат-	0,789 × 3600 × 8760 × 0,000001 =24,88
мосферу при номинальном режиме работы 1 ПАЭС, т/год	
в том числе:	
- азота диоксид	$0.316 \times 3600 \times 8760 \times 0.000001 = 9.968$
- азота (II) оксид	0,308× 3600 × 8760 × 0,000001 = 9,713
Годовое валовое количество углерода оксида, поступающего в	0,927 × 3600 × 8760 × 0,000001 =29,23
атмосферу при номинальном режиме работы 1 ПАЭС-2500, М _{СО} ,	
атмосферу при поминальном режиме рассты т пжес 2000, м _{со,} т/год	'
глод Годовое валовое количество углерод диоксида, поступающего в	
атмосферу при номинальном режиме работы 1 ПАЭС-2500,	580,43 × 3600 × 8760 × 0,000001 =
атмосферу при номинальном режиме расоты т пдос-2300, М _{СО2} , т/год	=18304,44
INICUZ, I/I OA	_ 1000 1,11
	In.
420 100 2017	
120.ЮР.2017- зм. Кол.уч Лист №док. Подп Дата	-2010-02-ООС2.2.ТЧ

Взам. инв. №

Подп. и дата

Инв. № подл.

Приложение E (обязательное)

Расчет количества загрязняющих веществ, поступающих в атмосферу при работе аварийных дизельных электростанций в период эксплуатации

1. Расчет количества загрязняющих веществ, поступающих в атмосферу при работе аварийной дизельной электростанции мощностью 100 кВт, устанавливаемой в помещении БКЭС на площадке куста скважин №16

В соответствии с данными электрической части проекта в помещении БКЭС устанавливается дизельная электростанция мощностью 100 кВт.

Для расчетов выбросов загрязняющих веществ, поступающих в атмосферу при работе ДЭС, использовались данные ГОСТ Р 56163-2014 "Выбросы загрязняющих веществ в атмосферу. Метод расчета выбросов от стационарных дизельных установок" (М., Федеральное агентство по техническому регулированию, 2014) и "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" (С.-Пб., НИИ Атмосфера, 2001).

В таблице Е.1 приведены технические и экологические характеристики ДЭС мощностью 100 кВт.

Таблица Е.1 – Технические и экологические характеристики ДЭС мощностью 100 кВт

Наименование параметра	Величина
Номинальная мощность ДЭС, кВт	100
Расход дизтоплива, л/ч	30,7
Температура выхлопных газов, °С	450
Количество дымовых труб, штук	1
Высота дымовой трубы, м	3,445
Диаметр дымовой трубы, м	0,15
Удельные средневзвешенные выбросы с отработавшими газами, г / кВт × ч:	
- оксиды азота	9,6 ¹ 6,2 ¹ 2,9 ¹ 0,5 ¹
- углерода оксид	6,21
- углеводороды (керосин)	2,91
- углерод	0,5
- сера диоксид	1,2'
- формальдегид	0,121
- бенз(α)пирен	0,000012 ¹

Примечания: 1 - Данные приняты по ГОСТ Р 56163-2014 Выбросы загрязняющих веществ в атмосферу. Метод расчета выбросов от стационарных дизельных установок.

Количество загрязняющих веществ, поступающих в атмосферу при работе аварийной дизельной электростанции в период эксплуатации, рассчитано по "Методике расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" (С.-Пб., НИИ Атмосфера, 2001).

Время работы ДЭС принято равным 240 ч/год – как наибольшая величина при работе аварийных ДЭС в соответствии с рекомендациям СТО Газпром 2-6.2-300-2009. Применение

Изм.	Кол.уч	Лист	№док.	Подп	Дата

120.HOP.2017-2010-02-OOC2.2.TY

Лист

Взам.

и дата

Подп.

№ подл.

аварийных источников электроснабжения на объектах ОАО "Газпром" (М., ОАО "Газпром", 2009).

В таблице Е.2 приведен расчет количества загрязняющих веществ, поступающих в атмосферу при работе дизельной электростанции мощностью 100 кВт.

Таблица Е.2 – Расчет количества загрязняющих веществ, поступающих в атмосферу при работе дизельной электростанции мощностью 100 кВт

Наименование параметра			
	Величина		
Номинальная мощность ДЭС, кВт	100		
Расход дизтоплива на номинальной мощности, л/ч	30,7		
Удельный расход топлива при номинальном ре-	_		
жиме работы, г / кВт × ч	$30.7 \times 10^{-3} \times 830 \times 1000 / 100 = 254.81$		
Температура выхлопных газов, °С	450		
Содержание загрязняющих веществ в выхлопных			
газах, г / кВт × ч:			
- оксиды азота	9,6		
- углерода оксид	6,2		
- углеводороды (керосин)	2,9		
- углерод	0,5		
- сера диоксид	1,2		
- формальдегид	0,12		
- бенз(α)пирен	0,000012		
Расход отработанных газов, кг/с	$8,72 \times 0,000001 \times 254,81 \times 100 = 0,222$		
Плотность выхлопных газов кг/нм³(при нормальных	1,31		
условиях (Р=0,1013 МПа, Т=273,15К)			
Объем продуктов сгорания, поступающих в атмо-			
сферу при работе ДЭС, нм³/с (при нормальных	0,222 / 1,31 = 0,169		
условиях (Р=0,1013 МПа, Т=273,15К)			
Объем продуктов сгорания, поступающих в атмо-			
сферу при работе ДЭС, м³/с (при рабочих условиях	$0,169 \times (273,15+450)/273,15 = 0,447$		
при температуре 450°C)			
Максимально разовое количество загрязняющи			
	ции мощностью 100 кВт, г/с:		
Оксиды азота	9,6 × 100 / 3600 = 0,267		
в том числе:	0.007 0.4 - 0.407		
- азота диоксид	$0.267 \times 0.4 = 0.107$		
- азота (II) оксид	$0.267 \times 0.65 \times (1 - 0.4) = 0.104$		
Углерод	0,5 × 100 / 3600 = 0,0139		
ICANA HMORCIMI	1 0 4 100 / 2000 - 0 0222		
Сера диоксид	1,2 × 100 / 3600 = 0,0333		
Углерода оксид	6,2 × 100 / 3600 = 0,172		
Углерода оксид Бенз(α)пирен	6,2 × 100 / 3600 = 0,172 0,000012× 100 / 3600 = 0,000000333		
Углерода оксид Бенз(α)пирен Формальдегид	6,2 × 100 / 3600 = 0,172 0,000012× 100 / 3600 = 0,000000333 0,12 × 100 / 3600 = 0,00333		
Углерода оксид Бенз(α)пирен Формальдегид Углеводороды (керосин)	6,2 × 100 / 3600 = 0,172 0,000012× 100 / 3600 = 0,000000333 0,12 × 100 / 3600 = 0,00333 2,9 × 100 / 360 = 0,0806		
Углерода оксид Бенз(α)пирен Формальдегид Углеводороды (керосин) Годовое (валовое) количество загрязняющих в	6,2 × 100 / 3600 = 0,172 0,000012× 100 / 3600 = 0,000000333 0,12 × 100 / 3600 = 0,00333 2,9 × 100 / 360 = 0,0806 веществ, поступающих в атмосферу при работе		
Углерода оксид Бенз(α)пирен Формальдегид Углеводороды (керосин) Годовое (валовое) количество загрязняющих в дизельной электростанции	6,2 × 100 / 3600 = 0,172 0,000012× 100 / 3600 = 0,000000333 0,12 × 100 / 3600 = 0,00333 2,9 × 100 / 360 = 0,0806 веществ, поступающих в атмосферу при работе мощностью 100 кВт, т/год:		
Углерода оксид Бенз(α)пирен Формальдегид Углеводороды (керосин) Годовое (валовое) количество загрязняющих в дизельной электростанции Оксиды азота	6,2 × 100 / 3600 = 0,172 0,000012× 100 / 3600 = 0,000000333 0,12 × 100 / 3600 = 0,00333 2,9 × 100 / 360 = 0,0806 веществ, поступающих в атмосферу при работе		
Углерода оксид Бенз(α)пирен Формальдегид Углеводороды (керосин) Годовое (валовое) количество загрязняющих в дизельной электростанции Оксиды азота в том числе:	6,2 × 100 / 3600 = 0,172 0,000012× 100 / 3600 = 0,000000333 0,12 × 100 / 3600 = 0,00333 2,9 × 100 / 360 = 0,0806 веществ, поступающих в атмосферу при работе мощностью 100 кВт, т/год: 0,267 × 3600 × 240 × 10 ⁻⁶ = 0,231		
Углерода оксид Бенз(α)пирен Формальдегид Углеводороды (керосин) Годовое (валовое) количество загрязняющих в дизельной электростанции Оксиды азота в том числе: - азота диоксид	$6,2 \times 100 / 3600 = 0,172$ $0,000012 \times 100 / 3600 = 0,000000333$ $0,12 \times 100 / 3600 = 0,00333$ $2,9 \times 100 / 360 = 0,0806$ веществ, поступающих в атмосферу при работе мощностью 100 кВт, т/год: $0,267 \times 3600 \times 240 \times 10^{-6} = 0,231$ $0,231 \times 0,4 = 0,0924$		
Углерода оксид Бенз(α)пирен Формальдегид Углеводороды (керосин) Годовое (валовое) количество загрязняющих в дизельной электростанции Оксиды азота в том числе: - азота диоксид - азота (II) оксид	6,2 × 100 / 3600 = 0,172 0,000012× 100 / 3600 = 0,000000333 0,12 × 100 / 3600 = 0,00333 2,9 × 100 / 360 = 0,0806 веществ, поступающих в атмосферу при работе мощностью 100 кВт, т/год: 0,267 × 3600 × 240 × 10 ⁻⁶ = 0,231 0,231 × 0,4 = 0,0924 0,231 × 0,65 × (1 – 0,4) = 0,0901		
Углерода оксид Бенз(α)пирен Формальдегид Углеводороды (керосин) Годовое (валовое) количество загрязняющих в дизельной электростанции Оксиды азота в том числе: - азота диоксид - азота (II) оксид Углерод	6,2 × 100 / 3600 = 0,172 0,000012× 100 / 3600 = 0,000000333 0,12 × 100 / 3600 = 0,00333 2,9 × 100 / 360 = 0,0806 веществ, поступающих в атмосферу при работе мощностью 100 кВт, т/год: 0,267 × 3600 × 240 × 10 ⁻⁶ = 0,231 0,231 × 0,4 = 0,0924 0,231 × 0,65 × (1 – 0,4) = 0,0901 0,0139 × 3600 × 240 × 10 ⁻⁶ = 0,0120		
Углерода оксид Бенз(α)пирен Формальдегид Углеводороды (керосин) Годовое (валовое) количество загрязняющих в дизельной электростанции Оксиды азота в том числе: - азота диоксид - азота (II) оксид Углерод Сера диоксид	6,2 × 100 / 3600 = 0,172 0,000012× 100 / 3600 = 0,000000333 0,12 × 100 / 3600 = 0,00333 2,9 × 100 / 360 = 0,0806 веществ, поступающих в атмосферу при работе мощностью 100 кВт, т/год: 0,267 × 3600 × 240 × 10 ⁻⁶ = 0,231 0,231 × 0,4 = 0,0924 0,231 × 0,65 × (1 – 0,4) = 0,0901 0,0139 × 3600 × 240 × 10 ⁻⁶ = 0,0120 0,0333 × 3600 × 240 × 10 ⁻⁶ = 0,0288		
Углерода оксид Бенз(α)пирен Формальдегид Углеводороды (керосин) Годовое (валовое) количество загрязняющих в дизельной электростанции Оксиды азота в том числе: - азота диоксид - азота (II) оксид Углерод Сера диоксид Углерода оксид	$6,2 \times 100 / 3600 = 0,172$ $0,000012 \times 100 / 3600 = 0,000000333$ $0,12 \times 100 / 3600 = 0,00333$ $2,9 \times 100 / 360 = 0,0806$ веществ, поступающих в атмосферу при работе мощностью 100 кВт, т/год: $0,267 \times 3600 \times 240 \times 10^{-6} = 0,231$ $0,231 \times 0,4 = 0,0924$ $0,231 \times 0,65 \times (1-0,4) = 0,0901$ $0,0139 \times 3600 \times 240 \times 10^{-6} = 0,0120$ $0,0333 \times 3600 \times 240 \times 10^{-6} = 0,0288$ $0,172 \times 3600 \times 240 \times 10^{-6} = 0,149$		
Углерода оксид Бенз(α)пирен Формальдегид Углеводороды (керосин) Годовое (валовое) количество загрязняющих в дизельной электростанции Оксиды азота в том числе: - азота диоксид - азота (II) оксид Углерод Сера диоксид Углерода оксид Бенз(α)пирен	$6,2 \times 100 / 3600 = 0,172$ $0,000012 \times 100 / 3600 = 0,000000333$ $0,12 \times 100 / 3600 = 0,00333$ $2,9 \times 100 / 360 = 0,0806$ веществ, поступающих в атмосферу при работе мощностью 100 кВт, т/год: $0,267 \times 3600 \times 240 \times 10^{-6} = 0,231$ $0,231 \times 0,4 = 0,0924$ $0,231 \times 0,65 \times (1-0,4) = 0,0901$ $0,0139 \times 3600 \times 240 \times 10^{-6} = 0,0120$ $0,0333 \times 3600 \times 240 \times 10^{-6} = 0,0288$ $0,172 \times 3600 \times 240 \times 10^{-6} = 0,149$ $0,000000333 \times 3600 \times 240 \times 10^{-6} = 0,000000288$		
Углерода оксид Бенз(α)пирен Формальдегид Углеводороды (керосин) Годовое (валовое) количество загрязняющих в дизельной электростанции Оксиды азота в том числе: - азота диоксид - азота (II) оксид Углерод Сера диоксид Углерода оксид	$6,2 \times 100 / 3600 = 0,172$ $0,000012 \times 100 / 3600 = 0,000000333$ $0,12 \times 100 / 3600 = 0,00333$ $2,9 \times 100 / 360 = 0,0806$ веществ, поступающих в атмосферу при работе мощностью 100 кВт, т/год: $0,267 \times 3600 \times 240 \times 10^{-6} = 0,231$ $0,231 \times 0,4 = 0,0924$ $0,231 \times 0,65 \times (1-0,4) = 0,0901$ $0,0139 \times 3600 \times 240 \times 10^{-6} = 0,0120$ $0,0333 \times 3600 \times 240 \times 10^{-6} = 0,0288$ $0,172 \times 3600 \times 240 \times 10^{-6} = 0,149$		

Взам. инв. №

Подп. и дата

Инв. № подл.

2. Расчет количества загрязняющих веществ, поступающих в атмосферу при работе аварийных дизельных электростанций мощностью 250 кВт, устанавливаемых на площадке Энергоцентра №2

В соответствии с данными электрической части проекта на площадке Энергоцентра №2 в эксплуатации будет находиться 2 дизельных электростанции контейнерного исполнения мощностью 250 кВт.

Для расчетов выбросов загрязняющих веществ, поступающих в атмосферу при работе ДЭС, использовались данные ГОСТ Р 56163-2014 "Выбросы загрязняющих веществ в атмосферу. Метод расчета выбросов от стационарных дизельных установок" (М., Федеральное агентство по техническому регулированию, 2014) и "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" (С.-Пб., НИИ Атмосфера, 2001).

В таблице Е.3 приведены технические и экологические характеристики ДЭС.

Таблица Е.3 – Технические и экологические характеристики ДЭС "Звезда-250НК-02М3"

Наименование параметра	Величина
Номинальная мощность ДЭС, кВт	250
Удельный расход дизтоплива на номинальной мощности, г/кВт×ч	229
Температура выхлопных газов, °С	450
Количество дымовых труб, штук	1
Высота дымовой трубы, м	3,445
Диаметр дымовой трубы, м	0,15
Удельные средневзвешенные выбросы с отработавшими газами, г / кВт × ч:	_
- оксиды азота	9,6 ¹ 6,2 ¹ 2,9 ¹ 0,5 ¹ 1,2 ¹
- углерода оксид	6,2 ¹
- углеводороды (керосин)	2,9 ¹
- углерод	0,5
- сера диоксид	1,21
- формальдегид	0,12
- бенз(α)пирен	0,000012 ¹

Примечания: 1 - Данные приняты по ГОСТ Р 56163-2014 Выбросы загрязняющих веществ в атмосферу. Метод расчета выбросов от стационарных дизельных установок.

Количество загрязняющих веществ, поступающих в атмосферу при работе аварийной дизельной электростанции в период эксплуатации, рассчитано по "Методике расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" (С.-Пб., НИИ Атмосфера, 2001).

Время работы ДЭС принято равным 240 ч/год – как наибольшая величина при работе аварийных ДЭС в соответствии с рекомендациям СТО Газпром 2-6.2-300-2009. Применение аварийных источников электроснабжения на объектах ОАО "Газпром" (М., ОАО "Газпром", 2009).

В таблице Е.2 приведен расчет количества загрязняющих веществ, поступающих в атмосферу при работе дизельных электростанций мощностью 250 кВт (расчет приведен на 1 ДЭС).

120.HOP.2017-2010-02-OOC2.2.TY

Лист

MHB.

Взам.

и дата

Подп.

№ подл.

Таблица Е.2 – Расчет количества загрязняющих веществ, поступающих в атмосферу при работе дизельных электростанций мощностью 250 кВт

Наименование параметра	Величина
Номинальная мощность ДЭС, кВт	250
Удельный расход дизтоплива на номинальной	
мощности, г/кВт×ч	229
Температура выхлопных газов, °С	450
Содержание загрязняющих веществ в выхлоп-	
ных газах, г / кВт × ч:	
- оксиды азота	9,6
- углерода оксид	6,2
- углеводороды (керосин)	2,9
- углерод	0,5
- сера диоксид	1,2
- формальдегид	0,12
- бенз(α)пирен	0,000012
Расход отработанных газов, кг/с	$8,72 \times 0,000001 \times 229 \times 250 = 0,499$
Плотность выхлопных газов кг/нм ³ (при нор-	1,31
мальных условиях (Р=0,1013 МПа, Т=273,15К)	
Объем продуктов сгорания, поступающих в ат-	
мосферу при работе ДЭС, нм³/с (при нормаль-	0,499 / 1,31 = 0,381
ных условиях (Р=0,1013 МПа, Т=273,15К)	
Объем продуктов сгорания, поступающих в ат-	
мосферу при работе ДЭС, м³/с (при рабочих	$0.381 \times (273.15 + 450) / 273.15 = 1.00868$
условиях при температуре 450°C)	
	щих веществ, поступающих в атмосферу при рабо
	анции мощностью 250 кВт, г/с: 9,6 × 250 / 3600 = 0,667
Оксиды азота	9,6 × 250 / 3600 = 0,667
В ТОМ ЧИСЛЕ:	$0.667 \times 0.4 = 0.267$
- азота диоксид	· · · · · · · · · · · · · · · · · · ·
- азота (II) оксид	$0.667 \times 0.65 \times (1 - 0.4) = 0.260$ $0.5 \times 250 / 3600 = 0.0347$
Углерод	1,2 × 250 / 3600 = 0,0833
Сера диоксид	6,2 × 250 / 3600 = 0,0833
Углерода оксид	0,000012× 250 / 3600 = 0,431
Бенз(а)пирен	
Формальдегид	0,12 × 250 / 3600 = 0,00833 2,9 × 250 / 3600 = 0,201
Углеводороды (керосин)	,
	ıх веществ, поступающих в атмосферу при работе ции мощностью 250 кВт, т/год:
Оксиды азота	0,667 × 3600 × 240 × 10 ⁻⁶ = 0,576
в том числе:	0,007 ^ 3000 ^ 240 ^ 10 = 0,370
- азота диоксид	$0.576 \times 0.4 = 0.230$
- азота (II) оксид	$0,576 \times 0,65 \times (1-0,4) = 0,225$
- азота (п) околд Углерод	$0.0347 \times 3600 \times 240 \times 10^{-6} = 0.0300$
Уплерод Сера диоксид	$0.0833 \times 3600 \times 240 \times 10^{-6} = 0.0720$
Углерода оксид	$0,0833 \times 3600 \times 240 \times 10^{-6} = 0,0720$ $0,431 \times 3600 \times 240 \times 10^{-6} = 0,372$
Этлерода оксид Бенз(α)пирен	$0,931 \times 3000 \times 240 \times 10^{-6} = 0,000000720$ $0,000000903 \times 3600 \times 240 \times 10^{-6} = 0,000000720$
Формальдегид	$0.0104 \times 3600 \times 240 \times 10^{-6} = 0.00720$
Углеводороды (керосин)	$0.201 \times 3600 \times 240 \times 10^{-6} = 0.174$
этпеводороды (керосин)	0,201 × 0000 × 240 × 10 = 0,174
	T_
100 10	
	OP.2017-2010-02-OOC2.2.TЧ [
∕ізм. Кол.уч Лист №док. Подп Дата	

Взам. инв. №

Подп. и дата

Инв. № подл.

Приложение Ж (обязательное)

Расчет количества загрязняющих веществ, поступающих в атмосферу при работе водогрейных котлов установок подогрева газа 050-U-001, 050-U-002 ЭЦ №2 в период эксплуатации

В таблицах Ж.1 и Ж.2 приведен состав и свойства топливного газа, используемого в качестве топлива для водогрейных котлов установок подогрева газа 050-U-001, 050-U-002.

Таблица Ж.1 – Состав топливного газа Салмановского (Утреннго) НГКМ

Наименование показателя	Молеку- лярная	Плотность компонентов газа,		Газовая постоян-	Низшая теплота сгорания компо-	Содержание тов в	
	масса, г/моль	кг/м ³ , при стандартных условиях (Р=0,1013 МПа, T=293,15K),	адиаба- ты	ная	нентов газа ккал/м ³ , при стан- дартных условиях (Р=0,1013 МПа, T=293,15K)	% мол	% масс
Состав газа:				·			
- метан	16,043	0,6682	1,31	52,89	7980	97,510096	95,10309
- этан	30,07	1,2601	1,2	28,21	14300	1,366650	2,498339
- пропан	44,097	1,8641	1,14	19,24	20670	0,053349	0,14302
- изобутан	58,123	2,488	1,11	14,59	27180	0,053591	0,189371
- бутан	58,123	2,4956	1,1	14,59	27290	0,015851	0,056012
- изопентан	72,15	3,147	1,08	11,75	34400	0,028633	0,125594
- пентан	72,15	3,174	1,08	11,75	34400	0,005925	0,025989
- смесь углеводородов			'	'	<u> </u>	0,033392	0,182177
предельных С ₆ -С ₁₀ , в			'	'	<u> </u>	!	1
том числе:		_	'	'			1
– гексан	86,177	3,898	1,06	9,84	38540	0,014937	0,071528
- гептан	100,204	4,755	1,053	8,46	44630	0,011394	0,063797
- октан	114,231	5,812	1,046	7,42	50690	0,005302	0,033464
- нонан	128,258	7,254	1,04	6,61	57030	0,00136	0,010052
- декан	142,285	9,494	1,03	5,96	63005	0,000399	0,003336
- алканы С ₁₂ -С- ₁₉	170,338	11,366	1,03	4,98	63005	0,000087	0,000845
- бензол	78,114	3,546	1,13	10,86	31469	0,000009	0,000041
- метилбензол	92,141	4,389	1,09	9,2	37449	0,0000520	0,000041
- диметилбензол	106,167	5,495	1,13	7,99	43451	0,000183	0,001183
- этилбензол	106,167	5,39	1,13	7,99	43559	0,0000730	0,00047
- водород	2,0519	0,0838	1,41	420,6	2399	0,000060	0,000007
- гелий	4,0026	0,16631	1,67	211,86	- '	0,011807	0,002873
- азот	28,0135	1,1649	1,4	30,26	- '	0,809973	1,379407
- углерод диоксид	44,01	1,8393	1,3	19,27	- '	0,107681	0,288104
- вода	18,0153	0,787	1,33	47,06	- '	0,001933	0,002117
- метанол	32,042	1,587	1,25	26,47	7466	0,000718	0,001398
Всего	_	-	<u> </u>	<u> </u>		100,00	100,00

Таблица Ж.2 – Свойства топливного газа Салмановского (Утреннго) НГКМ

Свойства газа: Молекулярный вес, кг/кмоль (16,043 × 97,510096 + 30,07 × 1,366650 + 44,097 × + 0,015851) +72,15 × (0,028633 + 0,005925) + 86 × 0,011394 + 114,231 × 0,005302 + 128,258 × 0,0 + 170,338 × 0,000087 + 78,114 × 0,000009 + 92,141 × + 106,167 × 0,0000730 + 2,0159 × 0,000060 + 4,1 × 0,809973 + 44,01 × 0,107681 + 18,0153 × 0,0015	
+ 0,015851) +72,15 × (0,028633 + 0,005925) + 86 × 0,011394 + 114,231 × 0,005302 + 128,258 × 0,0 +170,338 × 0,000087 + 78,114 × 0,000009 + 92,141 × + 106,167 × 0,0000730 + 2,0159 × 0,000060 + 4,0	
=16,45178	177 × 0,014937 + 100,204 × 136 + 142,285 × 0,000399 + 0000520 +106,167 × 0,000183 + 026 × 0,011807 + 28,0135 ×

						120.ЮР.2017-2010-02-ООС2.2.Т
Изм.	Кол.уч	Лист	№док.	Подп	Дата	

Взам. инв.

Подп. и дата

подл.

	62
Плотность газа	
- при стандартных условиях	(0,6682 × 97,510096 + 1,2601× 1,366650 + 1,8641× 0,053349 + 2,488 × 0,053591 +
$(P=1,033 \text{ кг/см}^2, T=293,15 \text{ K}),$	+ 2,4956 × 0,015851 +3,147 × 0,028633 + 3,174 × 0,005925 + 3,898 × 0,014937 +
кг/м ³	+4,755 × 0,011394 + 5,812 × 0,005302 + 7,254 × 0,00136 +9,494 × 0,000399 +11,366 ×
	× 0,000087 + 3,546 × 0,000009 + 4,389 × 0,0000520 + 5,495 × 0,000183 + 5,39 ×
	×0,0000730 + 0,0838 × 0,000060 + 0,16631 × 0,011807 + 1,1649 × 0,809973 + 1,8393 ×
	× 0,107681 + 0,787 × 0,001933 + 1,587 × 0,000718)/100 = 0,686
- при нормальных условиях (Р=ू	
1,033 кг/см ² , T=273,15 К), кг/нм ³	
Коэффициент адиабаты	(1,31 × 97,510096 + 1,2 × 1,366650 + 1,14 × 0,053349 + 1,11 × 0,053591 + 1,1 ×
	× 0,015851) + 1,08 × (0,028633 + 0,005925) + 1,06 × 0,014937 + 1,053 × 0,011394 +
	+ 1,046 × 0,005302 + 1,04 × 0,00136 + 1,03 × 0,000399 +1,03 × 0,000087 + 1,13 ×
	× 0,000009 + 1,09 × 0,0000520 +1,13× 0,000183 + 1,13 × 0,0000730 + 1,41 ×
	× 0,000060 + 1,67 × 0,011807 +1,4 × 0,809973 + 1,3 × 0,107681 + 1,33 × 0,001933 +
	+ 1,25 ×0,000718)/100 = 1,309
Газовая постоянная,	(52,89 × 97,510096 + 28,21 × 1,36665 +19,24× 0,053349 + 14,59 × (0,053591 +
кГм/кг×град	+ 0,015851) +11,75 × (0,028633 + 0,005925) + 9,84 × 0,014937 +8,46 × 0,011394 +
	+ 7,42 × 0,005302 + 6,61 × 0,00136 + 5,96 × 0,000399 +4,98 × 0,000087 + 10,86×
	× 0,000009 + 9,2 × 0,0000520 +7,99 × 0,000183 +7,99 × 0,000073 + 420,6 × 0,00006 +
	+ 211,86 × 0,011807 + 30,26 × 0,809973 + 19,27 × 0,107681 + 47,06 × 0,001933 +
	+ 26,47 ×0,000718)/100 = 52,278
Низшая теплота сгорания, ккал/м ³ ,	
- при стандартных условиях	(7980 × 97,510096 + 14300 × 1,36665 + 20670× 0,053349 + 27180 × 0,053591 +
(P=0,1013 M∏a, T=293,15K)	+ 27290 × 0,015851 +34400 × (0,028633 + 0,005925) +38540 × 0,014937 +44630 ×
	× 0,011394 + 50690 × 0,005302 +57030 × 0,00136 + 63005 × 0,000399 +63005 ×
	× 0,000087 + 31469× 0,000009 + 37449× 0,0000520 +43451 × 0,000183 +43559 ×
	× 0,000073 + 2399 × 0,00006 + 0 × 0,011807 + 0 × 0,809973 + 0 × 0,107681 + 0 ×
	× 0,001933 + 7466×0,000718)/100= 8033
- при нормальных условиях (Р= 1,033 кг/см ² , Т=273,15 К)	8033 × 293,15 / 273,15 = 8621
<u> </u>	1

1 Расчет количества загрязняющих веществ, поступающих в атмосферу с дымовыми газами водогрейных котлов установки подогрева газа 050-U-001 БТПГ №1

В установке подогрева газа установлены 2 водогрейных котла (1 рабочий + 1 резервный)

Котлы установки имеют следующие характеристики:

- номинальная тепловая мощность 510 кВт;
- расход топливного газа, сжигаемого в котле, составит 45,0 м³/ч (при стандартных условиях P=0,1013 МПа, T=293,15K) или

 $45 \times 273,15$ / 293,15 = 41,93 (нм³/ч) или 41,93 / 3600 = 0,0117 (нм³/с) при нормальных условиях P=0,1013 МПа, T=273,15K);

- годовое время работы котла 5136 ч (в 2019 г.), 8760 ч/год (в 2020 г. ÷ 2027 г.).
- годовой расход топливного газа:
 - в 2019 г. 231120 м³/год (при стандартных условиях P=0,1013 МПа, T=293,15K);
 - в 2020 г. ÷ 2027 г. 394200 м³/год (при стандартных условиях P=0,1013 МПа, T=293,15 K) или
 - в 2019 г.: 231120 × 273,15 / 293,15 = 215351,96 (нм 3 /год при нормальных условиях P=0,1013 МПа, T=273,15K);

Изм.	Кол.уч	Лист	№док.	Подп	Дата

Взам.

Подп. и дата

ПОДЛ.

120.ЮP.2017-2010-02-OOC2.2.TY

- в 2020 г.: 394200 × 273,15 / 293,15 = 367305,919 (нм 3 /год при нормальных условиях P=0,1013 МПа, T=273,15K);
- температура дымовых газов на выходе из дымовой трубы 153°C;
- диаметр дымовой трубы 250 мм,
- высота дымовой трубы 6,0 м;
- объем топочной камеры котла равен 0,337 м³;
- годовое время работы котла составит 5136 ч (в 2019 г.), 8760 ч/год (в 2020 г. и в последующие годы).

Плотность топливного газа равна $0,686 \text{ кг/м}^3$ (при стандартных условиях (P= $1,033 \text{ кг/см}^2$, T=293,15 K) или $0,736 \text{ кг/нм}^3$ (при нормальных условиях P=0,1013 МПа, T=273,15K).

Низшая теплота сгорания топливного газа составляет:

- при нормальных условиях (P=0,1013 MПа, T=273,15K):

8621 ккал/ нм^3 или 8621 × 4,187 / 1000 = 36,0961 (МДж/ нм^3);

- при стандартных условиях (P= 1,033 кг/см², T=293,15 K):

8033 ккал/м 3 или 8033 × 4,187 / 1000 = 33,634 (МДж/м 3)

Удельный выброс оксидов азота, образующихся при сжигании топливного газа в котле, составит:

$$0.0113 \times \sqrt{0.51} + 0.03 = 0.0381$$
 (г/МДж).

Безразмерный коэффициент, учитывающий принципиальную конструкцию горелки, (β_{κ}) равен 1,6.

Безразмерный коэффициент, учитывающий температуру воздуха, подаваемого для горения, (β_t) равен 1.

Безразмерный коэффициент, учитывающий влияние рециркуляции дымовых газов через горелки на образование оксидов азота, равен 0, так как r = 0.

Так как нет ступенчатого ввода воздуха, то коэффициент, учитывающий ступенчатый ввод воздуха в топочную камеру, равен 0.

Безразмерный коэффициент, учитывающий влияние избытка воздуха на образование оксидов азота, принят равным 1,225.

Максимально разовый выброс оксидов азота, поступающих в атмосферу, составит:

$$0.0117 \times 36.0961 \times 0.0381 \times 1.6 \times 1 \times 1.225 \times (1-0) \times (1-0) = 0.0315$$
 (r/c),

в том числе:

Взам.

Подп. и дата

подл.

- азота диоксид 0.4 × 0.0315 = 0.0126 (г/с);
- азота (II) оксид $0.65 \times (1 0.4) \times 0.0315 = 0.0123$ (г/с).

Годовой валовый выброс оксидов азота, поступающих в атмосферу, составит:

- в 2019 г.:

 $(215351,96 / 1000) \times 36,0961 \times 0,0381 \times 1,6 \times 1 \times 1,225 \times (1 - 0) \times (1 - 0) \times 0,001 = 0,580$ (т/год),

Изм.	Кол.уч	Лист	№док.	Подп	Дата

120.ЮP.2017-2010-02-OOC2.2.TY

в том числе:

- азота диоксид 0,4 × 0,580 = 0,232 (т/год);
- азота (II) оксид $0.65 \times (1 0.4) \times 0.580 = 0.226$ (т/год).
- в 2020 г. 2027 г.

 $(367305,919 / 1000) \times 36,0961 \times 0,0381 \times 1,6 \times 1 \times 1,225 \times (1-0) \times (1-0) \times 0,001 = 0,990$ (т/год),

в том числе:

- азота диоксид $0.4 \times 0.990 = 0.396$ (т/год);
- азота (II) оксид $0.65 \times (1 0.4) \times 0.990 = 0.386$ (т/год).

Выход углерода оксида (Ссо) составит:

$$0.2 \times 0.5 \times 36,0961 = 3,610 \, (\text{кг/тыс. } \text{нм}^3, \, \text{г/нм}^3).$$

Максимально разовое количество углерода оксида, поступающего в атмосферу, составит:

$$0.0117 \times 3.610 \times (1 - 0 / 100) = 0.0422 (r/c).$$

Годовой валовый выброс углерода оксида, поступающего в атмосферу в атмосферу, составит:

- 2019 г.

Взам.

Подп.

№ подл.

$$0,001 \times (215351,96 / 1000) \times 3,610 \times (1 - 0/100) = 0,777 (т/год)$$

- в 2020 г. – 2027 г.:

$$0.001 \times (367305,919 / 1000) \times 3.610 \times (1 - 0/100) = 1.326$$
 (т/год)

Теплонапряжение топочного объема котла составит:

510 / 0,337 = 1513,35 (
$$\kappa BT/M^3$$
).

По данным приложений "Методики определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час" коэффициенты K_g , $K_{p,}$ $K_{c\tau}$ принимаются равными следующим значениям: $K_g = 1$; $K_{c\tau} = 1$.

Концентрация бенз(α)пирена в сухих продуктах сгорания топливного газа на выходе из топочной камеры при фактическом коэффициенте избытка воздуха α = 1,1 составит:

$$C_{\text{бп}} = 10^{\text{-}6} \times \frac{1 \times (0,11 \times 1513,35\text{-}7,0)}{2,7^{3,5(1,1\text{-}1)}} \times 1,0 \times 1,0 \times 1,0 = 0,000113 \text{ (MГ/HM}^3 \text{)}.$$

Концентрация бенз(α)пирена в сухих продуктах сгорания топливного газа на выходе из топочной камеры при α = 1,4 составит:

$$C_{6\pi} = 0.000113 \times 1.1 / 1.4 = 0.0000888 (MF/HM3).$$

Удельный объем воздуха при стехиометрическом сжигании 1 ${\rm M}^3$ топливного газа, составит:

$$0.0476 \times [0.5 \times 0 + 0.5 \times 0.00006 + 1.5 \times 0 + (1 + 4/4) \times 97.510096 + (2 + 6/4) \times 1.3666 + (3 + 8/4) \times 0.053349 + (4 + 10/4) \times (0.053591 + 0.015851) + (5 + 12/4) \times (0.028633 + 0.005925) + (6 + 14/4) \times 0.014937 + (7 + 16/4) \times 0.011394 + (8 + 18/4) \times 0.005302 + (9 + 14/4) \times 0.014937 + (1 + 16/4) \times 0.014937 + (1 + 16/$$

120.HOP.2017-2010-02-OOC2.2.TY

```
+20/4) × 0,00136 + (10 + 22/4) × 0,000399 + (12 + 26/4) × 0,000087 + (6 + 6/4) × × 0,000009 + (7 + 8/4) × 0,000052 + (8 + 10/4) × (0,000183 + 0,000073) + (1 + 4/4) × × 0,000718 - 0] = 9,575 (HM³/HM³).
```

Удельный объем водяных паров при стехиометрическом сжигании 1 м³ топливного газа, составит:

 $0.01 \times [0.00006 + 0 + 0.5 \times (4 \times 97.510096 + 6 \times 1.3666 + 8 \times 0.053349 + 10 \times (0.053591 + 0.015851) + 12 \times (0.028633 + 0.005925) + 14 \times 0.014937 + 16 \times 0.011394 + 18 \times 0.005302 + 20 \times 0.00136 + 22 \times 0.000399 + 26 \times 0.000087 + 6 \times 0.000009 + 8 \times 0.000052 + 10 \times (0.000183 + 0.000073) + 4 \times 0.000718 + 0.124 \times 0.001933/100 \times 1000000] + 0.016 \times 9.575 = 2.015 (HM³/HM³).$

Удельный объем дымовых газов при сжигании 1 м³ топливного газа, составит: $0.01 \times [0.107681 + 0 + 0 + (1 \times 97.510096 + 2 \times 1.3666 + 3 \times 0.053349 + 4 \times (0.053591 + 0.015851) + 5 \times (0.028633 + 0.005925) + 6 \times 0.014937 + 7 \times 0.011394 + 8 \times 0.005302 + 9 \times 0.00136 + 10 \times 0.000399 + 12 \times 0.000087 + 6 \times 0.000009 + 7 \times 0.000052 + 8 \times (0.000183 + 0.000073) + 1) \times 0.000718] + 0.79 \times 9.575 + 0.809973/100 + 2.015 = 9.589 (HM³/HM³).$

Удельный объем сухих дымовых газов при нормальных условиях равен:

$$9,589 + (1,1 - 1) \times 9,575 - 2,015 = 8,532 (HM3/HM3).$$

Объем дымовых газов на выходе из дымовой трубы водогрейных котлов составит:

$$V_{\text{дг}}^{\text{o}} = 0.0117 \times 8,532 = 0.0998 \text{ (нм}^3/\text{c)}$$
 при нормальных условиях.

Объем дымовых газов на выходе из дымовой трубы при рабочих условиях равен:

$$0.0998 \times (273.15 + 153) / 273.15 = 0.156 (m3/c).$$

Годовой объем дымовых газов, поступающих в атмосферу, составит:

- в 2019 г.:

$$215351,96 \times 8,532 = 1837382, 923 (м3/год);$$

- в 2020 г. – 2027 г.

$$367305,919 \times 8,532 = 3133854,101 (м3/год);$$

Количество бенз(α)пирена на выходе из топочной камеры составит:

$$0.0998 \times 0.0000888 / 1000 = 0.00000000886 (r/c);$$

- в 2019 г.

Взам.

Подп. и дата

подл.

읟

ный).

1837382, 923 \times 0,0000888 / 1000000000 = 0,000000163 (т/год)

- в 2020 г. – 2027 г.

$$3133854,101 \times 0,0000888 / 1000000000 = 0,000000278 (т/год).$$

2 Расчет количества загрязняющих веществ, поступающих в атмосферу с дымовыми газами водогрейных котлов установки подогрева газа 050-U-0012 БТПГ №2

В установке подогрева газа установлены 2 водогрейных котла (1 рабочий + 1 резерв-

Изм.	Кол.уч	Лист	№док.	Подп	Дата

120.HOP.2017-2010-02-OOC2.2.TY

Котлы установки имеют следующие характеристики:

- номинальная тепловая мощность 510 кВт;
- расход топливного газа, сжигаемого в котле, составит 45,0 м³/ч (при стандартных условиях P=0,1013 МПа, T=293,15К) или
 - $45 \times 273,15 / 293,15 = 41,93 (нм³/ч)$ или 41,93 / 3600 = 0,0117 (нм³/с) при нормальных условиях P=0,1013 МПа, T=273,15K);
- годовое время работы котла 5136 ч (в 2019 г.), 8760 ч/год (в 2020 г. ÷ 2027 г.).
- годовой расход топливного газа:
 - в 2019 г. 231120 м³/год (при стандартных условиях Р=0,1013 МПа, Т=293,15К);
- – в 2020 г. ÷ 2027 г. 394200 м³/год (при стандартных условиях P=0,1013 МПа, T=293,15К) или
 - в 2019 г.: 231120 × 273,15 / 293,15 = 215351,96 (нм 3 /год при нормальных условиях P=0,1013 МПа, T=273,15K);
 - в 2020 г.: 394200 × 273,15 / 293,15 = 367305,919 (нм 3 /год при нормальных условиях P=0,1013 МПа, T=273,15K);
- температура дымовых газов на выходе из дымовой трубы 153°C;
- диаметр дымовой трубы 250 мм,
- высота дымовой трубы 6,0 м;
- объем топочной камеры котла равен 0,337 м³;
- годовое время работы котла составит 5136 ч (в 2019 г.), 8760 ч/год (в 2020 г. и в последующие годы).

Плотность топливного газа равна $0,686 \text{ кг/м}^3$ (при стандартных условиях (P= $1,033 \text{ кг/см}^2$, T=293,15 K) или $0,736 \text{ кг/нм}^3$ (при нормальных условиях P=0,1013 МПа, T=273,15K).

Низшая теплота сгорания топливного газа составляет:

- при нормальных условиях (Р=0,1013 МПа, Т=273,15К):
 - 8621 ккал/нм³ или 8621 × 4,187 / 1000 = 36,0961 (МДж/нм³);
- при стандартных условиях (P= 1,033 кг/см², T=293,15 K):

8033 ккал/м³ или 8033 × 4,187 / 1000 = 33,634 (МДж/м³)

Удельный выброс оксидов азота, образующихся при сжигании топливного газа в котле, составит:

$$0.0113 \times \sqrt{0.51} + 0.03 = 0.0381$$
 (г/МДж).

Безразмерный коэффициент, учитывающий принципиальную конструкцию горелки, (β_{κ}) равен 1,6.

Безразмерный коэффициент, учитывающий температуру воздуха, подаваемого для горения, (β_t) равен 1.

Безразмерный коэффициент, учитывающий влияние рециркуляции дымовых газов через горелки на образование оксидов азота, равен 0, так как r = 0.

Изм.	Кол.уч	Лист	№док.	Подп	Дата

NHB.

Взам.

Подп. и дата

№ подл.

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Так как нет ступенчатого ввода воздуха, то коэффициент, учитывающий ступенчатый ввод воздуха в топочную камеру, равен 0.

Безразмерный коэффициент, учитывающий влияние избытка воздуха на образование оксидов азота, принят равным 1,225.

Максимально разовый выброс оксидов азота, поступающих в атмосферу, составит:

$$0.0117 \times 36.0961 \times 0.0381 \times 1.6 \times 1 \times 1.225 \times (1-0) \times (1-0) = 0.0315$$
 (r/c),

в том числе:

- азота диоксид $0.4 \times 0.0315 = 0.0126$ (г/с);
- азота (II) оксид $0.65 \times (1 0.4) \times 0.0315 = 0.0123$ (г/с).

Годовой валовый выброс оксидов азота, поступающих в атмосферу, составит:

- в 2019 г.:

$$(215351,96 / 1000) \times 36,0961 \times 0,0381 \times 1,6 \times 1 \times 1,225 \times (1 - 0) \times (1 - 0) \times 0,001 = 0,580$$
 (т/год),

в том числе:

- азота диоксид $0.4 \times 0.580 = 0.232$ (т/год);
- азота (II) оксид $0.65 \times (1 0.4) \times 0.580 = 0.226$ (т/год).
- в 2020 г. 2027 г.

$$(367305,919 / 1000) \times 36,0961 \times 0,0381 \times 1,6 \times 1 \times 1,225 \times (1-0) \times (1-0) \times 0,001 = 0,990$$
 (т/год),

в том числе:

- азота диоксид $0.4 \times 0.990 = 0.396$ (т/год);
- азота (II) оксид $0.65 \times (1 0.4) \times 0.990 = 0.386$ (т/год).

Выход углерода оксида (ССО) составит:

$$0.2 \times 0.5 \times 36,0961 = 3,610 (\kappa \Gamma/\text{Tыс. HM}^3, \Gamma/\text{HM}^3).$$

Максимально разовое количество углерода оксида, поступающего в атмосферу, составит:

$$0.0117 \times 3.610 \times (1 - 0 / 100) = 0.0422 (r/c)$$
.

Годовой валовый выброс углерода оксида, поступающего в атмосферу в атмосферу, составит:

- 2019 г.

$$0,001 \times (215351,96 / 1000) \times 3,610 \times (1 - 0/100) = 0,777 (т/год)$$

- в 2020 г. – 2027 г.:

$$0.001 \times (367305.919 / 1000) \times 3.610 \times (1 - 0/100) = 1.326 (т/год)$$

Теплонапряжение топочного объема котла составит:

$$510 / 0.337 = 1513.35 (\kappa BT/m^3).$$

По данным приложений "Методики определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час

Взам. инв. №	
Подп. и дата	
нв. № подл.	

Изм.	Кол.уч	Лист	№док.	Подп	Дата

120.ЮP.2017-2010-02-OOC2.2.TY

или менее 20 Гкал в час" коэффициенты K_g , $K_{p,}$ $K_{c\tau}$ принимаются равными следующим значениям: $K_g=1$; $K_p=1$; $K_{c\tau}=1$.

Концентрация бенз(α)пирена в сухих продуктах сгорания топливного газа на выходе из топочной камеры при фактическом коэффициенте избытка воздуха α = 1,1 составит:

$$C_{\text{бп}} = 10^{-6} \times \frac{1 \times (0.11 \times 1513, 35 - 7.0)}{2.7^{3.5(1.1 - 1)}} \times 1.0 \times 1.0 \times 1.0 = 0.000113 \text{ (MG/HM}^3\text{)}.$$

Концентрация бенз(α)пирена в сухих продуктах сгорания топливного газа на выходе из топочной камеры при α = 1,4 составит:

$$C_{6n} = 0.000113 \times 1.1 / 1.4 = 0.0000888 (Mr/Hm3).$$

Удельный объем воздуха при стехиометрическом сжигании 1 ${\rm M}^3$ топливного газа, составит:

$$0.0476 \times [0.5 \times 0 + 0.5 \times 0.00006 + 1.5 \times 0 + (1 + 4/4) \times 97.510096 + (2 + 6/4) \times 1.3666 + (3 + 8/4) \times 0.053349 + (4 + 10/4) \times (0.053591 + 0.015851) + (5 + 12/4) \times (0.028633 + 0.005925) + (6 + 14/4) \times 0.014937 + (7 + 16/4) \times 0.011394 + (8 + 18/4) \times 0.005302 + (9 + 20/4) \times 0.00136 + (10 + 22/4) \times 0.000399 + (12 + 26/4) \times 0.000087 + (6 + 6/4) \times 0.000099 + (7 + 8/4) \times 0.000052 + (8 + 10/4) \times (0.000183 + 0.000073) + (1 + 4/4) \times 0.000718 - 0] = 9.575 \text{ (HM}^3/HM}^3).$$

Удельный объем водяных паров при стехиометрическом сжигании 1 м³ топливного газа, составит:

```
0.01 \times [0.00006 + 0 + 0.5 \times (4 \times 97.510096 + 6 \times 1.3666 + 8 \times 0.053349 + 10 \times (0.053591 + 0.015851) + 12 \times (0.028633 + 0.005925) + 14 \times 0.014937 + 16 \times 0.011394 + 18 \times 0.005302 + 20 \times 0.00136 + 22 \times 0.000399 + 26 \times 0.000087 + 6 \times 0.000009 + 8 \times 0.000052 + 10 \times (0.000183 + 0.000073) + 4 \times 0.000718 + 0.124 \times 0.001933/100 \times 1000000] + 0.016 \times 9.575 = 2.015 (Hm<sup>3</sup>/Hm<sup>3</sup>).
```

Удельный объем дымовых газов при сжигании 1 м³ топливного газа, составит: $0.01 \times [0.107681 + 0 + 0 + (1 \times 97.510096 + 2 \times 1.3666 + 3 \times 0.053349 + 4 \times (0.053591 + 0.015851) + 5 \times (0.028633 + 0.005925) + 6 \times 0.014937 + 7 \times 0.011394 + 8 \times 0.005302 + 9 \times 0.00136 + 10 \times 0.000399 + 12 \times 0.000087 + 6 \times 0.000009 + 7 \times 0.000052 + 8 \times (0.000183 + 0.000073) + 1) \times 0.000718] + 0.79 \times 9.575 + 0.809973/100 + 2.015 = 9.589 (HM³/HM³).$

Удельный объем сухих дымовых газов при нормальных условиях равен:

$$9,589 + (1,1-1) \times 9,575 - 2,015 = 8,532 (Hm3/Hm3).$$

Объем дымовых газов на выходе из дымовой трубы водогрейных котлов составит:

$$V_{\text{дг}}^{\text{o}}$$
 = 0,0117 × 8,532 = 0,0998 (нм³/с) при нормальных условиях.

Объем дымовых газов на выходе из дымовой трубы при рабочих условиях равен:

$$0,0998 \times (273,15 + 153) / 273,15 = 0,156 (m3/c).$$

Годовой объем дымовых газов, поступающих в атмосферу, составит:

- в 2019 г.:

Взам.

подл.						
읟						
Инв. №						
Z	Изм.	Кол.уч	Лист	№док.	Подп	Дата

120.ЮР.2017-2010-02-OOC2.2.ТЧ

 $215351,96 \times 8,532 = 1837382, 923 (м³/год);$

- в 2020 г. – 2027 г.

 $367305,919 \times 8,532 = 3133854,101 (м³/год);$

Количество бенз(α)пирена на выходе из топочной камеры составит:

 $0.0998 \times 0.0000888 / 1000 = 0.00000000886 (r/c);$

- в 2019 г.

1837382, 923 \times 0,0000888 / 1000000000 = 0,000000163 (т/год)

- в 2020г. – 2027 г.

 $3133854,101 \times 0,0000888 / 1000000000 = 0,000000278 (т/год).$

Инв. № подл. п Дата Взам. инв. №

Изм. Кол.уч Лист №док. Подп Дата

120.ЮР.2017-2010-02-OOC2.2.ТЧ

Инв. № подл.	Подп. и дата	Взам.инв.№

70

Приложение И (обязательное)

Расчет количества загрязняющих веществ, поступающих в атмосферу при плановом опорожнении технологического оборудования и трубопроводов ЭЦ №2 перед ППР со стравливанием газа через свечи рассеивания в период эксплуатации

В таблице И.1 приведены составы пластового и топливного газов обращаемые в технологическом оборудовании и трубопроводах.

Таблица И.1 – Составы пластового и топливного газа

Наименование	Молекуляр-	Плотность компонентов	Коэффи-	Газовая	Низшая теплота сгора-	Co,	держание ком	ипонентов в га	азе
показателя	ная масса,	газа, кг/м ³ , при стан-	циент	постоян-	ния компонентов газа	Пласто	вый газ	Топлив	ный газ
	г/моль	дартных условиях	адиабаты	ная	ккал/м ³ , при стандарт-	% мол	% мол	% масс	% масс
		(P=0,1013 MΠa,			ных условиях (Р=0,1013				
		T=293,15K),			MΠa, T=293,15K)				
Состав газа:									
- метан	16,043	0,6682	1,31	52,89	7980	95,90144	93,099041	97,510096	95,10309
- этан	30,07	1,2601	1,2	28,21	14300	1,345318	2,447903	1,366650	2,498339
- пропан	44,097	1,8641	1,14	19,24	20670	0,052664	0,140526	0,053349	0,14302
- изобутан	58,123	2,488	1,11	14,59	27180	0,053197	0,187104	0,053591	0,189371
- бутан	58,123	2,4956	1,1	14,59	27290	0,015804	0,055585	0,015851	0,056012
- изопентан	72,15	3,147	1,08	11,75	34400	0,029085	0,126983	0,028633	0,125594
- пентан	72,15	3,174	1,08	11,75	34400	0,006097	0,026621	0,005925	0,025989
- смесь углеводородов предельных С ₆ -С ₁₀ ,						0,055446	0,333592	0,033331	0,181844
в том числе:									
– гексан	86,177	3,898	1,06	9,84	38540	0,016463	0,078538	0,014937	0,071528
- гептан	100,204	4,755	1,053	8,46	44630	0,015646	0,087485	0,011385	0,063756
- октан	114,231	5,812	1,046	7,42	50690	0,010641	0,067418	0,00525	0,033172
- нонан	128,258	7,254	1,04	6,61	57030	0,006878	0,051078	0,00136	0,010052
- декан	142,285	9,494	1,03	5,96	63005	0,005818	0,049073	0,000399	0,003336
- алканы C ₁₂ -C ₁₉	170,338	11,366	1,03	4,98	63005	0,008576	0,091103	0,000087	0,000845
- бензол	78,114	3,546	1,13	10,86	31469	0,00001	0,000048	0,000009	0,000041
- метилбензол	92,141	4,389	1,09	9,2	37449	0,000087	0,000486	0,0000520	0,000292
- диметилбензол	106,167	5,495	1,13	7,99	43451	0,00063	0,004051	0,000183	0,001183
- этилбензол	106,167	5,39	1,13	7,99	43559	0,000207	0,00133	0,0000730	0,00047

Изм.	Кол.уч	Лист	№док.	Подп.	Дата

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Инв. № подл.	Подп. и дата	Взам.инв.№

7	1	

Наименование	Молекуляр-	Плотность компонентов	Коэффи-	Газовая	Низшая теплота сгора-	Co	держание ком	понентов в г	азе
показателя	ная масса,	газа, кг/м ³ , при стан-	циент	постоян-	ния компонентов газа	Пласто	вый газ	Топлив	ный газ
	г/моль	дартных условиях	адиабаты	ная	ккал/м³, при стандарт-	% мол	% мол	% масс	% масс
		(P=0,1013 MΠa,			ных условиях (Р=0,1013				
		T=293,15K),			MΠa, T=293,15K)				
- водород	2,0519	0,0838	1,41	420,6	2399	0,000059	0,000007	0,000060	0,000007
- гелий	4,0026	0,16631	1,67	211,86	-	0,011611	0,00285	0,011807	0,002873
- азот	28,0135	1,1649	1,4	30,26	-	0,796549	1,350235	0,809973	1,379407
- углерод диоксид	44,01	1,8393	1,3	19,27	-	0,106129	0,282631	0,107681	0,288104
- вода	18,0153	0,787	1,33	47,06	-	1,514448	1,650929	0,001933	0,002117
- метанол	32,042	1,587	1,25	26,47	7466	0,102645	0,199018	0,000718	0,001398
Всего	-	-	-	-		100,00	100,00	100,00	100,00

В таблице И.2 приведены свойства пластового и топливного газов Салмановского (Утреннего) НГКМ.

Таблица И.2 – Свойства пластового и топливного газов Салмановского (Утреннго) НГКМ

Наименование показателя	Вели	ичина
	Пластовый газ	Топливный газ
Свойства газа:		
Молекулярный вес, кг/кмоль	(16,043×95,90144+30,07×1,345318+44,097×0,052664+58,123×(0,053192+0,015804)+72,15×(0,029085+0,006097)+86,177×0,016463+100,204×0,015646+114,231×0,010641++128,258×0,006878+142,285×0,005818+170,338×0,008576+78,114×0,00001+92,141××0,000087+106,167×0,00063+106,167×0,000207+2,0159×0,000059+4,0026×0,011611++28,0135×0,796549+44,01×0,106129+18,0153×1,514448+32,042×0,102645)/100) = 16,529	(16,043×97,510096+30,07×1,366650+44,097×0,053349+58,123×(0,053591+0,015851) +72,15×(0,028633+0,005925)+86,177×0,014937+100,204×0,011394+114,231×0,005302 + 128,258 ×0,00136 + 142,285×0,000399 + 170,338×0,000087 + 78,114×0,000009+92,141 × 0,0000520+106,167×0,000183 +106,167×0,0000730 + 2,0159×0,000060+4,0026×0,011807 +28,0135×0,809973+44,01×0,107681+18,0153×0,001933+32,042×0,000718)/100=16,452
Плотность газа - при стандартных условиях (P= 1,033 кг/см², T=293,15 К), кг/м³	(0,6682×95,90144+1,2601×1,345318+1,8641×0,052664+2,488×0,053197+2,4956×0,015804 +3,147×0,029085+3,174×0,006097+3,898×0,016463+4,755×0,015646+5,812×0,010641+ +7,254×0,006878+9,494×0,005818+11,366×0,008576+3,546×0,00001+4,389×0,000087+ +5,495×0,00063++5,39×0,000207+0,0838×0,000059+0,16631×0,011611+1,1649×0,796549 +1,8393×0,106129++0,787×1,514448+1,587×0,102645)/100) = 0,69	(0,6682×97,510096+1,2601×1,366650+1,8641×0,053349+2,488×0,053591+2,4956×0,015851 +3,147×0,028633+3,174×0,005925+3,898×0,014937+4,755×0,011394+5,812×0,005302+ +7,254×0,00136+9,494×0,000399+11,366×0,000087+3,546×0,000009+4,389×0,0000520 +5,495×0,000183+5,39×0,0000730+0,0838×0,000060+0,16631×0,011807+1,1649 × 0,809973+1,8393×0,107681+0,787×0,001933+1,587×0,000718)/100 = 0,686
- при нормальных условиях (P= 1,033 кг/см ² , T=273,15 K), кг/нм ³	0,69 × 293,15 / 273,15 = 0,741	0,686 × 293,15 / 273,15 = 0,736
Коэффициент адиабаты	$(1,31\times95,90144+1,2\times1,345318+1,14\times0,052664+1,1\times(0,053197+0,015804)+1,08\times(0,029085+0,006097)+1,06\times0,016463+1,053\times0,015646+1,046\times0,0010641+1,04\times0,006878+1,03\times0,005818+1,03\times0,008576+1,13\times0,00001+1,09\times0,000087+1,13\times0,00063+1,13\times0,000207+1,41\times0,000059+1,67\times0,011611+1,4\times0,796549+1,3\times0,106129+1,33\times1,514448+1,25\times0,102645)/100) = 1,309$	(1,31×97,510096+1,2×1,366650+1,14×0,053349+1,11×0,053591+1,1×(0,028633+0,015851) +1,08× (0,028633+0,005925)+1,06× 0,014937 + 1,053 × 0,011394+1,046×0,005302+1,04 × 0,00136 + 1,03 × 0,000399 +1,03 × 0,000087 +1,13×0,000009+1,09 × 0,0000520 +1,13× 0,000183 + 1,13 × 0,0000730 + 1,41 × 0,000060+1,67× 0,011807 +1,4 × 0,809973 + 1,3 ×0,107681 + 1,33 × 0,001933 + 1,25 ×0,000718)/100 = 1,309

						120.Ю
Изм.	Кол.уч	Лист	№док.	Подп.	Дата	

120.ЮР.2017-2010-02-OOC2.2.TY

Лист

Инв. № подл.	Подп. и дата	Взам.инв.№

Наименование по	оказателя	Величина					
		Пластовый газ	Топливный газ				
Газовая постоянна	я,	(52,89×95,90144+28,21×1,345318+19,24×0,052664+14,59×(0,053197+0,015804)+11,75×	(52,89×97,510096+28,21×1,36665 +19,24× 0,053349 + 14,59 × (0,053591 + 0,015851)				
кГм/кг×град		×(0,029085+0,006097)+9,84×0,016463+8,46×0,015646+7,42×0,010641+6,61×0,006878+	+11,75 × (0,028633 + 0,005925) + 9,84 × 0,014937 +8,46 × 0,011394 + 7,42 × 0,005302 +				
		$5,96 \times 0,005818 + 4,98 \times 0,008576 + 10,86 \times 0,00001 + 9,2 \times 0,000087 + 7,99 \times 0,00063 + 7,99 \times 0,00064 + 7,99 \times 0,00006 + 7$					
		×0,000207+420,6×0,000059+211,86×0,011611+30,26×0,796549+19,27×0,106129+47,06×	+7,99 × 0,000183 +7,99 × 0,000073 + 420,6 × 0,00006 +211,86 × 0,011807 + 30,26 ×				
		×1,514448+26,47 × 0,102645) /100 = 52,157	$\times 0.809973 + 19.27 \times 0.107681 + 47.06 \times 0.001933 + 26.47 \times 0.000718)/100 = 52.278$				

В таблице И.3 приведены расчеты количества загрязняющих веществ, поступающих в атмосферу при опорожнении трубопроводов БПТГ №1 перед ППР со стравливанием газа через свечу рассеивания в период эксплуатации.

Таблица И.3 – Расчет количества загрязняющих веществ, поступающих в атмосферу при опорожнении трубопроводов БПТГ №1 со стравливанием на свечу рассеивания в период эксплуатации

Наименование показателя		Вели	ıчина		
	Трубопровод (Ду – 50 мм, длина –	Трубопровод (Ду – 80 мм, длина –	Трубопровод (Ду – 100 мм, длина –	Трубопровод (Ду – 150 мм, длина –	
	20,3 м)	50,7 м)	9,1 м)	4,4 м)	
Наименование источника выброса		Выброс осуществляет	ся на свечу БПТПГ №1		
Высота свечи, м		(6		
Диаметр свечи, м		0,	05		
Периодичность проведения операции, раз/год	1	1	1	1	
Геометрический объем газа, м ³	0,04	0,255	0,071	0,078	
Давление газа перед началом опорожнения, МПа	1,2	0,6	0,6	5,7	
KT/CM ²	1,2 × 10,197 = 12,2	0,6 × 10,197 = 6,1	0,6 × 10,197 = 6,1	5,7 × 10,197 = 58,1	
Температура газа, °С	30	30	30	-5	
К	30 + 273,15 = 303,15	30 + 273,15 = 303,15	30 + 273,15 = 303,15	-5 + 273,15 = 268,15	
Коэффициент сжимаемости Z _H при P _H , T _H	1-0,0907 × 1,2×(303,15/200) ^{-3,668} =0,976 1-0,0907 × 0,6×(303,15/200) ^{-3,668} =0,988 1-0,0907 × 0,6×(303,15/200) ^{-3,668} =0,988 1-0,0907 × 5,7×(268,15/200) ^{-3,668} =0,988 1-0,0907 × 0,6×(303,15/200) ^{-3,668} =0,988 1-0,0907 × 0,988 1-0,0907 × 0,988 1-0,0907 × 0,988 1-0,0907 × 0,988 1-0,0907 × 0,988 1-0,0907 × 0,988 1-0,0907 × 0,988 1-0,0907 × 0,988 1-				
Давление газа в конце стравливания, МПа			013		
KLC/CW ₂		1,0	332		
Температура газа при опорожнении (при снижении давления от Р _{раб} до Р = 0,1013 МПа), °С	22	27	27	-43	
K	273,15 + 22 = 295,15	273,15 + 27 = 300,15	273,15 + 27 = 300,15	273,15 + (-43) = 230,15	
Коэффициент сжимаемости Z _H при P _H , T _H	$1 - 0,0907 \times 0,1013 \times (295,15/200)^{-3,668} =$	$1 - 0.0907 \times 0.1013 \times (300.15/200)^{-3.668} =$	$1 - 0.0907 \times 0.1013 \times (300.15/200)^{-3.668} =$	1 - 0,0907 × 0,1013 × (230,15/200) ^{-3,668} =	
	=0,998	=0,998	=0,998	=0,995	
Объем газа, поступающего в атмосферу при опорожнении, м ³ при стандартных условиях (Р=0,1013 МПа и Т=293,15 К)	$0,995 \times 0,04 \times \left(\frac{12,2}{0,976} - \frac{1,0332}{0,998}\right) = 0,456$	$0,995 \times 0,255 \times \left(\frac{6,1}{0,988} - \frac{1,0332}{0,998}\right) = 1,304$	$0.995 \times 0.071 \times \left(\frac{6.1}{0.988} - \frac{1,0332}{0.998}\right) = 0.363$	$0,995 \times 0,078 \times \left(\frac{58,1}{0,824} - \frac{1,0332}{0,998}\right) = 5,392$	
Плотность газа: - при нормальных условиях (P=0,1013 МПа и T=273,15 K), кг/нм ³ - при стандартных условиях (P=0,1013 МПа и T=293,15 K), кг/м ³	0,736 0.686				
Коэффициент адиабаты			809		

						120.ЮР.20
Изм.	Кол.уч	ол.уч Лист	№док.	Подп.	Дата	

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Инв. № подл.	Подп. и дата	Взам.инв.№

				73
Наименование показателя			ичина	
	Трубопровод (Ду – 50 мм, длина – 20,3 м)	Трубопровод (Ду – 80 мм, длина – 50,7 м)	Трубопровод (Ду – 100 мм, длина – 9,1 м)	Трубопровод (Ду – 150 мм, длина – 4,4 м)
Коэффициент истечения газа		$\sqrt{1,309+\left(\frac{2}{1,309}\right)}$		
Площадь проходного сечения, м ²	$0.785 \times 0.05^2 = 0.00196$	$0.785 \times 0.05^2 = 0.00196$		
Молекулярная масса газа, кг/моль				
Расчетное время стравливания, с	$3.9 \times 10^{-2} \times \frac{0.04}{0.669 \times 0.00196} \times \sqrt{\frac{16.452}{295.15}} \times$	$3.9 \times 10^{-2} \times \frac{1,482}{0,669 \times 0,00196} \times \sqrt{\frac{16,452}{300,15}} \times$	$3.9 \times 10^{-2} \times \frac{0.071}{0.669 \times 0.00196} \times \sqrt{\frac{16.452}{300.15}} \times$	$3.9 \times 10^{-2} \times \frac{0.078}{0.669 \times 0.00196} \times \sqrt{\frac{16,452}{230.15}} \times$
мин	$\times \log \frac{12,2}{1,0332} = 1$ 1 / 60 \approx 1	$ \times \log \frac{6,1}{1,0332} = 2 $ $ 2 / 60 \approx 1 $	$\times \log \frac{6,1}{1,0332} = 1$ 1 / 60 ≈ 1	$\times \log \frac{58,1}{1,0332} = 2$ $2 / 60 \approx 1$
Время стравливания, принятое для расчетов, мин.	20	20	20	27 60 ~ 1
Объем газа, поступающего в атмосферу, в еди-	1 20	20		20
ницу времени	'		'	
- при стандартных условиях, м ³ /с	$0,456 / (20 \times 60) = 0,000380$	1,304 / (20 × 60) = 0,00109	$0,363 / (20 \times 60) = 0,000303$	5,392 / (20 × 60) = 0,00449
- при рабочих условиях, м ³ /с	0,000380 × 295,15 / 293,15 = 0,000383	, , , ,	$0,000303 \times 300,15 / 293,15 = 0,000310$	0,00449 × 230,15 / 293,15 = 0,00353
Проверка скорости истечения, м/с	$4 \times 0.000383 / 3.14 \times 0.05^2 = 0.195$	$4 \times 0.00112 / 3.14 \times 0.05^2 = 0.571$	$4 \times 0.000310 / 3.14 \times 0.05^2 = 0.158$	$4 \times 0.00353 / 3.14 \times 0.05^2 = 1.799$
Скорость истечения, принятая для расчета, м/с	0,195	0,571	0,158	1,799
Количество газа, поступающего в атмосферу при	0,000380 × 0,686× 1000 = 0,261	0,00109 × 0,686 × 1000 = 0,748	0,000303 × 0,686 × 1000 = 0,208	0,00449 × 0,686 × 1000 = 3,080
опорожнении перед ППР, г/с	<u>'</u>		'	
в том числе:				
- углерода диоксид	0,261 × 0,288104 / 100 = 0,000752	0,748 × 0,288104 / 100 = 0,00216	0,208 × 0,288104 / 100 = 0,000599	3,080 × 0,288104 / 100 = 0,00887
- бутан	0,261 × 0,056012 / 100 = 0,000146	0,748 × 0,056012 / 100 = 0,000419	0,208 × 0,056012 / 100 = 0,000117	3,080× 0,056012 / 100 = 0,00173
- пентан	0,261 × (0,025989 + 0,125594)/ 100 = =0,000396	0,748 × (0,025989 + 0,125594)/ 100 = =0,00113	0,208 × (0,025989 + 0,125594)/ 100 = 0,000315	3,080× (0,025989 + 0,125594)/ 100 = 0,00467
- метан	0,261 × 95,10309 / 100 = 0,248	0,748 × 95,10309 / 100 = 0,711	0,208 × 95,10309 / 100 = 0,198	3,080 × 95,10309 / 100 = 2,929
- изобутан	0,261 × 0,189371 / 100 = 0,000494	0,748 × 0,189371 / 100 = 0,00142	0,208 × 0,189371 / 100 = 0,000394	3,080 × 0,189371 / 100 = 0,00583
- смесь углеводородов предельных C ₆ -C ₁₀	0,261 × 0,181844 / 100 = 0,000475	0,748 × 0,181844 / 100 = 0,00136	0,208 × 0,181844 / 100 = 0,0000379	3,080 × 0,181844 / 100 = 0,00561
- этан	0,261 × 2,498339 / 100 = 0,00652	0,748 × 2,498339 / 100 = 0,0187	0,208 × 2,498339 / 100 = 0,00520	3,080× 2,498339 / 100 = 0,0769
- пропан	0,261 × 0,14302 / 100 = 0,000373	0,748 × 0,14302 / 100 = 0,00107	0,208 × 0,14302 / 100 = 0,000297	3,080× 0,14302 / 100 = 0,00441
- бензол	0,261 × 0,000041 / 100 = 0,000000107	0,748 × 0,000041 / 100 = 0,000000307	$0,208 \times 0,000041 / 100 = 0,0000000853$	3,080× 0,000041 / 100 = 0,00000126
- диметилбензол	0,261 × 0,001183 / 100 = 0,00000309	0,748 × 0,001183 / 100 = 0,00000885	0,208 × 0,001183 / 100 = 0,00000246	3,080× 0,001183 / 100 = 0,0000364
- метилбензол	0,261 × 0,000292 / 100 = 0,000000762	$0.748 \times 0.000292 / 100 = 0.00000218$	0,208 × 0,000292 / 100 = 0,000000607	3,080× 0,000292 / 100 = 0,00000899
- этилбензол	0,261 × 0,00047 / 100 = 0,00000123	0,748 × 0,00047 / 100 = 0,00000352	0,208 × 0,00047 / 100 = 0,000000978	3,080× 0,00047 / 100 = 0,0000145
- метанол	0,261 × 0,001398 / 100 = 0,00000365	0,748 × 0,001398 / 100 = 0,0000105	0,208 × 0,001398 / 100 = 0,00000291	3,080× 0,001398 / 100 = 0,0000431
- алканы C ₁₂ -C ₁₉	0,261 × 0,000845 / 100 = 0,00000221	0,748 × 0,000845 / 100 = 0,00000632	0,208 × 0,000845 / 100 = 0,00000176	3,080× 0,000845 / 100 = 0,0000260
Годовое количество газа, поступающего в атмо- сферу при опорожнении на свечу, т/год в том числе:	0,456 × 0,686 × 1 / 1000 = 0,000313	1,304 × 0,686 × 1 / 1000 = 0,000895	0,363 × 0,686 × 1 / 1000 = 0,000249	5,392 × 0,686 × 1 / 1000 = 0,00384
- углерода диоксид	0,000313×0,288104/100=0,000000900	0,000895× 0,288104/ 100 = 0,00000258	0,000249×0,288104/100 = 0,000000717	0,00370×0,288104/100=0,0000107
- бутан				

Изм. Кол.уч Лист №док. Подп. Дата

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Лист

Инв. № подл.	Подп. и дата	Взам.инв.№

				/4		
Наименование показателя	Величина					
	Трубопровод (Ду – 50 мм, длина –	Трубопровод (Ду – 80 мм, длина –	Трубопровод (Ду – 100 мм, длина –	Трубопровод (Ду – 150 мм, длина –		
	20,3 м)	50,7 м)	9,1 м)	4,4 м)		
- пентан		0,000895× (0,025989+ 0,125594)/ 100 =		0,00370× (0,025989 + 0,125594)/ 100 =		
- IICHIAH	= 0,00000474	=0,00000136	= 0,00000377	=0,00000561		
- метан	$0,000313 \times 95,10309 / 100 = 0,000298$		0,000249 × 95,10309 / 100 = 0,000237	0,00370 × 95,10309 / 100 =0,00352		
- изобутан		$0,000895 \times 0,189371/100 = 0,00000169$		0,00370 × 0,189371 / 100 = 0,00000701		
- смесь углеводородов предельных C ₆ -C ₁₀		$0,000895 \times 0,181844/100 = 0,00000163$		0,00370 × 0,181844 / 100 = 0,00000674		
- этан	0,000313×2,498339 / 100 = 0,00000782		0,000249×2,498339/100 = 0,00000622	0,00370× 2,498339 / 100 = 0,0000924		
- пропан	0,000313×0,14302/100=0,000000448	0,000895× 0,14302 / 100 = 0,00000128	0,000249×0,14302/100= 0,000000356	0,00370× 0,14302 / 100 = 0,00000529		
- бензол	0,000313×0,000041/100=1,28× 10 ⁻¹⁰	$0,000895 \times 0,000041/100 = 3,67 \times 10^{-10}$	$0,000249 \times 0,000041/100 = 1,02 \times 10^{-10}$	0,00370×0,000041/100=0,00000000152		
- диметилбензол	$0,000313 \times 0,001183 / 100 = 2,39 \times 10^{-12}$	$0,000895 \times 0,001183 / 100 = 1,95 \times 10^{-11}$	$0,000249 \times 0,001183 / 100 = 1,51 \times 10^{-12}$	$0,00370 \times 0,001183 / 100 = 3,33 \times 10^{-10}$		
- метилбензол	$0,000313 \times 0,000292 / 100 = 9,14 \times 10^{-10}$	$0,000895 \times 0,000292 / 100 = 2,61 \times 10^{-9}$	+ i	0,00370× 0,000292/100= 0,0000000108		
- этилбензол	0,000313×0,00047/100=0,00000000147	0,000895×0,00047/100=0,00000000421				
- метанол	0,000313×0,001398/100=4,38× 10 ⁻⁹	0,000895×0,001398/100=0,0000000125		0,00370×0,001398/100 = 0,0000000520		
- алканы C ₁₂ -C ₁₉	0,000313×0,000845/100=2,64× 10 ⁻⁹	0,000895×0,000845/100=7,56× 10 ⁻⁹	0,000249×0,000845/100=2,10 × 10 ⁻⁹	0,00370×0,000845/100= 0,0000000313		
Суммарное количество загрязняющих веществ, поступающих в атмосферу при опорожнении трубопроводов БПТПГ №1 на свечу:						
		зовый выброс, г/с	•	ыброс, т/год		
Углерода диоксид	0,00887		-,	00149		
Бутан	-,	0173	-,	00289		
Пентан	-,-	0467	-,	00782		
Метан	,-	292	-,	0491		
Изобутан	-,	0583	0,0000977			
Смесь углеводородов предельных С ₆ -С ₁₀	-,-	0561	0,0000939			
Этан	0,0769		0,000129			
Пропан	0,00441		0,0000737			
Бензол	0,00000126		0,0000000212			
Диметилбензол	0,000364		0,0000000356			
Метилбензол	0,0000899		0,000000151			
Этилбензол	0,0000145		0,000000242			
Метанол	0,000		-,	000724		
Алканы C ₁₂ -C ₁₉	0,000	00260	0,0000	000436		

В таблице И.4 приведены расчеты количества загрязняющих веществ, поступающих в атмосферу при опорожнении трубопроводов БПТГ №2 перед ППР со стравливанием газа через свечу рассеивания в период эксплуатации.

Изм.	Кол.уч	Лист	№док.	Подп.	Дата

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Лист

Инв. № подл.	Подп. и дата	Взам.инв.№

75
Таблица И.4 – Расчет количества загрязняющих веществ, поступающих в атмосферу при опорожнении трубопроводов БПТГ №2 со стравливанием на свечу рассеивания в период эксплуатации

Наименование показателя	Величина					
	Трубопровод (Ду – 50 мм,	Трубопровод (Ду – 80 мм,	Трубопровод (Ду – 100 мм,	Трубопровод (Ду – 150 мм,	Трубопровод (Ду – 150 мм,	
	длина – 15 м)	длина – 19,4 м)	длина – 15 м)	длина – 126,5 м)	длина – 6,6 м)	
Наименование источника выброса		Выбро	с осуществляется на свечу БПТ	ПГ №2		
Высота свечи, м			6			
Диаметр свечи, м			0,05			
Геометрический объем газа, м ³	0,029	0,097	0,118	2,234	0,117	
Периодичность проведения операции, раз/год	1	1	1	1	1	
Давление газа перед началом опорожнения, МПа	0,6	5,7	3	0,6	6,1	
KΓ/CM ²	0,6 × 10,197 = 6,1	5,7 × 10,197 = 58,1	3,0 × 10,197 = 30,6	$0.6 \times 10.197 = 6.1$	6,1 × 10,197 = 62,2	
Температура газа, °С	30	-5	30	30	30	
К	30 + 273,15 = 303,15	-5 + 273,15 = 268,15	30 + 273,15 = 303,15	30 + 273,15 = 303,15	30 + 273,15 = 303,15	
Коэффициент сжимаемости Z _н при P _н , T _н	1-0,0907×0,6×(303,15/200) ^{-3,668}	1- 0,0907×5,7×(268,15/200) ^{-3,668}	1-0,0907× 3,0×(303,15/200) ^{-3,668}	1-0,0907×0,6×(303,15/200) ^{-3,668}	1-0,0907×6,1×(303,15/200) ^{-3,668}	
	= 0,988	=0,824	=0,941	= 0,988	= 0,88	
Давление газа в конце стравливания, МПа			0,1013			
Krc/cm ²			1,0332			
Температура газа при опорожнении (при сниже-	27	-43	17	27	2	
нии давления от P_{pa6} до $P = 0,1013 \ M\Pi a), ^{\circ}C$	070.45 : 07 . 000.45	070.45 . (.40) . 000.45	070 45 : 47 000 45	070.45 + 07 - 000.45	070.45 . 0 . 075.45	
K	273,15 + 27 = 300,15	273,15 + (-43) = 230,15	273,15 + 17 = 290,15	273,15 + 27 = 300,15	273,15 + 2 = 275,15	
Коэффициент сжимаемости Z_{κ} при P_{κ} , T_{κ}	1 - 0,0907 × 0,1013 × (295,15/ /200) ^{-3,668} = 0,998	1 - 0,0907 × 0,1013 × (230,15/ /200) ^{-3,668} = 0,995	1 - 0,0907 × 0,1013 × (290,15/ /200) ^{-3,668} = 0,998	1 - 0,0907 × 0,1013 × (295,15/ /200) ^{-3,668} = 0,998	1 - 0,0907 × 0,1013 × (275,15/ /200) ^{-3,668} = 0,997	
Объем газа, поступающего в атмосферу при	$0,995 \times 0,029 \times \left(\frac{6,1}{0,988} - \frac{1,0332}{0,998}\right)$	$0,995 \times 0,097 \times \left(\frac{58,1}{2004} - \frac{1,0332}{2005}\right)$	(30,6 1,0332)	$0.995 \times 2.234 \times \left(\frac{6.1}{0.988} - \frac{1.0332}{0.998}\right)$	$0.995 \times 0.117 \times \left(\frac{62.2}{0.976} - \frac{1.0332}{0.997}\right)$	
опорожнении, м ³ при стандартных условиях	0,995^0,029^(0,988 - 0,998)	$0,995 \times 0,097 \times \left(\frac{0,824}{0,995}\right)$	$0.995 \times 0.118 \times \left(\frac{30.6}{0.941} - \frac{1.0332}{0.998}\right)$	$0,999^{2},234^{(0,988^{-}0,998)}$	$0,995^{\circ},117^{\circ}\left(\frac{0,976}{0,997}\right)$	
(Р=0,1013 МПа и Т=293,15 К)	=0,148	=6,705	=3,696	=11,423	=8,108	
Плотность газа:						
- при нормальных условиях (Р=0,1013 МПа и						
T=273,15 K) , кг/нм ³			0,736			
- при стандартных условиях (P=0,1013 MПа и						
T=293,15 K), кг/м ³			0,686			
Коэффициент адиабаты			1,309			
Коэффициент истечения газа	$(2)^{\frac{1,309+1}{1,309-1}}$					
			$\sqrt{1,309+\left(\frac{2}{1,309+1}\right)}$ =0,669			
Площадь проходного сечения, м ²	$0.785 \times 0.05^2 = 0.00196$	$0.785 \times 0.05^2 = 0.00196$	$0.785 \times 0.05^2 = 0.00196$	$0.785 \times 0.05^2 = 0.00196$	$0.785 \times 0.05^2 = 0.00196$	
Молекулярная масса газа, кг/моль			16,452			
Расчетное время стравливания, с	$3.9 \times 10^{-2} \times \frac{0.029}{0.669 \times 0.00196} \times$	$3.9 \times 10^{-2} \times \frac{0.097}{0.669 \times 0.00196} \times$	3,9×10 ⁻² × 0,118 / 0,669×0,00196 ×	$3.9 \times 10^{-2} \times \frac{2.234}{0.669 \times 0.00196} \times$	$3.9 \times 10^{-2} \times \frac{0.117}{0.669 \times 0.00196} \times$	
	$\sqrt{\frac{16,452}{300,15}} \times \log \frac{6,1}{1,0332} = 1$	$\sqrt{\frac{16,452}{230,15}} \times \log \frac{58,1}{1,0332} = 2$	$\times \sqrt{\frac{16,452}{290,15}} \times \log \frac{30,6}{1,0332} = 2$	$\times \sqrt{\frac{16,452}{300,15}} \times \log \frac{6,1}{1,0332} = 12$	$\times \sqrt{\frac{16,452}{275,15}} \times \log \frac{62,2}{1,0332} = 2$	
мин	1 / 60 ≈ 1	2 / 60 ≈ 1	2 / 60 ≈ 1	12 / 60 ≈ 1	2 / 60 ≈ 1	

Дата

Подп.

Изм. Кол.уч Лист №док.

120.ЮР.2017-2010-02-OOC2.2.TY_05D

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Лист

Инв. № подл.	Подп. и дата	Взам.инв.№

Наименование показателя Величина Трубопровод (Ду -50 мм, Трубопровод (Ду – 80 мм, Трубопровод (Ду – 100 мм, Трубопровод (Ду – 150 мм, Трубопровод (Ду – 150 мм, длина – 15 м) длина – 19,4 м) длина – 15 м) длина – 126,5 м) длина – 6,6 м) 20 20 Время стравливания, принятое для расчетов, мин Объем газа, поступающего в атмосферу, в единицу времени - при стандартных условиях, м³/с $0,148 / (20 \times 60) = 0,000123$ $6,705 / (20 \times 60) = 0,00559$ $3,696 / (20 \times 60) = 0,00308$ $11,423 / (20 \times 60) = 0,00952$ $8,108 / (20 \times 60) = 0,00676$ - при рабочих условиях, м³/с $0,000123 \times 300,15 / 293,15 =$ $0,00559 \times 20,15 / 293,15 =$ $0,00308 \times 290,15 / 293,15 =$ $0,00952 \times 300,15 / 293,15 =$ $0,00676 \times 275,15 / 293,15 =$ =0.000126 =0.00439=0.00305=0.00975 =0.00634 $4 \times 0,000126/3,14 \times 0,05^2 = 0,064 | 4 \times 0,00439/3,14 \times 0,05^2 = 2,237 | 4 \times 0,00305/3,14 \times 0,05^2 = 1,554$ $|4 \times 0.0111/3.14 \times 0.05^2 = 5.656|4 \times 0.00634/3.14 \times 0.05^2 = 3.231$ Проверка скорости истечения, м/с Скорость истечения, принятая для расчета, м/с 0,064 0,000123 × 0,686× 1000 = $0.00559 \times 0.686 \times 1000 = 3.835 \mid 0.00308 \times 0.686 \times 1000 = 2.113 \mid 0.00952 \times 0.686 \times 1000 = 6.531 \mid 0.00676 \times 0.686 \times 1000 = 4.637 \mid 0.00676 \times 0.687 \mid 0.00676 \mid 0.0$ Количество газа, поступающего в атмосферу при опорожнении перед ППР, г/с =0.0844в том числе: - диоксид углерода $|0.0844 \times 0.288104/100 = 0.000243 | 3.835 \times 0.288104/100 = 0.0110 | 2.113 \times 0.288104/100 = 0.00609$ $6,531 \times 0,288104/100 = 0,0188 \mid 4,637 \times 0,288104/100 = 0,0134$ 0,0844×0,056012/100=0,0000473 3,835 × 0,056012/100=0,00215 2,113 × 0,056012/100=0,00118 6,531× 0,056012/100=0,00366 4.637× 0.056012/100=0.00260 - бутан $0.0844 \times (0.025989 + 0.125594)$ $3,835 \times (0,025989 + 0,125594) / 2,113 \times (0,025989 + 0,125594) / (0,025989 + 0,125989 + 0$ 6,531× (0,025989 + 0,125594)/ 4,637× (0,025989 + 0,125594)/ пентан 100 = 0,000128 100 =0,00581 100 = 0,00330100 = 0,00990100 = 0,00703 $0.0844 \times 95.10309/100 = 0.0803$ $3,835 \times 95,10309 / 100 = 3,647 | 2,113 \times 95,10309 / 100 = 2,010$ $6,531 \times 95,10309/100 = 6,211$ $4,637 \times 95,10309/100 = 4,410$ метан 0,0844×0,189371/100=0,000160 3,835× 0,189371/100= 0,00726 2,113 × 0,189371/100=0,00400 $6,531 \times 0,189371/100 = 0,124$ 4.637 × 0.189371/100=0.00878 0,0844×0,181844/100=0,000153 3,835 × 0,181844/100=0,00699 2,113 × 0,181844/100=0,00385 $6,531 \times 0,181844/100 = 0,0119$ 4,637 × 0,181844/100=0,00845 0,0844×2,498339/100=0,00211 | 3,835 × 2,498339/100 = 0,0958 | 2,113 × 2,498339/100=0,0528 $6,531 \times 2,498339 / 100 = 0,163$ 4,637× 2,498339 / 100 = 0,116 0,0844×0,14302/100=0,000121 $3,835 \times 0,14302/100 = 0,00548$ $2,113 \times 0,14302/100=0,00302$ $6,531 \times 0,14302/100 = 0,00934$ 4,637× 0,14302 / 100=0,00663 пропан 0,0844×0,000041/100=3,46×10⁻⁸ бензол 3,835×0,000041/100=0,00000157 2,113×0,000041/100=8,66× 10 6,531×0,000041/100=0,00000268 4,637×0,000041/100=0,00000190 0,0844×0,001183/100=9,98× 10⁻⁷ 6,531×0,001183/100=0,0000773 | 4,637×0,001183/100=0,0000549 диметилбензол 0,0844×0,000292/100=2,46×10 3,835×0,000292/100=0,0000112 6,531×0,000292/100=0,0000191 4,637×0,000292/100=0,0000135 - метилбензол 0,0844×0,00047/100=3,97× 10⁻⁷ 3,835×0,00047/100=0,0000180 2,113×0,00047/100=0,00000993 6,531×0,00047/100=0,0000307 4,637×0,00047/100=0,0000218 этилбензол 6,531×0,001398/100=0,0000913 4,637×0,001398/100=0,0000648 0,0844×0,001398/100=1,18×10⁻⁰ 3,835×0,001398/100=0,0000536 2,113×0,001398/100=0,0000295 метанол · алканы С₁₂-С-₁₉ 0,0844×0,000845/100=7,13× 10⁻⁷ 3,835×0,000845/100=0,0000324 2,113×0,000845/100=0,0000179 6,531×0,000845/100=0,0000552 4,637×0,000845/100=0,0000392 3,696 × 0,686 × 1 / 1000 = $0,148 \times 0,686 \times 1 / 1000 =$ 6,705× 0,686 × 1 / 1000 = 11,423 × 0,686 × 1 / 1000 = $8,108 \times 0,686 \times 1 / 1000 =$ Годовое количество газа, поступающего в атмосферу при опорожнении на свечу, т/год =0,000102 =0,00460 =0,00254 =0,00784 =0.00556 в том числе: $0.000102 \times 0.288104/100 =$ 0.00460× 0.288104 / 100 = $0.00254 \times 0.288104 / 100 =$ $0.00784 \times 0.288104 / 100 =$ $0.00556 \times 0.288104 / 100 =$ - углерода диоксид =0,000000294 0,0000133 =0,00000732 =0,0000226 =0,0000160 0,000102×0,056012/100= 0,00460× 0,056012/ 100 = $0.00254 \times 0.056012 / 100 =$ 0,00784× 0,056012 / 100 = 0,00556× 0,056012 / 100 = 0.00000258 =0,00000142 =0,00000439 =0.00000311 0,0000000571 0.00460× (0.025989+0.125594)/ 0.00254× (0.025989+0.125594)/ 0.000102×(0.025989+0.125594) 0.00784× (0.025989+0.125594)/ 0.00556× (0.025989+0.125594)/ / 100 = 0.000000155 /100 = 0.00000697100 = 0,00000385100 = 0,0000119100 = 0,00000843 $0.000102 \times 95.10309 / 100 =$ 0.00460 × 95.10309 / 100 = $0.00254 \times 95.10309 / 100 =$ $0,00784 \times 95,10309 / 100$ 0.00556 × 95.10309 / 100 =0.0000970 =0.00437 =0.00242 =0.00529 =0.00746 $0,000102 \times 0,189371 / 100 =$ $0,00460 \times 0,189371 / 100 =$ $0,00254 \times 0,189371 / 100 =$ $0,00784 \times 0,189371 / 100 =$ $0,00556 \times 0,189371 / 100 =$ · изобутан =0.0000105 =0,00000193 =0,00000871 =0,00000481 =0.0000148 0.000102×0,181844/100= 0.00254 × 0.181844 / 100 = $0,00460 \times 0,181844 / 100 =$ 0.00784 × 0.181844 / 100 = 0.00556 × 0.181844 / 100 = - смесь углеводородов предельных C₆-C₁₀ =0,00000185 =0,00000838 =0.00000463 =0,0000143 =0,0000101

Изм.	Кол.уч	Лист	№док.	Подп.	Дата

120.ЮР.2017-2010-02-OOC2.2.ТЧ

Лист

76

Инв. № подл.	Подп. и дата	Взам.инв.№

Наименование показателя Величина Трубопровод (Ду – 50 мм, Трубопровод (Ду – 80 мм, Трубопровод (Ду – 100 мм, Трубопровод (Ду – 150 мм, Трубопровод (Ду – 150 мм, длина - 15 м) длина - 19,4 м) длина - 15 м) длина - 126,5 м) длина – 6,6 м) 0.000102×2.498339 / 100 = 0.00460× 2.498339 / 100 = $0.00254 \times 2.498339 / 100 =$ 0.00784× 2.498339 / 100 = 0.00556× 2.498339 / 100 = =0,00000255 =0,000115 =0,0000635 =0,000196 =0.000139 0.00460× 0.14302 / 100 = 0,00784× 0,14302 / 100 = 0.00556× 0.14302 / 100 = $0.000102 \times 0.14302 / 100 =$ $0.00254 \times 0.14302 / 100 =$ =0,00000146 =0,00000658 =0,00000363 =0,0000112 =0,00000795 0,000102×0,000041/100= 0,00460×0,000041/100= $0.00254 \times 0.000041 / 100 =$ $0.00784 \times 0.000041 / 100 =$ $0.00556 \times 0.000041 / 100 =$ бензол =4.18× 10⁻¹¹ $=1.89 \times 10^{-9}$ $=1.04 \times 10^{-9}$ $=3.21 \times 10^{-1}$ $=2.28 \times 10^{-9}$ 0,000102× 0,001183 / 100 = 0,00460× 0,001183 / 100 = 0,00254× 0,001183 / 100 = 0,00556× 0,001183 / 100 = $0.00784 \times 0.001183 / 100 =$ · диметилбензол $=2,51\times10^{-13}$ =5,15× 10⁻¹⁰ $=1,57 \times 10^{-10}$ $=7,51 \times 10^{-10}$ $=1.50 \times 10^{-9}$ 0.000102× 0.000292 / 100 = $0.00460 \times 0.000292 / 100 =$ $0.00254 \times 0.000292 / 100 =$ $0.00784 \times 0.000292 / 100 =$ 0.00556× 0.000292/100= =0.000000162 =2.98× 10⁻¹⁰ =1.34× 10⁻⁸ $=7.42 \times 10^{-9}$ =0.000000229 0.000102×0.00047/100= $0,00460 \times 0,00047/100 =$ $0.00254 \times 0.00047 / 100 =$ $0.00784 \times 0.00047 / 100 =$ 0.00556×0.00047 / 100 = $=4,80 \times 10^{-10}$ =0,0000000216 =0,000000119 =0,000000368 =0,0000000261 0,000102×0,001398/100= $0,00460 \times 0,001398 / 100 =$ $0.00254 \times 0.001398 / 100 =$ $0.00784 \times 0.001398 / 100 =$ $0,00556 \times 0,001398 / 100 =$ метаноп 1,43× 10⁻⁹ =0.0000000643 $=3,55 \times 10^{-8}$ =0,00000110 =0,00000077 0,000102×0,000845/100= $0.00460 \times 0.000845 / 100 =$ $0.00254 \times 0.000845 / 100 =$ $0.00784 \times 0.000845 / 100 =$ 0.00556×0.000845/100= - алканы C₁₂-C-₁₉ 8.62×10^{-10} =0.000000389 $=2.15 \times 10^{-8}$ =0.0000000662 =0,0000000470 Суммарное количество загрязняющих веществ, поступающих в атмосферу при опорожнении трубопроводов БПТПГ №2 на свечу: Максимально разовый выброс, г/с Годовой выброс, т/год Углерода диоксид 0,0188 0,0000595 0,00366 0,0000116 Бутан Пентан 0,00990 0,0000313 Метан 6,211 0,0196 0.0124 0.0000390 Изобутан Смесь углеводородов предельных С₆-С₁₀ 0.0119 0.0000376 0.163 0.000516 Этан Пропан 0,00934 0.0000295 Бензол 0,00000268 0,00000000846 0.0000773 0.00000000292 Диметилбензол Метилбензол 0,0000191 0,0000000603 Этилбензол 0.0000307 0.0000000969 0,0000913 0,000000289

В таблице И.5 приведены расчеты количества загрязняющих веществ, поступающих в атмосферу при опорожнении трубопровода топливного газа к ПАЭС и сепараторов сырого газа 004-V001A, 004-V001B перед ППР со стравливанием газа через свечи рассеивания в период эксплуатации.

Изм.	Кол.уч	Лист	№док.	Подп.	Дата

0.0000552

120.HOP.2017-2010-02-OOC2.2.TH

0.000000174

Лист

77

75

Метанол

Алканы C₁₂-C₁₉

Инв. № подл.	Подп. и дата	Взам.инв.№

Таблица И.3 – Расчет количества загрязняющих веществ, поступающих в атмосферу при опорожнении трубопровода топливного газа к ПАЭС и сепараторов сырого газа 004-V001A, 004-V001B со стравливанием на свечи рассеивания в период эксплуатации

Наименование показателя		Величина				
	Трубопровод топливного газа к ПАЭС	Сепаратор сырого газа 004-V001A	Сепаратор сырого газа 004-V001В			
Наименование источника выброса	Свеча	Свеча	Свеча			
Высота свечи, м	6	6	6			
Диаметр свечи, м	0,05	0,2	0,2			
Периодичность проведения операции, раз/год	1	1	1			
Геометрический объем газа, м ³	14,766	2,05	2,05			
Давление газа перед началом опорожнения, МПа	0,6	6,1	6,1			
кг/см ²	0,6 × 10,197 = 6,1	6,1 × 10,197 = 62,2	6,1 × 10,197 = 62,2			
Температура газа, °С	30	-5	-5			
К	30 + 273,15 = 303,15	-5 + 273,15 = 268,15	-5 + 273,15 = 268,15			
Коэффициент сжимаемости Z _H при P _H , T _H	1-0,0907×0,6×(303,15/200) ^{-3,668} = 0,988	1- 0,0907×6,1×(268,15/200) ^{-3,668} =0,811	1- 0,0907×6,1×(268,15/200) ^{-3,668} =0,811			
Давление газа в конце стравливания, МПа	0,1013					
Krc/cm ²	1,0332					
Температура газа при опорожнении (при сниже-	27	-48	-48			
нии давления от P_{pa6} до $P = 0,1013 \text{ M}\Pi a), ^{\circ}C$		·				
K	273,15 + 27 = 300,15	273,15 + (-48) = 225,15	273,15 + (-48) = 225,15			
Коэффициент сжимаемости Z _H при P _H , T _H	1 - 0,0907 × 0,1013 × (295,15//200) ^{-3,668} = 0,998	1 - 0,0907 × 0,1013 × (225,15//200) ^{-3,668} = 0,994				
Плотность газа:						
- при нормальных условиях (Р=0,1013 МПа и Т=273,15 К) , кг/нм ³	0,736	0,7	41			
- при стандартных условиях (Р=0,1013 МПа и						
Т=293,15 К), кг/м ³	0,686	0,6	69			
Объем газа, поступающего в атмосферу при опо-	/ 6.1 1.0332\	/ 6.1 1.0332\	/ 6.1 1.0332\			
рожнении, м ³ при стандартных условиях	$0.995 \times 14,766 \times \left(\frac{6.1}{0.988} - \frac{1,0332}{0.998}\right) = 75.5$	$0.995 \times 2.05 \times \left(\frac{6.1}{0.811} - \frac{1.0332}{0.994}\right) = 154.319$	$0.995 \times 2.05 \times \left(\frac{6.1}{0.811} - \frac{1.0332}{0.994}\right) = 154.319$			
(P=0,1013 MПа и T=293,15 K)	(0,980 0,990)	(0,011 0,994 /	(0,011 0,994)			
Коэффициент адиабаты	1,309	1,3	09			
Коэффициент истечения газа	1,309+1		1,309+1			
	$1.309 + \left(\frac{2}{1.309 - 1}\right)^{\frac{1}{1.309 - 1}} = 0.669$					
	$\sqrt{1,3091}\left(\frac{1,309+1}{1,309+1}\right)$ =0,009	$\sqrt{1,309+\left(\frac{2}{1,309+}\right)}$	+1) -0,009			
Площадь проходного сечения, м ²	$0.785 \times 0.05^2 = 0.00196$	$0.785 \times 0.2^2 = 0.0314$	$0.785 \times 0.2^2 = 0.0314$			
Молекулярная масса газа, кг/моль	16,452	16,529				
Расчетное время стравливания, с	14 766 16 452 6 1	2 05 16 529 62 2	2 05 16 529 62 2			
	$3.9 \times 10^{-2} \times \frac{14,766}{0,669 \times 0,00196} \times \sqrt{\frac{16,452}{300,15}} \times \log \frac{6,1}{1,0332} = 80$	$3.9 \times 10^{-2} \times \frac{2.05}{0.669 \times 0.0314} \times \sqrt{\frac{16.529}{225.15}} \times \log \frac{62.2}{1.0332} = 2$	$3.9 \times 10^{-2} \times \frac{2.05}{0.669 \times 0.0314} \times \sqrt{\frac{16,529}{225,15}} \times \log \frac{62.2}{1.0332} = 2$			
мин	80 / 60 ≈ 2	2 / 60 ≈ 1	2 / 60 ≈ 1			
Время стравливания, принятое для расчетов, мин.	20	20	20			
-						

Изм.	Кол.уч	Лист	№док.	Подп.	Дата

120.ЮР.2017-2010-02-OOC2.2.ТЧ

Лист

Инв. № подл.	Подп. и дата	Взам.инв.№

	•		79
Наименование показателя		Величина	
	Трубопровод топливного газа к ПАЭС	Сепаратор сырого газа 004-V001A	Сепаратор сырого газа 004-V001B
Объем газа, поступающего в атмосферу, в еди-			
ницу времени			
- при стандартных условиях, м ³ /с	75,5 / (20 × 60) = 0,0629	$154,319 / (20 \times 60) = 0,129$	154,319 / (20 × 60) = 0,129
- при рабочих условиях, м ³ /с	0,0629 × 300,15 / 293,15 = 0,0644	0,129 × 225,15 / 293,15 = 0,0991	0,129 × 225,15 / 293,15 = 0,0991
Проверка скорости истечения, м/с	$4 \times 0,0644 / 3,14 \times 0,05^2 = 32,815$	$4 \times 0,0991 / 3,14 \times 0,2^2 = 3,156$	$4 \times 0,0991 / 3,14 \times 0,2^2 = 3,156$
Скорость истечения, принятая для расчета, м/с	32,815	3,156	3,156
Количество газа, поступающего в атмосферу при	0,0629 × 0,686× 1000 = 43,149	0,129 × 0,69 × 1000 = 89,0100	0,129 × 0,69 × 1000 = 89,0100
опорожнении перед ППР, г/с			
в том числе:			
- углерода диоксид	43,149 × 0,288104 / 100 = 0,124	89,0100 × 0,282631 / 100 = 0,252	89,0100 × 0,282631 / 100 = 0,252
- бутан	43,149 × 0,056012 / 100 = 0,0242	89,0100 × 0,055585 / 100 = 0,0495	89,0100 × 0,055585 / 100 = 0,0495
- пентан	43,149 × (0,025989 + 0,125594)/ 100 = 0,0654	89,0100 × (0,026621 + 0,126983)/ 100 = 0,137	89,0100 × (0,026621 + 0,126983)/ 100 = 0,137
- метан	43,149 × 95,10309 / 100 = 41,036	89,0100 × 93,099041 / 100 = 82,867	89,0100 × 93,099041 / 100 = 82,867
- изобутан	43,149 × 0,189371 / 100 = 0,0817	89,0100 × 0,187104 / 100 = 0,167	89,0100 × 0,187104 / 100 = 0,167
- смесь углеводородов предельных C ₆ -C ₁₀	43,149 × 0,181844 / 100 = 0,0785	89,0100 × 0,333592 / 100 = 0,297	89,0100 × 0,333592 / 100 = 0,297
- этан	43,149 × 2,498339 / 100 = 1,078	89,0100 × 2,447903 / 100 = 2,179	89,0100 × 2,447903 / 100 = 2,179
- пропан	43,149 × 0,14302 / 100 = 0,0617	89,0100 × 0,140526 / 100 = 0,125	89,0100 × 0,140526 / 100 = 0,125
- бензол	43,149 × 0,000041 / 100 = 0,0000177	89,0100 × 0,000048 / 100 = 0,0000427	89,0100 × 0,000048 / 100 = 0,0000427
- диметилбензол	43,149 × 0,001183 / 100 = 0,000510	89,0100 × 0,004051 / 100 = 0,00361	89,0100 × 0,004051 / 100 = 0,00361
- метилбензол	43,149 × 0,000292 / 100 = 0,000126	89,0100 × 0,000486 / 100 = 0,000433	89,0100 × 0,000486 / 100 = 0,000433
- этилбензол	43,149 × 0,00047 / 100 = 0,000203	89,0100 × 0,00133 / 100 = 0,00118	89,0100 × 0,00133 / 100 = 0,00118
- метанол	43,149 × 0,001398 / 100 = 0,000603	89,0100 × 0,199018 / 100 = 0,177	89,0100 × 0,199018 / 100 = 0,177
- алканы C ₁₂ -C- ₁₉	43,149 × 0,000845 / 100 = 0,000365	89,0100 × 0,091103 / 100 = 0,0811	89,0100 × 0,091103 / 100 = 0,0811
Годовое количество газа, поступающего в атмо-	75,5 × 0,686 × 1 / 1000 = 0,0518	154,319× 0,69 × 1 / 1000 = 0,107	154,319× 0,69 × 1 / 1000 = 0,107
сферу при опорожнении на свечу, т/год			
в том числе:			
- углерода диоксид	0,0518 × 0,288104 / 100 = 0,000149	0,107 × 0,282631 / 100 = 0,000300	0,107 × 0,282631 / 100 = 0,000300
- бутан	0,0518×0,056012/100=0,0000290	0,107 × 0,055585 / 100 = 0,0000589	0,107 × 0,055585 / 100 = 0,0000589
- пентан	0,0518× (0,025989 + 0,125594)/ 100 = 0,0000785	0,107 × (0,026621 + 0,126983)/ 100 = 0,000163	0,107 × (0,026621 + 0,126983)/ 100 = 0,000163
- метан	0,0518 × 95,10309 / 100 = 0,0493	0,107 × 93,099041 / 100 = 0,0987	0,107 × 93,099041 / 100 = 0,0987
- изобутан	0,0518 × 0,189371 / 100 = 0,0000981	0,107 × 0,187104 / 100 = 0,000198	0,107 × 0,187104 / 100 = 0,000198
- смесь углеводородов предельных С ₆ -С ₁₀	0,0518 × 0,181844 / 100 = 0,0000942	0,107 × 0,333592 / 100 = 0,000354	0,107 × 0,333592 / 100 = 0,000354
- этан	0,0518 × 2,498339 / 100 = 0,00129	0,107 × 2,447903 / 100 = 0,00259	0,107 × 2,447903 / 100 = 0,00259
- пропан	0,0518 × 0,14302 / 100 = 0,0000741	0,107 × 0,140526 / 100 = 0,000149	0,107 × 0,140526 / 100 = 0,000149
- бензол	0,0518 × 0,000041 / 100 = 0,0000000212	0,107 × 0,000048 / 100 = 0,0000000509	0,107 × 0,000048 / 100 = 0,0000000509
- диметилбензол	0,0518 × 0,001183 / 100 = 0,0000000653	0,107 × 0,004051 / 100 = 0,000000459	0,107 × 0,004051 / 100 = 0,000000459
- метилбензол	0,0518 × 0,000292 / 100 = 0,000000151	0,107 × 0,000486 / 100 = 0,000000515	0,107 × 0,000486 / 100 = 0,000000515
	0,0518 × 0,00047 / 100 = 0,000000243	0,107 × 0,00133 / 100 = 0,00000141	0,107 × 0,00133 / 100 = 0,00000141
- метанол	0,0518 × 0,001398 / 100 = 0,000000724	0,107 × 0,199018 / 100 = 0,000211	0,107 × 0,199018 / 100 = 0,000211
	0,0518 × 0,000845 / 100 = 0,000000438	0,107 × 0,091103 / 100 = 0,0000966	0,107 × 0,091103 / 100 = 0,0000966
- метан - изобутан - смесь углеводородов предельных С ₆ -С ₁₀ - этан - пропан - бензол - диметилбензол - метилбензол - этилбензол	0,0518 × 95,10309 / 100 = 0,0493 0,0518 × 0,189371 / 100 = 0,0000981 0,0518 × 0,181844 / 100 = 0,0000942 0,0518 × 2,498339 / 100 = 0,00129 0,0518 × 0,14302 / 100 = 0,0000741 0,0518 × 0,000041 / 100 = 0,0000000212 0,0518 × 0,001183 / 100 = 0,0000000653 0,0518 × 0,000292 / 100 = 0,000000151 0,0518 × 0,00047 / 100 = 0,000000243 0,0518 × 0,001398 / 100 = 0,000000724	0,107 × 93,099041 / 100 = 0,0987 0,107 × 0,187104 / 100 = 0,000198 0,107 × 0,333592 / 100 = 0,000354 0,107 × 2,447903 / 100 = 0,00259 0,107 × 0,140526 / 100 = 0,000149 0,107 × 0,000048 / 100 = 0,0000000509 0,107 × 0,004051 / 100 = 0,000000459 0,107 × 0,000486 / 100 = 0,000000515 0,107 × 0,00133 / 100 = 0,0000141 0,107 × 0,199018 / 100 = 0,000211	$\begin{array}{c} 0,107\times 93,099041\ /\ 100=0,099\\ 0,107\times 0,187104\ /\ 100=0,0001\\ 0,107\times 0,333592\ /\ 100=0,0003\\ 0,107\times 2,447903\ /\ 100=0,0002\\ 0,107\times 0,140526\ /\ 100=0,00000\\ 0,107\times 0,000048\ /\ 100=0,000000\\ 0,107\times 0,000486\ /\ 100=0,000000\\ 0,107\times 0,000486\ /\ 100=0,000000\\ 0,107\times 0,00133\ /\ 100=0,00000\\ 0,107\times 0,199018\ /\ 100=0,00000\\ 0,107\times 0,199018\ /\ 100=0,00002\\ \end{array}$

Изм.	Кол.уч	Лист	№док.	Подп.	Дата

120.ЮР.2017-2010-02-ООС2.2.ТЧ

Лист

Приложение К (обязательное)

Расчеты количества загрязняющих веществ, поступающих в атмосферу при работе металлообрабатывающих станков, установленных в вагоне-доме ремонтной мастерской Энергоцентра №2 в период эксплуатации

В вагон-доме ремонтной мастерской Энергоцентра №2 устанавливается следующее оборудование:

- станок точильно-шлифовальный настольный Т-200/350 (1 шт.);
- станок сверлильно-вертикальный настольный 2Т118 (1 шт.).

Суммарное время работы станков составляет не более 2 ч/день, 350 ч/год.

Количество пыли выделяющейся при работе станков составляет:

- для точильно-шлифовального настольного Т-200/350:
- пыль металлическая 75 × 10⁻³, г/с;
- пыль абразивная 29,2 × 10⁻³, г/с;
- для сверлильно-вертикального 2Т118:
- пыль металлическая -2.2×10^{-3} . г/с.

В соответствии с техническими требования удалении пыли при работе станков производится с помощью местного отсоса с поступлением пыли в рукавный тканевый фильтр. Степень улавливания пыли составляет 99,0%.

Количество пыли, выделяющейся при работе станков, составит:

- максимально разовое количество (при условии одновременной работы 2-х станков)
- пыль металлическая $-75 \times 10^{-3} + 2.2 \times 10^{-3} = 77.2 \times 10^{-3}$ (г/с);
- пыль абразивная 29,2 × 10⁻³ (г/с).
- годовое (валовое) количество:
- пыль металлическая $-77.2 \times 10^{-3} \times 3600 \times 350 / 1000000 = 0.0973$ (т/год);
- пыль абразивная $29.2 \times 10^{-3} \times 3600 \times 350 / 1000000 = 0.0368$ (т/год).

Количество пыли, собираемой в рукавном тканевом фильтре при работе металлообрабатывающих станков, составит:

- пыль металлическая:

 $0.0772 \times 99.0/100 = 0.0764$ (г/с) и $0.0973 \times 99.0/100 = 0.0963$ (т/год);

- пыль абразивная:

Взам.

Подп. и дата

подл.

 $0.0292 \times 99.0/100 = 0.0289$ (г/с) и $0.0368 \times 99.0/100 = 0.0364$ (т/год).

Количество пыли, поступающей в атмосферу через дефлектор, составит:

- пыль металлическая:

 $0.0772 \times 1.0/100 = 0.000772$ (г/с) и $0.0973 \times 1.0/100 = 0.000973$ (т/год);

- пыль абразивная:

Изм.	Кол.уч	Лист	№док.	Подп	Дата

120.HOP.2017-2010-02-OOC2.2.TY

Лист

 $0.0292 \times 1.0/100 = 0.000292$ (г/с) и $0.0368 \times 1.0/100 = 0.000368$ (т/год)

Высота дефлектора – 4,5 м, диаметр – 0,2 м, производительность вентиляционной установки – 0,168 м 3 /с.

| Nam. Word | Nam. Kon.yy Лист | Negox. | Подп | Дата | Дата | Дата | Терей |

Приложение Л (обязательное)

Расчеты количества загрязняющих веществ, поступающих в атмосферу при работе установки (комплекса) термического обезвреживания жидких отходов КТО-600.БМ.Ц в период эксплуатации

В таблице Л.1 приведены экологические характеристики КТО-600.БМ.Ц и количество загрязняющих веществ, поступающих в атмосферу при работе КТО, принятые по данным проекта паспорта на "Установку типа КТО для термического обезвреживания отходов КТО-600.БМ.Ц (С.-Пб, ЗАО "Безопасные технологии"", 2018).

Таблица Л.1 – Экологические характеристики КТО-600.БМ.Ц

Hawayaaayya aayaaaaa	Da=
Наименование показателя	Величина
Высота дымовой трубы, м	15
Диаметр дымовой трубы, м	0,45
Расход дымовых газов, м ³ /ч,	48001
M ³ /C	1,331
Температура дымовых газов, °С	180
Концентрация загрязняющих веществ в отходящих газах, мг/м ³	1
- азота оксиды	801
- гидрохлорид	$5-10^{1}$
- сера диоксид	101
- углерода оксид	50 ¹
- взвешенные вещества	$10 - 30^{1}$
- гидрофторид	$1-2^{1}$
- диоксины (в пересчете на 2,3,7,8-тетрахлордибензо-1 1,4-диоксин)	0,1 нг/нм ³
Максимально разовое количество загрязняющих веществ, поступаю-	
щих в атмосферу, г/с	
- азота оксиды, в том числе:	0,10666667
- азота диоксид	$0,10666667 \times 0,4 = 0,04266667$
- азота оксид	$0,10666667 \times 0,65 \times (1-0,4) = 0,416000$
- гидрохлорид ²	0,01333333
- сера диоксид	0,01333333
- углерода оксид	0,0666667
- взвешенные вещества	0,040000
- гидрофторид ²	0,0026667
- диоксины (в пересчете на 2,3,7,8-тетрахлордибензо-1 1,4-диоксин) ²	0,00000000080
Годовые валовые выбросы загрязняющих веществ, поступающих в	
атмосферу, т/год	
- азота оксиды, в том числе:	3,22560
- азота диоксид	3,22560×0,4 =1,290240
- азота оксид	$3,22560 \times 0,65 \times (1-0,4) = 1,257984$
- гидрохлорид ²	0,40320
- сера диоксид	0,40320
- углерода оксид	2,01600
- взвешенные вещества	1,20960
- гидрофторид ²	0,08064
- диоксины (в пересчете на 2,3,7,8-тетрахлордибензо-1 1,4-диоксин) ²	0,0000000240

Примечания:

Взам.

Подп.

№ подл.

- 1 количественные и качественные показатели выбросов во всех режимах подлежат уточнению инструментальным методом после ввода КТО в эксплуатацию в зависимости от фактического состава подаваемой на обезвреживание среды
- 2 вещество может варьироваться (в том числе отсутствовать) в выбросах в зависимости от фактического состава подаваемой на обезвреживание среды (уточняется инструментальным методом после ввода кто в эксплуатацию и в рамках производственного экологического контроля)

Изм.	Кол.уч	Лист	№док.	Подп	Дата

120.ЮP.2017-2010-02-OOC2.2.TY

АДЭС

БКЭС БТПГ

ГОСТ

ДЭС

3A0

KTO HFKM

000 ПАЭС

ПДВ

ППР

РΦ

C33

СТО УГГ

УГМС

ФГБУ

ЦГМС

Ф3

ЭЦ

ГОСТ Р

120.HOP.2017-2010-02-OOC2.2.TY

Лист 81

2 Ссылочные нормативные документы

ГОСТ 17.2.3.02-2014 Правила установления допустимых выбросов вредных веществ промышленными предприятиями

ГОСТ 30319.1-2015. Газ природный. Методы расчета физических свойств

ГОСТ 9544-2015. Арматура трубопроводная. Нормы герметичности затворов

Расчеты по определению параметров выбросов и количеству загрязняющих веществ, поступающих в атмосферу при эксплуатации проектируемых объектов для обеспечения топливным газом объектов энергообеспечения нужд строительства, гидронамыва грунта и бурения Салмановского (Утреннего) НГКМ, выполнены по методикам, вошедшим в "Перечень методик расчета выбросов загрязняющих веществ в атмосферу, используемых в 2018 г. при нормировании и определении величин выбросов вредных (загрязняющих) веществ в атмосферный воздух" (М., Министерство природных ресурсов и экологии Российской Федерации):

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров. Казанское управление "Оргнефтехимзаводы", Новополоцк, "БЕЛИНЭКОМП", М., АОЗТ "ЛЮБЭКОП",1999

Методика расчета параметров выбросов и валовых выбросов вредных веществ от факельных установок сжигания углеводородных смесей (М., ИРЦ Газпром, 1996)

Методика расчета вредных выбросов в атмосферу из нефтехимического оборудования РМ 62-91-90. Воронеж, "Гипрокаучук", 1990

СТО Газпром 2-1.19-200-2008 Методика определения региональных коэффициентов трансформации оксидов азота на основе расчетно-экспериментальных данных

СТО Газпром 11-2005 Методические указания по расчету валовых выбросов углеводородов (суммарно) в атмосферу в ОАО "Газпром"

ВРД 39-1.13-051-2001 Инструкция по нормированию расхода и расчету выбросов метанола для объектов ОАО "Газпром"

Инв. № подл. Подп. и дата		Кол.уч	№док.	Подп	Дата	120.ЮР.2017-2010-02-ООС2.2.ТЧ	Лист
и дата Взам. инв. №							

				ица регистраці				8
Изм.	изме- ненных	Номера лис заме- ненных	тов (страни новых	аннули- рован- ных	Всего ли- стов (стра- ниц) в док.	Номер док.	Подп.	Дата
			<u> </u>					
—					047.004	10.00.0)OOO 0	Л
-	ол.уч Лист М	№док. Подп	1 Дата	20.ЮР.2	U17-20'	1U-UZ-C	JUU2.2.	19 8

Взам. инв. №

Инв. № подл.