

TABLE OF CONTENTS

LIST OF APPENDICES

APPENDIX 1	GASEOUS DISPERSION STUDY								
1.0 Introducti	1.0 Introduction								
2.0 Study Ap	proach and Methodology	2-17							
3.0 Modelling	Result	18-52							
4.0 Conclusio	on	71							
APPENDIX 2	HEALTH IMPACT ASSESTMENT HIA								
1.0 Introducti	on	1							
2.0 Health Ri	sk Asessment Approach	2-4							
3.0 Impact ar	8-35								
4.0 Conclusio	on	39							
APPENDIX 3	QUANTITATIVE RISK ASSESMENT (QRA)								
1.0 Introducti	1-4								
2.0 QRA Met	5-7								
3.0 Assesme	nt and Findings	8-21							
APPENDIX 4	NOISE DISSIPATION STUDY								
1.0 Introducti	on	1-2							
2.0 Approach	and Methodology	2-7							
3.0 Findings		8-14							
4.0 Mitigation	Measure	20							
APPENDIX 5A	WASTE MANAEGEMENT STUDY								
1.0 Introducti	on	1							
2.0 Waste Ma	anagement Philosophy	2							
3.0 Inventory	of Schedule Waste	6							
4.0 Impact As	ssesment and Mitigation Measure	12-15							
5.0 Conclusio	on	15							

TABLE OF CONTENTS

APPENDIX 5B CHEMICAL HANDLING STUDY

1.0 Introduction	1
2.0 Regulatory Requirements	2
3.0 Study Approach and Methodology	5-12
4.0 Safety and Environmental Design Requirements	14
5.0 Residual Impacts	15
6.0 Concusion	15
7.0 References	15
APPENDIX 6 EFFLUANT DISPERSION MODELLING	
1.0 Introduction	1
2.0 Description of the Proposed Marine Outfall	2
3.0 Study Methodology and Approach	8-16
4.0 Assessment of Effluent Dispersal	17-34
5.0 Conclusions	37

GASEOUS DISPERSION STUDY

TABLE OF CONTENTS

1.0	IN	TRODUCTION	1					
2.0	STUDY APPROACH AND METHODOLOGY.							
2.1	Scope of Study							
2.2	Ар	oplicable Regulatory Framework	3					
2.3	lde	entification of Sensitive Receptors	4					
2.4	So	ources of Air Emission	5					
2.5	Мо	odelling Scenarios	7					
2.5	5.1	Normal Operating Condition Scenario	7					
2.5	5.2	Abnormal Operating Condition Scenario	7					
2.5	5.3	Emergency Operating Condition Scenario	8					
2.5	5.4	Model Setup	9					
2.5	5.5	Modelling Input Data	. 10					
2.5	5.6	Emission Sources and Characteristics	. 10					
2.6	Мо	odel Output	. 17					
3.0	М	DDELLING RESULTS	. 18					
3.1	En	nission from the new EURO 5 MOGAS Units and Olefin Storage Tank	. 18					
3.2	Cu	Imulative Refinery and Cracker Complex	. 28					
3.3	Cu	Imulative RAPID Complex	. 52					
4.0	СС	DNCLUSION	. 71					

LIST OF TABLES

Table 2-1: Emission Concentration Limit and Malaysian Ambient Air Quality Standards 2013
(Standard 2020)
Table 2-2: Clean Air Regulation 2014 - Oil and Gas Industries: Refineries (All Sizes); Natural
Gas Processing and Storage; Storage and Handling of Petroleum Products4
Table 2-3: List of Air Emission Sources Identified for RAPID Complex
Table 2-4: Inventory of Current Air Pollution Sources and Emission Characteristics for the
RAPID Refinery Cracker Complex (Normal Operation)11
Table 2-5: Inventory of Emission Sources Form Other RAPID Complex Components 13
Table 2-6: Inventory of Current Air Pollution Sources and Emission Characteristics for the
RAPID Refinery Cracker Complex (Abnormal Operation)14

Table 2-7: Modelling Parameters and Averaging Times
Table 2.4. Deviated because at a QLO and Queed the QLO for EUDO 5 MOOAO List
Table 3-1 Predicted Incremental GLC and Cumulative GLC for EURO 5 MOGAS Unit
(Normal Operation)
Table 3-2 Predicted Incremental GLC and Cumulative GLC for Olefin Storage Tank
(Abnormal Operation)27
Table 3-3: NO ₂ Emission Contribution from Sources in the Refinery and Cracker Complex 29
Table 3-4: NO ₂ Contribution to the Maximum GLC
Table 3-5: SO ₂ Emission Contribution from Sources in the Refinery and Cracker Complex
during Abnormal Operation
Table 3-6: SO ₂ Contribution to the Maximum GLC during Abnormal Operation
Table 3-7: Predicted Incremental GLC and Cumulative GLC for Refinery Cracker Complex
(Normal Operation)
Table 3-8: Predicted Incremental GLC and Cumulative GLC for Refinery Cracker Complex
(Abnormal Operation)45
Table 3-9: Predicted Incremental GLC and Cumulative GLC for Refinery Cracker Complex
(Emergency Operation)
Table 3-10: NO2 Emission Contribution from Each Complex in RAPID 53
Table 3-11: Predicted Incremental GLC and Cumulative GLC for Cumulative RAPID
Complex (Normal Operation)
Table 3-12: Predicted Incremental GLC and Cumulative GLC for RAPID Complex (Abnormal
Operation)65
Table 3-13: Predicted Incremental GLC and Cumulative GLC for Cumulative RAPID
Complex (Emergency Operation)

LIST OF SUB-APENDICES

Sub-Appendix 1A:	Individual Units Air Dispersion Concentration Contour
Sub-Appendix 1B:	Cumulative Air Dispersion Concentration Contour

1.0 INTRODUCTION

The RAPID Refinery Cracker Complex was originally designed to produce diesel that meet the EURO 5 specifications and MOGAS (motor gasoline) that meet EURO 4 specifications. To upgrade and meet the EURO 5 MOGAS specifications, the Refinery and Cracker Complex has been expanded to include additional units as listed below:

- 1. 2nd Stage Cracked Naphtha Hydrotreating (CNHT 2) Unit
- 2. Etherification Unit Tertiary-Armyl-Methyl-Ether (TAME) Unit
- 3. Isomerization Unit
- 4. Additional Storage Tanks which consist of:
 - i. Two Tertiary-Armyl-Methyl-Ether (TAME) storage tanks
 - ii. Two Isomerate storage tanks
 - iii. One Medium Cracked Naphtha (MCN) storage tank

Besides that, there will be new olefin storage tankages located in the current refinery tank farms which consists of:

- 1. Four mounded bullets for Butadiene Storage
- 2. One Ethylene Tank
- 3. Four spheres for Propylene Storage

Details of the additional units are described in **Volume 1, Chapter 2**. This additional information report conducted studies to assess the impacts from these new process units and tank farms in the Refinery and Cracker Complex.

2.0 STUDY APPROACH AND METHODOLOGY.

The air dispersion study in this Addendum report was conducted in accordance with the United States Environmental Protection Agency (USEPA) Guideline on Air Quality Models (GAQM; as incorporated in Appendix W of 40 CFR Part 51) with AERMOD dispersion model.

The approach and methodology for this study are further detailed out in **Volume 1**, **Chapter 3**

2.1 Scope of Study

In this Additional Information study, the scope of work focuses on the updated and latest available information of the Refinery & Cracker Complex. Among the scope of works are;

- a) Identify new and update existing sources of air emissions in the Refinery and Cracker Complex;
- b) To assess the impacts of these changes by modelling using the same AERMOD model.
- c) To assess the latest generated results with the regulatory and/or guideline limits to determine the acceptance level. In the event of breaches of limits and/or guideline values, modifications of project design and/or process parameters for the contributing packages and its units within the Refinery and Cracker Complex will be proposed as mitigation measures;
- d) To propose mitigation measures to ensure that the residual impacts after implementation of the mitigation measures do not pose shortand long-term adverse impacts to the physical and human environment

2.2 Applicable Regulatory Framework

Compliance to the ambient ground level concentration shall be referred to the Malaysian Ambient Air Quality Standards, 2013 (Standard 2020) (Table 2-1).

Table 2-1: Emission Concentration Limit and Malaysian Ambient Air Quality Standards2013 (Standard 2020)

No.	Pollutant	MAAQG	MAAQS 2013 (Standard 2020)
1.	Sum of NO and NO ₂ expressed as NO ₂ 1 hour 24 hour 	320 μg/m ³ 75 μg/m ³	280 μg/m ³ 70 μg/m ³
2.	Sum of SO ₂ and SO ₃ expressed as SO ₂ • 1 hour • 24 hour	350 μg/m ³ 105 μg/m ³	250 μg/m ³ 80 μg/m ³
3.	CO • 1 hour • 8 hour	35,000 μg/m ³ 10,000 μg/m ³	30,000 µg/m ³ 10,000 µg/m ³
4.	TSP • 24 hour • Annual	260 µg/m ³ 90 µg/m ³	-
5.	PM ₁₀ • 24 hour • Annual	150 µg/m ³ 50 µg/m ³	100 μg/m ³ 40 μg/m ³
6.	PM _{2.5} • 24 hour • Annual	-	35 μg/m ³ 15 μg/m ³

Note: The previous Malaysian Ambient Air Quality Guidelines (MAAQG) is shown for comparison purposes. The Malaysian Ambient Air Quality Standard (MAAQS 2013) was introduced in the second quarter of 2015

Hydrogen Chloride, Ammonia, Mercury, Hydrogen Sulphide and VOCs are identified to be present in the emission sources and modelled for the dispersion. Since these pollutants do not have compliance limits under the Malaysian Ambient Air Quality Standards 2013 (Standard 2020), these parameters will be assessed under Health Impact Assessment (Volume 2, Appendix 2).

The regulatory compliance for stack emissions limit shall be designed to meet the emission limit as specified in the Clean Air Regulation (CAR) 2014

that is applicable for the refinery and cracker operation. Table 2-2 shows the emission limits applicable for refineries. However, for the EURO 5 MOGAS and Olefin Storage Tankages, the emissions do not fall under any of the source types. Nevertheless, the fugitive emission from both of the units are to be minimized in accordance to the DOE Malaysia's guidance document entitled "*Best Available Techniques Guidance Document on Storage and Handling of Petroleum Products*".

Table 2-2: Clean Air Regulation 2014 - Oil and Gas Industries: Refineries (All Sizes); Natural Gas Processing and Storage; Storage and Handling of Petroleum Products.

SOURCE	POLLUTANT	LIMIT VALUE	MONITORING
Claus plant	Sulphur	Recovery > 95%	periodic
	Total PM	40 mglm ³	continuous
Catalytic cracking	Sum of S0 ₂ and S0 ₃ , expressed as S0 ₂	1200 mglm ³	continuous
Calcination	Total PM	40 mglm ³	continuous

Notes:

1. Gases and vapors of organic substances such as hydrogen and hydrogen sulphide which escape from pressure relief fittings and blow-down systems shall be fed into a gas collecting system.

2. The collected gases shall be combusted in process furnaces if this is feasible. If this is not feasible, the gases shall be fed into a flare.

- 3. Waste gases continually produced by processing systems and waste gases occurring during the regeneration of catalysts, inspections and cleaning operations shall be fed into a post-combustion facility, or equivalent measures to reduce emissions shall be applied.
- 4. Gaseous and vaporous organic compounds shall be indicated as total organic carbon.
- 5. Fugitive emissions of volatile organic substances shall be minimized according to the respective Best Available Techniques Economically Achievable Guidance Document.
- 6. For compliance check a "Leakage Detection and Repair Program" shall be implemented as outlined in the Guidance Document on Leak Detection and Repair Program for Oil and Gas Industries in a manner as specified and approved by the Director General.

2.3 Identification of Sensitive Receptors

The identified sensitive receptors are shown in **Volume 1**, **Chapter 3** and **Chapter 4**.

2.4 Sources of Air Emission

Sources of air emissions captured in this Additional Information report includes the following

- a) Emission sources from the EURO 5 MOGAS Units and Olefins Storage Tankages
- b) Emission Sources from the Refinery Cracker Complex
- c) Emission Sources from RAPID Complex which include the Petrochemical Complex, Utilities and Pengerang Cogeneration Plant.

The list of emission sources are tabulated in Table 2-3. The data from other RAPID components and the model set up for the emission sources are assumed to be the same and remain unchanged in the air dispersion model setup.

Table 2-3: List of Air Emission Sources Identified for RAPID Complex

No.	Process Unit	Description						
Α	. Refinery Cracker Complex							
1.	Residue Fluidised Catalytic Cracking	RFCC1	Flue Gas Vent					
2.		RFCC2	Flue Gas Vent					
3.	Crude Distillation Unit	CDU1	Crude Heater					
4.		CDU2	Crude Heater					
5.		ARDS1	Reactor Heater					
6.		ARDS2	Reactor Heater					
7.	Atmospheric Residue Desulphurization Unit	ARDS3	Fractionator Feed Heater					
8.	· · · · · · · · · · · · · · · · · · ·	ARDS4	Reactor Heater					
9.		ARDS5	Reactor Heater					
10.	Diosol Hydrotroating Unit							
12	Kerosene Hydrotreating Unit	KHT1	Heater					
13		CNHT1	Heater					
	Cracked Naphtha Hydrotreating Unit	CNHT2						
14.	••••••••••••••••••••••••••••••••••••••	(source from EURO5 MOGAS unit)	Heater					
15.	Naphtha Hydrotreating Unit	NHT1	Heater					
16.		CCR1	Heater					
17.		CCR2	Heater					
18.	Continuous Catalytic Reformer	CCR3	Heater					
19.		CCR4	Heater					
20.		CCR5	Vent					
21.			Heater					
22.		HPU2	Heater					
23.	Hydrogon Broduction Unit	НРОЗ						
24.	Hydrogen Froduction Onlic	HPU5	Degasifier Vent					
20.		HPU6	Degasifier Vent					
27.		HPU7	CO2 stripper vent					
28.	Acid Flare System	AF1	Acid Flare					
29.	Refinery Flare System	RF1	Main Flare					
30.		SRU1	Wet Scrubber					
31.	Sulphur Recovery Unit	SRU2	Wet Scrubber					
32.		SRU3	Wet Scrubber					
33.		SSU1	Flue Gas Vent					
34.		SSU2	Flue Gas Vent					
35.	Sulphur Solidification Units	SSU3	Flue Gas Vent					
30.		<u> </u>	Flue Gas Vent					
37.		SCC1	Cracking Heater (normal)					
39		SCC2	Cracking Heater (normal)					
40.		SCC3	Cracking Heater (normal)					
41.		SCC4	Cracking Heater (normal)					
42.	Steam Cracker Complex	SCC5	Cracking Heater (normal)					
43.		SCC6	Cracking Heater (decoking)					
44.		PGH1	PGH Second Stage Reactor Vent					
45.		SCCF1	Flare					
46.	Refinery Tank Farm	RTFF1	Flare					
47.	Olerin Storage		Cold Flare					
B	Petrochemical Complex							
1.	EOEG Thermal Oxidiser	TOX1	Thermal Oxidiser					
2.	Polymer Tank Farm Thermal Oxidiser	TOX4	Thermal Oxidiser					
3.	SCC Tank Farm Thermal Oxidiser	TOX6	Thermal Oxidiser					
4.	PP Regenerative Thermal Oxidiser	TOX7	Thermal Oxidiser					
5.	C4-INA Boiler	BOILER1	Boiler					
6.	Petrochemical Common Flare	PCF1	Flare					
7.	C4-INA Flare	C4-INA Flare	Flare					
С	Pengerang Cogeneration Plant (PCP)							
1.	HRSG Main Stack	PCP1	Vent					
2.	HRSG Main Stack	PCP2	Vent					
3.	HRSG Main Stack	PCP3	Vent					
4.	HRSG Main Stack	PCP4	Vent					
D	. Utilities							
1	Boilers HP Stack	l Itilities1	Vent					
2	Boilers HP Stack		Vent					
3.	Boilers HHP Stack	Utilities3	Vent					

2.5 Modelling Scenarios

Modelling was conducted for cumulative emissions from all process units in the Refinery and Cracker Complex and cumulative emissions from the Refinery and Cracker Complex and all RAPID components. Three operating condition scenarios, namely normal, abnormal and emergency operating condition were assessed.

2.5.1 Normal Operating Condition Scenario

- Normal Scenario is based on normal operating conditions with emissions meeting or below stipulate emission limits from all sources;
- Data input is based on design data input for continuous emissions when plants are in operation with normal design conditions.
- RAPID Complex design philosophy ensures that VOCs and acid gases containing toxic pollutants are combusted at the thermal oxidizers or acid flare to ensure only traces of these pollutants are released into the atmosphere and meeting compliance and health limit. All vents during the emergency conditions (pressure built up/fire/power failure event) are routed to the flare system.

2.5.2 Abnormal Operating Condition Scenario

- Abnormal scenario is based on only one emission control failure event at a time or based on the worst-case pollutant load released from a selected failure event.
- During abnormal operation of Refinery Cracker Complex process units, waste gasses are release to the atmosphere and this is expected to be temporary, thus modelling shall be modelled for 1 hour averaging time for all parameters.

2.5.3 Emergency Operating Condition Scenario

- Emergency scenario is based on full load of the refinery flare in the event of total failure of all emission controls in the refinery and all untreated emissions are directed to the refinery flare. There is no venting of untreated gaseous pollutants.
- Operating philosophy for all RAPID facilities shall be that during fire and power failure cases, all vented emissions shall be routed to the flare system.
- For the selection of the emergency air dispersion modeling scenario shall be one flare failure at a time and selection of the worst-case scenario will be from the highest flare load. The highest flare load shall be the refinery flare.
- Study had been made by considering Refinery flare in the event where there is general electrical power failure where the load is coming from refinery flare and acid flare load.
- Model data input for refinery flare stack are as below:

92 meters						
2.13 meters						
20 m/s (default value)						
1000 °C (default value)						
21,503,453 Nm ³ /hr.						
ate (g/s):						
608.3						
365.0						
492.9						
2682.2						
6366.0						
5397.2						
69.3						

During emergency operation of Refinery Cracker Complex, the waste gasses are flared and this is expected to be temporary, thus the modelling shall be

modelled for 1 hour averaging time for all parameters. This assumption represents the most conservative estimation of emergency operation.

Other RAPID components remain as in normal operating condition when other RAPID components are included in the cumulative emissions modelling assessment.

2.5.4 Model Setup

AERMOD Version 15181 was used in this Additional Information study. AERMOD is a refined dispersion model for simple and complex terrain for receptors within 50 km of a modelled source. AERMOD is a steady-state plume model. In the stable boundary layer (SBL), it assumes the concentration distribution to be Gaussian in both the vertical and horizontal planes. In the convective boundary layer (CBL), the horizontal distribution is also assumed to be Gaussian, but the vertical distribution is described with a bi-Gaussian probability density function (pdf).

Additionally, in the CBL, AERMOD treats "plume lofting," whereby a portion of plume mass, released from a buoyant source, rises to and remains near the top of the planetary boundary layer (PBL) before becoming mixed into the CBL. AERMOD also tracks any plume mass that penetrates into the elevated stable layer, and then allows it to re-enter the boundary layer when and if appropriate. For sources in both the CBL and the SBL, AERMOD treats the enhancement of lateral dispersion resulting from plume meander.

AERMOD incorporates current concepts about flow and dispersion in complex terrain. Where appropriate, the plume is modelled as either impacting and/or following the terrain, thus AERMOD removes the need for defining complex terrain regimes. All terrain is handled in a consistent and continuous manner while considering the dividing streamline concept in stably stratified conditions.

2.5.5 Modelling Input Data

The inputs in the model set up include the followings:

- Emission sources
- Emission rate
- Meteorological data
- Local terrain and receptor grid
- Sensitive receptor locations.

For this study, five years of hourly meteorological data (surface and upper air data) for the years 2010 to 2014 generated by the Mesoscale Meteorological Model (MM5) was used in the modelling.

The effect of terrain on dispersion was accounted in the study.

A multi-tier receptor grid extending up to 15 km from the RAPID boundary embedded with 11 sensitive receptors was used for this modelling exercise. The sensitive receptors with its coordinates are listed in **Volume 1, Chapter 3 and Chapter 4.**

2.5.6 Emission Sources and Characteristics

Tabulated below in **Table 2-4 – Table 2-6** are the source characteristics of the Refinery and Cracker Complex and other RAPID components emission sources used in the dispersion modelling.

	Table 2-4: Inventory of Current Air Pollution Sources and Emission Characteristics for the RAPID Refinery Cracker Complex (Normal Operation)																	
	Source		Stack	Diameter	Exit	Exit	Volume Flow	UTM Coordina (r	ite (Zone 48 N) n)				En	nission l	Rate (g/	s)		
No	ID	Description	Height (m)	(m)	Velocity (m/s)	Temperature (⁰C)	Rate (Nm ³ /hr)	x	Y	PM ₁₀	PM _{2.5}	NO ₂	со	SO ₂	NH ₃	NMVOC	Methanol	H ₂ S
1	RFCC1	Flue Gas Stack	109	4.5	14.58	60.55	683,313	407078.30	151599.36	1.5	0.460	46.4	32.0	25.0	-	-	-	-
2	RFCC2	Flue Gas Stack	109	4.5	14.58	60.55	683,313	407308.57	151599.36	1.5	0.460	46.4	32.0	25.0	-	-	-	-
3	CDU1	Crude Heater	67	2.87	12.27	201	164,621	407293.38	151114.65	0.089	0.089	2.9	1.0	0.572	-	-	-	-
4	CDU2	Crude Heater	67	2.87	12.27	201	164,621	407293.38	151066.95	0.089	0.089	2.9	1.0	0.572	-	-	-	-
5	ARDS1	Reactor Heater	61.5	1.15	12.51	164	29,229	407136.48	151467.32	0.019	0.019	0.389	0.2	0.100	-	-	-	-
6	ARDS2	Reactor Heater	61.5	1.15	12.51	164	29,229	407019.64	151466.58	0.019	0.019	0.389	0.2	0.100	-	-	-	-
7	ARDS3	Fractionator Feed Heater	50	0.65	8.64	178	6,249	407022.33	151249.38	0.008	0.008	0.169	0.1	0.044	-	-	-	-
8	ARDS4	Reactor Heater	61.5	1.15	8.68	164	20,280	406963.68	151466.59	0.019	0.019	0.389	0.2	0.100	-	-	-	-
9	ARDS5	Reactor Heater	61.5	1.15	8.68	164	20,280	407192.46	151467.33	0.019	0.019	0.389	0.2	0.100	-	-	-	-
10	ARDS6	Fractionator Feed Heater	50	0.65	8.64	178	6,249	407200.33	151249.39	0.008	0.008	0.169	0.1	0.044	-	-	-	-
11	DHT1	Diesel Hydrotreating (DHT)	47.6	1.68	7.62	254	31,509	407623.24	151616.53	0.016	0.010	1.4	-	0.200	-	0.069	-	-
12	KHT1	Kerosene Hydrotreating (KHT)	39.85	0.88	13	325	12,998	407626.81	151726.48	0.007	0.004	0.060	-	0.086	-	0.029	-	-
13	CNHT1	Cracked Naphtha Hydrotreating (CNHT)	51	0.66	15	348	8,124	407626.81	151831.96	0.004	0.003	0.350	-	0.052	-	0.018	-	-
14	CNHT2	Cracked Naphtha Hydrotreating (CNHT) – EURO5 MOGAS unit	51	0.66	15	348	9,623	407717.05	151757.31	0.011	0.011	0.744	0.117	0.031	-	0.022	-	-
15	NHT1	Naphtha Hydrotreating (NHT)	38.3	0.88	12	315	12,203	407593.93	151892.74	0.006	0.004	0.517	-	0.078	-	0.027	-	-
16	CCR1	Continuous Catalytic Reformer (CCR)	66	1.95	7.5	174.7	52,051	407661.00	151956.00	0.025	0.015	3.3	-	0.311	-	0.107	-	-
17	CCR2	Continuous Catalytic Reformer (CCR)	66	1.95	7.5	174.7	52,051	407661.00	151956.00	0.025	0.015	3.3	-	0.311	-	0.107	-	-
18	CCR3	Continuous Catalytic Reformer (CCR)	66	1.95	7.5	174.7	52,051	407661.00	151956.00	0.025	0.015	3.3	-	0.311	-	0.107	-	-

mal Or ration)

No	Source	Description	Stack	Diameter	Exit	Exit	Volume Flow	UTM Coordinate (Zone 48 N) (m)		Emission Rate (g/s)								
NO	ID	Description	(m)	(m)	(m/s)	(°C)	Rate (Nm ³ /hr)	х	Y	PM ₁₀	PM _{2.5}	NO ₂	со	SO ₂	NH ₃	NMVOC	Methanol	H₂S
19	CCR4	Continuous Catalytic Reformer (CCR)	66	1.95	7.5	174.7	52,051	407661.00	151956.00	0.025	0.015	3.3	-	0.311	-	0.107	-	-
20	CCR5	Continuous Catalytic Reformer (CCR)	23.2	0.64	0.46	44	344	407661.00	151948.88	-	-	-	-	-	-	-	-	-
21	HPU1	Hydrogen Production (HPU)	45	2.75	20.1	150	277,435	407510.45	151421.28	-	-	4.8	2.5	0.260	-	0.586	-	-
22	HPU2	Hydrogen Production (HPU)	45	2.75	20.1	150	277,435	407605.62	151421.21	-	-	4.8	2.5	0.260	-	0.586	-	-
23	HPU3	Hydrogen Production (HPU)	45	2.75	20.1	150	277,435	407707.59	151421.15	-	-	4.8	2.5	0.260	-	0.586	-	-
24	HPU4	Hydrogen Production (HPU) Degasifier Vent	21.2	0.08	10.224	40	161	407476.60	151491.27	-	-	-	0.527	-	0.002	-	-	-
25	HPU5	Hydrogen Production (HPU) Degasifier Vent	21.2	0.08	10.224	40	161	407571.68	151491.21	-	-	-	0.527	-	0.002	-	0.045	-
26	HPU6	Hydrogen Production (HPU) Degasifier Vent	21.2	0.08	10.224	40	161	407667.65	151491.15	-	-	-	0.527	-	0.002	-	0.045	-
28	HPU7	Hydrogen Production (HPU) CO2 stripper vent	22.2	0.25	22	50	3,286	407621.66	151342.13	-	-	-	1.4	-	-	-	0.045	-
29	SRU1	SRU Unit 1	105	2.5	8.38	74.3	116,419	407213.08	152216.63	-	-	10.3	2.3	3.4	-	-	-	0.167
30	SRU2	SRU Unit 2	105	2.5	8.38	74.3	116,419	407312.43	152216.63	-	-	10.3	2.3	3.4	-	-	-	0.167
31	SRU3	SRU Unit 3	105	2.5	8.38	74.3	116,419	407417.96	152216.63	-	-	10.3	2.3	3.4	-	-	-	0.167
32	SSU1	SSU Unit 1	12.1	0.39	15.32	80	5,096	407711.37	152231.87	-	-	-	-	0.083	-	-	-	-
33	SSU2	SSU Unit 2	12.1	0.39	15.32	80	5,096	407711.37	152217.22	-	-	-	-	0.083	-	-	-	-
34	SSU3	SSU Unit 3	12.1	0.39	15.32	80	5,096	407711.37	152201.93	-	-	-	-	0.083	-	-	-	-
35	SSU4	SSU Unit 4	12.1	0.39	15.32	80	5,096	407711.37	152190.08	-	-	-	-	0.083	-	-	-	-
36	SSU5	SSU Unit 5	12.1	0.39	15.32	80	5,096	407711.37	152178.23	-	-	-	-	0.083	-	-	-	-
37	SCC1	Cracking Heater (normal)	59.2	3.3	10.1	112.85	220,067	406166.00	151560.20	0.145	0.116	8.6	2.6	-	-	-	-	-
38	SCC2	Cracking Heater (normal)	59.2	3.3	10.1	112.85	220,067	406166.00	151541.20	0.145	0.116	8.6	2.6	-	-	-	-	-

No	Source	Description	Stack	Diameter	Exit	Exit	Volume Flow	UTM Coordina (n	ite (Zone 48 N) n)				En	nission	Rate (g/	s)		
NO	ID	Description	(m)	(m)	(m/s)	(°C)	Rate (Nm ³ /hr)	х	Y	PM ₁₀	PM _{2.5}	NO ₂	со	SO2	NH ₃	NMVOC	Methanol	H₂S
39	SCC3	Cracking Heater (normal)	59.2	3.3	10	105.85	221,913	406166.00	151522.00	0.147	0.117	8.7	2.6	-	-	-	-	-
40	SCC4	Cracking Heater (normal)	59.2	3.3	10	105.85	221,913	406166.00	151502.50	0.147	0.117	8.7	2.6	-	-	-	-	-
41	SCC5	Cracking Heater (normal)	59.2	3.3	10	105.85	221,913	406165.90	151483.10	0.147	0.117	8.7	2.6	-	-	-	-	-
42	SCC6	Cracking Heater (decoking)	59.2	3.3	11.1	299.85	162,926	406165.90	151463.70	1.8	1.8	7.5	1.8	-	-	-	-	-

Table 2-5: Inventory of Emission Sources Form Other RAPID Complex Components

No	Source	Description	Description Stack Height Diameter Exit Velocity Exit Temperature (m)					te (Zone 48 N) n)			UT	M Coor	dinate (2	Zone 48 N) (m)			
NO	ID	Description	(m)	(m)	(m/s)	(C)	х	Y	PM ₁₀	PM _{2.5}	NO ₂	со	SO ₂	NH ₃	NMVOC	Methanol	H ₂ S
Α.	Petrochemi	cal Complex															
1	TOX1	EOEG Thermal Oxidiser	30	1	8	200	405246.36	151618.80	0.126	0.072	1.0	3.2	-	-	-	-	-
2	TOX4	Polymer Tank Farm Thermal Oxidiser	45	1	8	200	405747.31	150913.71	0.136	0.078	1.0	3.4	-	-	-	-	-
3	TOX6	SCC Tank Farm Thermal Oxidiser	45	1	8	200	406021.25	151809.11	0.136	0.078	1.0	3.4	-	-	-	-	-
4	TOX7	PP Regenerative Thermal Oxidiser	45	1	8	200	406028.56	150538.71	0.136	0.078	1.0	3.4	-	-	-	-	-
5	BOILER1	C4 INA Boiler	25	1.3	9.84	150	406034.75	151157.79	0.316	0.180	2.4	8.0	-	-	-	-	-
6	FLARE1	C4 INA Flare	100	0.6	20 Note2	1000 Note2	406072.84	151145.05	-	-	19.6	106.8	-	-	-	-	-
7	PCF1	Petrochemical Common Flare	125	1.5	20 Note2	1000 Note2	406036.41	152179.97	-	-	0.083	0.483	-	-	-	-	-
В.	Pengerang	Cogeneration Plant (PCP)															
1	PCP1	HRSG Main Stack	40	8.5	51.48	680	408283.40	152056.60	2.2	2.2	43.5	27.4	1.1	-	-	-	-
2	PCP2	HRSG Main Stack	40	8.5	51.48	680	408239.58	152056.60	2.2	2.2	43.5	27.4	1.1	-	-	-	-
3	PCP3	HRSG Main Stack	40	8.5	51.48	680	408102.58	152056.60	2.2	2.2	43.5	27.4	1.1	-	-	-	-
4	PCP4	HRSG Main Stack	40	8.5	51.48	680	408054.81	152056.60	2.2	2.2	43.5	27.4	1.1	-	-	-	-
C.	Utilities																
1	Utilities1	Boilers HP	68	2.5	8.82	270	406503.95	151668.69	0.081	0.081	5.0	0.811	0.203	-	-	-	-
2	Utilities2	Boilers HP	68	2.5	8.82	270	406544.47	151669.23	0.081	0.081	5.0	0.811	0.203	-	-	-	-
3	Utilities3	Boilers HHP	83	3.5	12.69	144	406464.34	151668.7	0.297	0.297	5.0	3.0	0.747	-	-	-	-

Note:

Note1: Effective flare calculation

Note2: Default value

Na	Source	Description	Stack	Diameter	Exit	Exit	Volume Flow	UTM Coordina (r	ate (Zone 48 N) n)					Emiss	ion Rat	e (g/s)			
NO	ID	Description	(m)	(m)	(m/s)	(⁰C)	(Nm ³ /hr)	х	Y	PM ₁₀	PM _{2.5}	NO ₂	со	SO ₂	NH ₃	NMVOC	Methanol	H₂S	UHC*
1	RFCC1	Flue Gas Stack Note1	109	4.5	18.23	289.94	596,455	407078.30	151599.36	22.4	7.010	41.9	27.9	700	-	-	-	-	-
2	RFCC2	Flue Gas Stack	109	4.5	14.58	60.55	683,313	407308.57	151599.36	1.5	0.460	46.4	32.0	25.0	-	-	-	-	-
3	CDU1	Crude Heater	67	2.87	12.27	201	164,621	407293.38	151114.65	0.089	0.089	2.9	1.0	0.572	-	-	-	-	-
4	CDU2	Crude Heater	67	2.87	12.27	201	164,621	407293.38	151066.95	0.089	0.089	2.9	1.0	0.572	-	-	-	-	-
5	ARDS1	Reactor Heater	61.5	1.15	12.51	164	29,229	407136.48	151467.32	0.019	0.019	0.389	0.2	0.100	-	-	-	-	-
6	ARDS2	Reactor Heater	61.5	1.15	12.51	164	29,229	407019.64	151466.58	0.019	0.019	0.389	0.2	0.100	-	-	-	-	-
7	ARDS3	Fractionator Feed Heater	50	0.65	8.64	178	6,249	407022.33	151249.38	0.008	0.008	0.169	0.1	0.044	-	-	-	-	-
8	ARDS4	Reactor Heater	61.5	1.15	8.68	164	20,280	406963.68	151466.59	0.019	0.019	0.389	0.2	0.100	-	-	-	-	-
9	ARDS5	Reactor Heater	61.5	1.15	8.68	164	20,280	407192.46	151467.33	0.019	0.019	0.389	0.2	0.100	-	-	-	-	-
10	ARDS6	Fractionator Feed Heater	50	0.65	8.64	178	6,249	407200.33	151249.39	0.008	0.008	0.169	0.1	0.044	-	-	-	-	-
11	DHT1	Diesel Hydrotreating (DHT) ^{Note1}	47.6	1.68	11.7	508	32,649	407623.24	151616.53	0.017	0.01	1.5	-	0.209	-	0.071	-	-	-
12	KHT1	Kerosene Hydrotreating (KHT)	39.85	0.88	13	325	12,998	407626.81	151726.48	0.007	0.004	0.060	-	0.086	-	0.029	-	-	-
13	CNHT1	Cracked Naphtha Hydrotreating (CNHT)	51	0.66	15	348	8,124	407626.81	151831.96	0.004	0.003	0.350	-	0.052	-	0.018	-	-	-
14	CNHT2	Cracked Naphtha Hydrotreating (CNHT) – EURO5 MOGAS unit	51	0.66	15	348	9,623	407717.05	151757.31	0.011	0.011	0.744	0.117	0.031	-	0.022	-	-	-
15	NHT1	Naphtha Hydrotreating (NHT)	38.3	0.88	12	315	12,203	407593.93	151892.74	0.006	0.004	0.517	-	0.078	-	0.027	-	-	-
16	CCR1	Continuous Catalytic Reformer (CCR)	66	1.95	7.5	174.7	52,051	407661.00	151956.00	0.025	0.015	3.3	-	0.311	-	0.107	-	-	-
17	CCR2	Continuous Catalytic Reformer (CCR)	66	1.95	7.5	174.7	52,051	407661.00	151956.00	0.025	0.015	3.3	-	0.311	-	0.107	-	-	-
18	CCR3	Continuous Catalytic Reformer (CCR)	66	1.95	7.5	174.7	52,051	407661.00	151956.00	0.025	0.015	3.3	-	0.311	-	0.107	-	-	-

Table 2-6: Inventory of Current Air Pollution Sources and Emission Characteristics for the RAPID Refinery Cracker Complex (Abnormal Operation)

Na	Source	Description	Stack	Diameter	Exit	Exit	Volume Flow	UTM Coordina (r	nte (Zone 48 N) n)					Emiss	ion Rate	e (g/s)			
NO	ID	Description	(m)	(m)	(m/s)	(⁰C)	(Nm ³ /hr)	x	Y	PM ₁₀	PM _{2.5}	NO ₂	со	SO ₂	NH ₃	NMVOC	Methanol	H ₂ S	UHC*
19	CCR4	Continuous Catalytic Reformer (CCR)	66	1.95	7.5	174.7	52,051	407661.00	151956.00	0.025	0.015	3.3	-	0.311	-	0.107	-	-	-
20	CCR5	Continuous Catalytic Reformer (CCR)	23.2	0.64	0.46	44	344	407661.00	151948.88	-	-	-	-	-	-	-	-	-	-
21	HPU1	Hydrogen Production (HPU) ^{Note1}	45	2.75	10.3	150	142,168	407510.45	151421.28	-	-	9.2	2.2	0.299	-	0.586	-	-	-
22	HPU2	Hydrogen Production (HPU) ^{Note1}	45	2.75	10.3	150	142,168	407605.62	151421.21	-	-	9.2	2.2	0.299	-	0.586	-	-	-
23	HPU3	Hydrogen Production (HPU) Note1	45	2.75	10.3	150	142,168	407707.59	151421.15	-	-	9.2	2.2	0.299	-	0.586	-	-	-
24	HPU4	Hydrogen Production (HPU) Degasifier Vent	21.2	0.08	10.224	40	161	407476.60	151491.27	-	-	-	0.527	-	0.002	-	-	-	-
25	HPU5	Hydrogen Production (HPU) Degasifier Vent	21.2	0.08	10.224	40	161	407571.68	151491.21	-	-	-	0.527	-	0.002	-	0.045	-	-
26	HPU6	Hydrogen Production (HPU) Degasifier Vent	21.2	0.08	10.224	40	161	407667.65	151491.15	-	-	-	0.527	-	0.002	-	0.045	-	-
27	HPU7	Hydrogen Production (HPU) CO2 stripper vent	22.2	0.25	22	50	3,286	407621.66	151342.13	-	-	-	1.4	-	-	-	0.045	-	-
28	AF1	Acid Flare System	92	1.83	20	1000	40,630	406610.19	152213.44	0.497	0.298	0.214	1.2	6.0	-	1.9	-	-	-
29	SRU1	SRU Unit 1 Note1	105	2.5	10.7	352	82,618	407213.08	152216.63	-	-	14.6	3.2	4.9	-	-	-	0.222	-
30	SRU2	SRU Unit 2	105	2.5	8.38	74.3	116,419	407312.43	152216.63	-	-	10.3	2.3	3.4	-	-	-	0.167	-
31	SRU3	SRU Unit 3	105	2.5	8.38	74.3	116,419	407417.96	152216.63	-	-	10.3	2.3	3.4	-	-	-	0.167	-
32	SSU1	SSU Unit 1	12.1	0.39	15.32	80	5,096	407711.37	152231.87	-	-	-	-	0.083	-	-	-	-	-
33	SSU2	SSU Unit 2	12.1	0.39	15.32	80	5,096	407711.37	152217.22	-	-	-	-	0.083	-	-	-	-	-
34	SSU3	SSU Unit 3	12.1	0.39	15.32	80	5,096	407711.37	152201.93	-	-	-	-	0.083	-	-	-	-	-
35	SSU4	SSU Unit 4	12.1	0.39	15.32	80	5,096	407711.37	152190.08	-	-	-	-	0.083	-	-	-	-	-
36	SSU5	SSU Unit 5	12.1	0.39	15.32	80	5,096	407711.37	152178.23	-	-	-	-	0.083	-	-	-	-	-

No Sc	Source	Description	Stack	Diameter	Exit	Exit	Volume Flow	UTM Coordina (r	te (Zone 48 N) n)					Emiss	ion Rat	e (g/s)			
NO	ID	Description	(m)	(m)	(m/s)	(°C)	(Nm ³ /hr)	х	Y	PM ₁₀	PM _{2.5}	NO ₂	со	SO ₂	NH ₃	NMVOC	Methanol	H₂S	UHC*
37	SCC1	Cracking Heater (normal)	59.2	3.3	10.1	112.85	220,067	406166.00	151560.20	0.145	0.116	8.6	2.6	-	-	-	-	-	-
38	SCC2	Cracking Heater (normal)	59.2	3.3	10.1	112.85	220,067	406166.00	151541.20	0.145	0.116	8.6	2.6	-	-	-	-	-	-
39	SCC3	Cracking Heater (normal)	59.2	3.3	10	105.85	221,913	406166.00	151522.00	0.147	0.117	8.7	2.6	-	-	-	-	-	-
40	SCC4	Cracking Heater (normal)	59.2	3.3	10	105.85	221,913	406166.00	151502.50	0.147	0.117	8.7	2.6	-	-	-	-	-	-
41	SCC5	Cracking Heater (normal)	59.2	3.3	10	105.85	221,913	406165.90	151483.10	0.147	0.117	8.7	2.6	-	-	-	-	-	-
42	SCC6	Cracking Heater (decoking)	59.2	3.3	11.1	299.85	162,926	406165.90	151463.70	1.8	1.8	7.5	1.8	-	-	-	-	-	-
43	SCCF1	SCC Flare Note1	150	2.2	0.241	1000	708	406000.00	152230.00	2.2	2.8	1.4	5.6	-	-	-	-	-	-
44	PGH1	PGH Second Stage Reactor ^{Note1}	34.4	0.976	33.7	479.85	32925	405905.00	151635.00	-	-	-	-	39.2	-	-	-	-	-
45	RTFF1	Refinery Tank Farm Flare ^{Note1}	24	0.4572	20	1000	2536	406831.06	149597.35	-	-	35.0	-	733.0	-	-	-	8.0	72.0
46	CF1	Olefin Storage Cold Flare ^{Note1}	24	0.4572	20	1000	2536	406893.14	149657.04	-	-	5.7	30.8	-	-	-	-	-	-

Note: Note1: Abnormal operation UHC*: unburnt hydrocarbon

2.6 Model Output

The following iso-contours were generated in accordance with MAAQS, 2013 requirements and other reference values as shown in **Table 2-7** below.

Parameter	Averaging Time
TSP	Maximum 24-hour and annual average incremental concentration
PM ₁₀	Maximum 24-hour and annual average incremental concentration
PM _{2.5}	Maximum 24-hour and annual average incremental concentration
NO ₂	Maximum 1-hour and 24-hour average incremental concentration
CO	Maximum 1-hour and 8-hour average incremental concentration
SO ₂	Maximum 1-hour and 24-hour average incremental concentration
NH ₃	Maximum 1-hour, 8-hour and 24-hour average incremental
	concentration
H_2S	Maximum 1-hour, 8-hour and 24-hour average incremental
	concentration
VOC	Maximum 1-hour, 8-hour and 24-hour average incremental
	concentration

Table 2-7: Modelling Parameters and Averaging Times

When there is non-compliance of NO_2 to the MAAQS, 2013 (2020) limit for cumulative emissions, the multi-tier approach as recommended by the United States Environmental Protection Agency (USEPA, 2011) will be adopted. The multi-tier approach is elaborated as follows:

Tier 1: Assumes full conversion of NO to NO_2 and if the predicted concentration exceeds the regulatory NO_2 guideline, the Tier 2 approach will be used.

Tier 2: Applies the ambient ratio of NO_2/NOx (nitrogen oxides) to Tier 1 results with the use of 0.80 as a default ambient ratio for the 1-hour average NO_2 standard without additional justification; and

Tier 3: Is a detailed screening method selected on a case-by-case basis. Detailed screening technique such as the OLM (Ozone Limiting Method) and PVMRM (Plume Volume Molar Ratio Method) options within AERMOD default in-stack ratio of NO₂/NOx with 0.50 in the absence of more appropriate source-specific information on in-stack ratios. For OLM, the default background ozone level of 40 ppb was

selected. The refined Tier 3 modelling has also been set up to model for results within the 98th percentile in accordance to the USEPA NAAQS 1-hour NO₂ modelling procedure.

The 24 hours average NO_2 GLC is not available for Tier 3 when performing refined modelling (with percentiles) due to the limitation of the modelling setup.

It is to be emphasised that the prescribed standard for 1-hour averaging time for NO₂ in the MAAQS 2013 (2020) is more stringent than the previous superseded MAAQG i.e. from 320 μ g/m³ to 280 μ g/m³. Hence, the prescribed standard for this current additional information study is more stringent in relation to the RAPID DEIA 2012 assessment.

3.0 MODELLING RESULTS

Modelling was conducted for cumulative emission from the Refinery and Cracker Complex and cumulative emissions for the whole RAPID Complex for the three scenarios described above. The results of the modelling are presented below.

3.1 Emission from the new EURO 5 MOGAS Units and Olefin Storage Tank

- a) Normal
 - For normal operating conditions, modelling findings indicate all pollutants emitted from EURO5 MOGAS expansion meets the Malaysia Ambient Air Quality Standards (MAAQS) Standard 2020 at all identified sensitive receptor locations. Vent is routed from the CHNT2 heater unit to atmosphere from this emission source;
 - There is no continuous emission source from Olefin Storage tankages as vent is routed to either the Cold Flare or routed to the Refinery Tank Farm Flare. The cold flare system is a

compression system that is dedicated to collect vents from pressurized ethylene storage system to be released intermittently. Hence, this dispersion will be considered under abnormal and emergency scenario.

- b) Abnormal
 - No abnormal emission modeling conducted for EURO 5 MOGAS unit. Vent is routed to CHNT2 Unit to be treated before discharged to atmosphere from this emission source;
 - During abnormal operation, the emission source from Olefin Storage tankages as vent is routed to Cold Flare located within the Olefin Storage Tank boundary. The predicted GLCs of CO is below the required respective MAAQS (Standard 2020) at all receptors for the maximum 1 hour average concentration while the predicted maximum GLC of NO₂ exceeds the stipulated limit but it is located within the RAPID Complex.

 Table 3-1 Predicted Incremental GLC and Cumulative GLC for EURO 5 MOGAS Unit (Normal Operation)

No	Scopario	Pacantor	Baseline		Normal Operating Scenario	
NO	Scenario	Neceptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Tg. Pengelih	24		0.0012	24.0
		Pengelih Naval Base	24		0.0339	24.0
		Kg. Pengerang	36		0.0019	36.0
	FURO 5 MOGAS	Kg. Sg. Kapal	25	0.0068		25.0
	Pollutant: PM	Taman Rengit Jaya	38	0.004	0.0050	38.0
	24 hrs Average	Kg. Sg. Buntu	28	(Bukit Pengerang)	0.0039	28.0
	Limit: $100 \mu a/m^3$	Kg. Bukit Buloh	31	(Dukit i engerang)	0.0017	31.0
		Kg. Sg. Rengit	20		0.0014	20.0
		Kg. Bukit Gelugor	22		0.0015	22.0
		Kg. Lepau	35		0.0017	35.0
		Kg. Pasir Gogok	20		0.0011	20.0
		Tg. Pengelih	NM		0.00003	NA
		Pengelih Naval Base	NM		0.00050	NA
		Kg. Pengerang	NM		0.00004	NA
	EURO 5 MOGAS	Kg. Sg. Kapal	NM		0.00034	NA
	Pollutant: PM ₁₀	Taman Rengit Jaya	NM	0.004	0.00032	NA
	Annual Average Limit: 40 μg/m ³	Kg. Sg. Buntu	NM	(Within RAPID)	0.00026	NA
		Kg. Bukit Buloh	NM		0.00014	NA
		Kg. Sg. Rengit	NM]	0.00009	NA
		Kg. Bukit Gelugor	NM	-	0.00007	NA
		Kg. Lepau	NM		0.00011	NA

APPENDIX 1 GASEOUS DISPERSION STUDY

Normal Operating Scenario Baseline No Scenario Receptor (Oct 2012) Max Incremental (µg/m³) Cumulative GLC (µg/m³) Receptor Incremental (µg/m³) NM 0.00004 Kg. Pasir Gogok NA NM Tg. Pengelih 0.0012 NA Pengelih Naval Base NM 0.0339 NA Kg. Pengerang NM 0.0019 NA Kg. Sg. Kapal NM 0.0068 NA **EURO 5 MOGAS** Taman Rengit Jaya NM NA 0.0050 Pollutant: PM2.5 0.034 Kg. Sg. Buntu NM 0.0039 NA 24 hrs Average (Bukit Pengerang) Kg. Bukit Buloh NM NA 0.0017 Limit: 35 µg/m³ Kg. Sg. Rengit NM NA 0.0014 Kg. Bukit Gelugor NM NA 0.0015 NM NA Kg. Lepau 0.0017 NM NA Kg. Pasir Gogok 0.0011 Tg. Pengelih NM 0.00003 NA Pengelih Naval Base NM NA 0.00050 Kg. Pengerang NM 0.00004 NA NA Kg. Sg. Kapal NM 0.00034 **EURO 5 MOGAS** Pollutant: PM_{2.5} Taman Rengit Jaya NM NA 0.00032 0.004 Annual Average (Within RAPID) Kg. Sg. Buntu NM NA 0.00026 Limit: 15 μ g/m³ Kg. Bukit Buloh NM NA 0.00014 NA Kg. Sg. Rengit NM 0.00009 Kg. Bukit Gelugor NA NM 0.00007 NA Kg. Lepau NM 0.00011

APPENDIX 1 GASEOUS DISPERSION STUDY

Normal Operating Scenario Baseline No Scenario Receptor (Oct 2012) Max Incremental (µg/m³) Cumulative GLC (µg/m³) Receptor Incremental (µg/m³) Kg. Pasir Gogok NM 0.00004 NA Tg. Pengelih <5 0.824 5.8 Pengelih Naval Base <5 25.8 30.8 Kg. Pengerang <5 1.2 6.2 Kg. Sg. Kapal <5 1.7 6.7 **EURO 5 MOGAS** <5 Taman Rengit Jaya 2.0 7.0 Pollutant: NO2 25.8 Tier1 <5 Kg. Sg. Buntu 1.8 6.8 (Bukit Pengerang) 1 hr Average Kg. Bukit Buloh <5 1.8 6.8 Limit: 280 μ g/m³ ND Kg. Sg. Rengit 1.6 1.6 Kg. Bukit Gelugor <5 1.6 6.6 Kg. Lepau <5 1.9 6.9 Kg. Pasir Gogok ND 1.1 1.1 Tg. Pengelih NM NA 0.083 Pengelih Naval Base NM NA 2.3 Kg. Pengerang NA NM 0.125 **EURO 5 MOGAS** Kg. Sg. Kapal NA NM 0.454 Pollutant: NO2 Taman Rengit Jaya NM 0.333 NA 2.3 Tier1 Kg. Sg. Buntu NM (Bukit Pengerang) NA 0.262 24 hrs Average Kg. Bukit Buloh NM NA 0.111 Limit: 70 μ g/m³ NA Kg. Sg. Rengit 0.092 NM Kg. Bukit Gelugor NM 0.102 NA Kg. Lepau NM NA 0.115

APPENDIX 1 GASEOUS DISPERSION STUDY

Normal Operating Scenario Baseline No Scenario Receptor (Oct 2012) Max Incremental (µg/m³) Receptor Incremental (µg/m³) Cumulative GLC (µg/m³) Kg. Pasir Gogok NM 0.072 NA Tg. Pengelih <5 0.034 5.0 Pengelih Naval Base <5 1.076 6.1 Kg. Pengerang <5 5.1 0.051 Kg. Sg. Kapal <5 0.071 5.1 **EURO 5 MOGAS** <5 Taman Rengit Jaya 5.1 0.082 Pollutant: SO2 1.1 <5 Kg. Sg. Buntu 0.076 5.1 1 hr Average (Bukit Pengerang) Kg. Bukit Buloh <5 0.076 5.1 Limit: 250 μ g/m³ Kg. Sg. Rengit ND 0.067 0.1 Kg. Bukit Gelugor <5 0.066 5.1 Kg. Lepau <5 5.1 0.078 Kg. Pasir Gogok ND 0.046 0.0 Tg. Pengelih NM NA 0.003 Pengelih Naval Base NM NA 0.095 Kg. Pengerang NA NM 0.005 Kg. Sg. Kapal NA NM **EURO 5 MOGAS** 0.019 Pollutant: SO₂ Taman Rengit Jaya NM 0.014 NA 0.095 24 hrs Average Kg. Sg. Buntu NM (Bukit Pengerang) NA 0.011 Limit: 80 μ g/m³ Kg. Bukit Buloh NM NA 0.005 NA Kg. Sg. Rengit 0.004 NM Kg. Bukit Gelugor NM 0.004 NA Kg. Lepau NM NA 0.005

APPENDIX 1 GASEOUS DISPERSION STUDY

Normal Operating Scenario Baseline No Scenario Receptor (Oct 2012) Max Incremental (µg/m³) Cumulative GLC (µg/m³) Receptor Incremental (µg/m³) Kg. Pasir Gogok NM NA 0.003 Tg. Pengelih NM 0.130 NA Pengelih Naval Base NM 4.1 NA Kg. Pengerang NM 0.193 NA Kg. Sg. Kapal NM 0.270 NA **EURO 5 MOGAS** Taman Rengit Jaya NM 0.308 NA Pollutant: CO 4.1 Kg. Sg. Buntu NM 0.288 NA 1 hr Average (Bukit Pengerang) NA Kg. Bukit Buloh NM 0.286 Limit: 30,000 µg/m³ NA Kg. Sg. Rengit NM 0.254 Kg. Bukit Gelugor NA NM 0.250 NA 0.296 Kg. Lepau NM NM NA Kg. Pasir Gogok 0.172 Tg. Pengelih <100 0.032 100.0 Pengelih Naval Base <100 1.1 101.1 Kg. Pengerang <100 0.050 100.1 Kg. Sg. Kapal <100 0.148 100.1 **EURO 5 MOGAS** Taman Rengit Jaya <100 0.116 100.1 Pollutant: CO 1.1 Kg. Sg. Buntu <100 0.090 100.1 8 hrs Average (Bukit Pengerang) Kg. Bukit Buloh <100 0.044 100.0 Limit: 10,000 µg/m³ Kg. Sg. Rengit ND 0.035 0.0 100.0 Kg. Bukit Gelugor <100 0.031 Kg. Lepau <100 0.052 100.1 Kg. Pasir Gogok ND 0.023 0.0

APPENDIX 1 GASEOUS DISPERSION STUDY

Normal Operating Scenario Baseline No Scenario Receptor (Oct 2012) Max Incremental (µg/m³) Cumulative GLC (µg/m³) Receptor Incremental (µg/m³) Tg. Pengelih NM 0.024 NA Pengelih Naval Base NA NM 0.764 Kg. Pengerang NM 0.036 NA Kg. Sg. Kapal NM 0.051 NA **EURO 5 MOGAS** Taman Rengit Jaya 0.058 NM NA Pollutant: NMVOC 0.764 Kg. Sg. Buntu NM NA 0.054 1 hr Average (Bukit Pengerang) Kg. Bukit Buloh NA NM 0.054 Limit: NA NA Kg. Sg. Rengit NM 0.048 Kg. Bukit Gelugor 0.047 NA NM Kg. Lepau NM 0.056 NA Kg. Pasir Gogok NM 0.032 NA Tg. Pengelih NM 0.006 NA Pengelih Naval Base NM NA 0.201 Kg. Pengerang NM 0.009 NA Kg. Sg. Kapal NM 0.028 NA **EURO 5 MOGAS** Taman Rengit Jaya NM 0.022 NA Pollutant: NMVOC 0.201 Kg. Sg. Buntu NM 0.017 NA 8 hrs Average (Bukit Pengerang) Kg. Bukit Buloh NM 0.008 NA Limit: NA NA Kg. Sg. Rengit NM 0.007 Kg. Bukit Gelugor NA NM 0.006 Kg. Lepau NM NA 0.010 Kg. Pasir Gogok NA NM 0.004 **EURO 5 MOGAS** Tg. Pengelih NA NM 0.002 0.067

APPENDIX 1 GASEOUS DISPERSION STUDY

No	Scenario	Recentor	Baseline	Normal Operating Scenario							
NO	Occitatio	Receptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)					
	Pollutant: NMVOC	Pengelih Naval Base	NM	(Bukit Pengerang)	0.067	NA					
	24 hrs Average	Kg. Pengerang	NM		0.004	NA					
	Limit: NA	Kg. Sg. Kapal	NM		0.013	NA					
		Taman Rengit Jaya	NM		0.010	NA					
		Kg. Sg. Buntu	NM		0.008	NA					
		Kg. Bukit Buloh	NM		0.003	NA					
		Kg. Sg. Rengit	NM		0.003	NA					
		Kg. Bukit Gelugor	NM		0.003	NA					
		Kg. Lepau	NM		0.003	NA					
		Kg. Pasir Gogok	NM		0.002	NA					

Table 3-2 Predicted Incremental GLC and Cumulative GLC for Olefin Storage Tank (Abnormal Operation)

No	Scenario	Recentor	Baseline		Abnormal Operating Scenario	
NO	ocenario	Neceptor	(Oct 2012)	Max Incremental (μg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Tg. Pengelih	<5		9.7	14.7
		Pengelih Naval Base	<5		128.7	133.7
		Kg. Pengerang	<5		12.0	17.0
	Olefin Storage	Kg. Sg. Kapal	<5		30.0	35.0
	Pollutant: NO.	Taman Rengit Jaya	<5	200.4	25.4	30.4
	Olefin Storage Tank Pollutant: NO2 Tier1 1 hr Average Limit: 280 µg/m³ Olefin Storage Tank Pollutant: CO 1 hr Average Limit: 30,000 µg/m³	Kg. Sg. Buntu	<5	3U8.1 (Mithin BADID)	21.5	26.5
		Kg. Bukit Buloh	<5		38.6	43.6
		Kg. Sg. Rengit	ND		16.2	16.2
		Kg. Bukit Gelugor	<5		13.5	18.5
		Kg. Lepau	<5		24.4	29.4
		Kg. Pasir Gogok	ND		14.1	14.1
		Tg. Pengelih	NM		99.1	NA
		Pengelih Naval Base	NM		714.3	NA
		Kg. Pengerang	NM		112.1	NA
		Kg. Sg. Kapal	NM		172.8	NA
		Taman Rengit Jaya	NM	1011.0	160.9	NA
		Kg. Sg. Buntu	NM	1814.0	132.1	NA
		Kg. Bukit Buloh	NM	(Western RAPID Boundary)	222.2	NA
		Kg. Sg. Rengit	NM		111.3	NA
		Kg. Bukit Gelugor	NM		87.7	NA
		Kg. Lepau	NM		147.5	NA
		Kg. Pasir Gogok	NM		84.8	NA

3.2 Cumulative Refinery and Cracker Complex

- a) Normal
 - For normal operating conditions, the max ground level concentration (GLC) for all criteria pollutants are below the MAAQS Standard 2020 except for NO₂ where the GLC limit is exceeded at Bukit Pelali (1-hour average) and Bukit Pengerang (24-hour average) as shown in Table 3-7. However, with regard to sensitive receptors, all pollutants meet the Malaysia Ambient Air Quality Standards (MAAQS) Standard 2020 at these identified sensitive receptor locations.
 - The NO₂ Tier 1 and NO₂ Tier 3 1-hour average GLC of 791.5 μ g/m³ (Bukit Pelali) and 483.1 μ g/m³ (Bukit Pelali) respectively exceeded the 1 hour averaging limit of 280 μ g/m³. With percentile analysis of the modelling results of NO₂, it is found that approximately 0.4 percentile or translated into a probability to occur at 7 days in every 5 years operating period that the NO₂ standard limit is exceeded.
 - The NO₂ Tier 1 24-hour average GLC of 98.2 μ g/m³ (Bukit Pengerang) exceeded the 24 hours averaging limit of 70 μ g/m³. With percentile analysis of NO₂, approximately 0.2 percentile or translated into a probability to occur at 4 days in every 5 years operating period that the standard limit is exceeded.
 - NO₂ emission contribution for each source in the Refinery Cracker Complex by percentage is tabulated in Table 3-3 and Table 3-4 shows the NO₂ contribution for each Refinery Cracker Complex source to the maximum GLC.
 - Predicted concentrations of ammonia (NH₃), methanol, NMVOC and hydrogen sulphide (H₂S) are further assessed in the health impact assessment.

Table 3-3: NO2 Emission Contribution from Sources in the Refinery and Cracker Complex

No. Process Unit ID emission (g/s) emission (g/s) emission (kg/hr) Odd (kg/hr) 1. Residue Fluidised RFCC1 46.4 167.0 22 2. Catalytic Cracking RFCC2 46.4 167.0 22 3. Crude Distillation Unit CDU1 2.9 10.5 1 5. . . ARDS1 0.389 1.4 <1 6. . . . ARDS1 0.389 1.4 <1 6. . . . ARDS3 0.169 0.6 <1 7. Atmospheric Residue . ARDS5 0.389 1.4 <1 9. 10. Desel Hydrotreating Unit DHT1 1.4 5.0 1 . 11. Diesel Hydrotreating Unit CNHT1 0.060 0.2 <1 13. Cracked Naphtha CNHT1 0			Source	Total of NO ₂	Total of NO ₂	Percentage
I. Residue Fluidised RFCC1 46.4 167.0 22 3. Crude Distillation Unit RFCC2 46.4 167.0 22 3. Crude Distillation Unit CDU1 2.9 10.5 1 5. 6 ARDS1 0.389 1.4 <1 6. ARDS2 0.389 1.4 <1 7. Atmospheric Residue ARDS3 0.169 0.6 <1 8. Desulphurization Unit ARDS5 0.389 1.4 <1 9. 10. ARDS5 0.389 1.4 <1 10. ARDS5 0.389 1.4 <1 11. Diesel Hydrotreating Unit DHT1 1.4 5.0 1 12. Kerosene Hydrotreating Unit KHT1 0.060 0.2 <1 13. Cracked Naphtha CNHT2 0.744 2.7 <1 14. Hydrotreating Unit NHT1 0.517 1.9 <1	No.	Process Unit	ID	emission	emission load	(%)
1. Residue Fluidised RFCC1 46.4 167.0 22 2. Catalytic Cracking RFCC2 46.4 167.0 22 3. Crude Distillation Unit CDU1 2.9 10.5 1 4. Crude Distillation Unit CDU2 2.9 10.5 1 5. Atmospheric Residue ARDS1 0.389 1.4 <1 6. Atmospheric Residue ARDS2 0.389 1.4 <1 7. Atmospheric Residue ARDS4 0.389 1.4 <1 9. Desulphurization Unit ARDS5 0.389 1.4 <1 10. Diesel Hydrotreating Unit DHT1 1.4 5.0 1 11. Diesel Hydrotreating Unit DHT1 0.400 0.2 <1 12. Kerosene Hydrotreating Unit CCR1 0.330 1.3 <1 13. Cracked Naphtha CNHT2 0.744 2.7 <1 14. Hydrotreating Unit				(g/s)	(Kg/hr)	. ,
2. Catalytic Cracking RFCC2 46.4 167.0 22 3. Crude Distillation Unit CDU1 2.9 10.5 1 5. Cude Distillation Unit CDU2 2.9 10.5 1 6. Atmospheric Residue ARDS1 0.389 1.4 <1	1.	Residue Fluidised	RFCC1	46.4	167.0	22
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2.	Catalytic Cracking	RFCC2	46.4	167.0	22
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3.	Crude Distillation Unit	CDU1	2.9	10.5	1
5. ARDS1 0.389 1.4 <1 6. ARDS2 0.389 1.4 <1	4.		CDU2	2.9	10.5	1
6. 7. 8. 9. 9. 10. Atmospheric Residue Desulphurization Unit ARDS2 ARDS3 0.389 0.169 1.4 <1 10. ARDS5 0.389 1.4 <1	5.		ARDS1	0.389	1.4	<1
7. Atmospheric Residue ARDS3 0.169 0.6 <1 8. Desulphurization Unit $ARDS4$ 0.389 1.4 <1	6.		ARDS2	0.389	1.4	<1
	7.	Atmospheric Residue	ARDS3	0.169	0.6	<1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8.	Desulphurization Unit	ARDS4	0.389	1.4	<1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9.		ARDS5	0.389	1.4	<1
11. Diesel Hydrotreating Unit DHT1 1.4 5.0 1 12. Kerosene Hydrotreating Unit KHT1 0.060 0.2 <1	10.		ARDS6	0.169	0.6	<1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11.	Diesel Hydrotreating Unit	DHT1	1.4	5.0	1
13. Cracked Naphtha CNHT1 0.350 1.3 <1 14. Hydrotreating Unit CNHT2 0.744 2.7 <1	12.	Kerosene Hydrotreating Unit	KHT1	0.060	0.2	<1
14. Hydrotreating Unit CNHT2 0.744 2.7 <1 15. Naphtha Hydrotreating Unit NHT1 0.517 1.9 <1 16.	13.	Cracked Naphtha	CNHT1	0.350	1.3	<1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.	Hydrotreating Unit	CNHT2	0.744	2.7	<1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15.	Naphtha Hydrotreating Unit	NHT1	0.517	1.9	<1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.		CCR1	3.3	12.0	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.	Continuous Catalytic	CCR2	3.3	12.0	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.	Poformor	CCR3	3.3	12.0	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.		CCR4	3.3	12.0	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.		CCR5	-	-	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21.		HPU1	4.8	17.4	2
23. Hydrogen Production HPU3 4.8 17.4 2 24. Unit HPU4 - - 0 25. HPU5 - - 0 26. HPU6 - - 0 27. HPU7 - 0 0 28. Sulphur Recovery Unit SRU1 10.3 37.1 5 30. SRU3 10.3 37.1 5 5 31. Sulphur Solidification SSU1 - - 0 32. Sulphur Solidification SSU3 - - 0 34. SSU4 - - 0 0 35. SSU5 - - 0	22.		HPU2	4.8	17.4	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23.	Ludrogon Droduction	HPU3	4.8	17.4	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24.		HPU4	-	-	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25.	Onit	HPU5	-	-	0
27. HPU7 - - 0 28. SRU1 10.3 37.1 5 29. Sulphur Recovery Unit SRU2 10.3 37.1 5 30. SRU3 10.3 37.1 5 31. SRU3 10.3 37.1 5 31. SSU1 - - 0 32. Sulphur Solidification SSU2 - 0 33. Units SSU3 - - 0 35. SSU5 - - 0	26.		HPU6	-	-	0
28. SRU1 10.3 37.1 5 29. Sulphur Recovery Unit SRU2 10.3 37.1 5 30. SRU3 10.3 37.1 5 31. SRU3 10.3 37.1 5 31. SUlphur Solidification SSU1 - - 0 33. Sulphur Solidification SSU2 - - 0 34. SSU4 - - 0 35. SSU5 - - 0	27.		HPU7	-	-	0
29. Sulphur Recovery Unit SRU2 10.3 37.1 5 30. SRU3 10.3 37.1 5 31. SRU3 10.3 37.1 5 31. SUlphur Solidification SSU1 - - 0 33. Sulphur Solidification SSU2 - - 0 34. SSU4 - - 0 35. SSU5 - - 0	28.		SRU1	10.3	37.1	5
30. SRU3 10.3 37.1 5 31.	29.	Sulphur Recovery Unit	SRU2	10.3	37.1	5
31. SSU1 - - 0 32. Sulphur Solidification SSU2 - - 0 33. Units SSU3 - - 0 34. SSU4 - - 0 35. SSU5 - - 0	30.		SRU3	10.3	37.1	5
32. Sulphur Solidification SSU2 - - 0 33. Units SSU3 - - 0 34. SSU4 - - 0 35. SSU5 - - 0	31.		SSU1	-	-	0
33. Suppur Solidification SSU3 - 0 34. Units SSU4 - - 0 35. SSU5 - - 0	32.	Sulphur Solidification Units	SSU2	-	-	0
34. SSU4 - - 0 35. SSU5 - - 0	33.		SSU3	-	-	0
35. SSU5 0	34.		SSU4	-	-	0
	35.		SSU5	-	-	0

No.	Process Unit	Source ID	Total of NO ₂ emission (g/s)	Total of NO₂ emission load (Kg/hr)	Percentage (%)
36.		SCC1	8.6	30.9	4
37.		SCC2	8.6	30.9	4
38.	Steam Cracker	SCC3	8.7	31.2	4
39.	Complex	SCC4	8.7	31.2	4
40.		SCC5	8.7	31.2	4
41.		SCC6	7.5	27.0	4
	TOTAL		212.9	766.5	100

Table 3-4: NO₂ Contribution to the Maximum GLC

Pollutant	Process Unit	Maximum Concentration (µg/m ³)	Location
	RFCC, LTU and PRU	134.3	Within RAPID
	CDU, ARDS, HCDU and FOS	85.9	Bukit Pelali
	DHT, KHT, CNHT, CCR and HPU	691.9 Note1	Bukit Pelali
NO ₂ Tier 1 - 1	SRU and SSU	72.9	Within RAPID
hour	SCC	470.7	Bukit Pelali
	Refinery Tank Farm	-	-
	Olefin Storage Tankages	-	-
	EURO5 MOGAS	25.8	Bukit Pengerang
	RFCC, LTU and PRU	24.6	Within RAPID
	CDU, ARDS, HCDU and FOS	8.4	Bukit Pelali
	DHT, KHT, CNHT, CCR and HPU	55.2 Note1	Bukit Pengerang
NO ₂ Tier 1 -	SRU and SSU	15.6	Within RAPID
24 hours	SCC	50.5	Bukit Pengerang
	Refinery Tank Farm	-	-
	Olefin Storage Tankages	-	-
	EURO5 MOGAS	-	-
NO ₂ Tier 3 - 1	RFCC, LTU and PRU	89.1	Within RAPID

ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS APPENDIX 1 GASEOUS DISPERSION STUDY

Pollutant	Process Unit	Maximum Concentration (µg/m ³)	Location
hour	CDU, ARDS, HCDU and FOS	60.7	Bukit Pelali
	DHT, KHT, CNHT, CCR and HPU	396.4 Note1	Bukit Pelali
	SRU and SSU	60.3	Within RAPID
	SCC	243.7	Bukit Pelali
	Refinery Tank Farm	-	-
	Olefin Storage Tankages	-	-
	EURO5 MOGAS	-	-

Note:

Note1: Highest concentration

- b) Abnormal
 - During abnormal operation, the predicted GLCs of CO is below the required respective MAAQS Standard 2020 at all receptors for the maximum 1 hour average concentration. However, predicted SO₂ concentrations exceed the MAAQS Standard 2020 at all receptors and the NO₂ limit is exceeded at Pengelih Naval Base and Kg Bukit Buloh (**Table 3-8**). With particulate matter PM10 and PM2.5, the predicted 1-hour average concentration is even lower than its 24-hour average limit.
 - During abnormal operation, predicted NMVOC, H₂S and UHC concentrations are significantly higher (Table 3-8) and these are assessed in the health impact assessment.
 - Analysis of source contribution of SO₂ emissions during abnormal operation scenario showed that the Refinery Tank Farm emits the highest rate of SO₂. (Table 3-5).
 - Source apportionment of the predicted highest maximum 1hour average ground level concentration of SO₂ during abnormal operation scenario also showed that the main contributor is the Refinery Tank Farm (**Table 3-6**).

ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS APPENDIX 1 GASEOUS DISPERSION STUDY

Table 3-5: SO2 Emission Contribution from Sources in the Refinery and Cracker Complex during Abnormal Operation

No.	Process Unit	Source ID	Total of SO₂ emission (g/s)	Total of SO₂ emission load (Kg/hr)	Percentage (%)
1.	Residue Fluidised	RFCC1 Note1	700.0	2,520.0	46
2.	Catalytic Cracking	RFCC2	25.0	90	2
3.	Crude Distillation Unit	CDU1	0.572	2.1	<1
4.		CDU2	0.572	2.1	<1
5.		ARDS1	0.100	0.4	<1
6.		ARDS2	0.100	0.4	<1
7.	Atmospheric Residue	ARDS3	0.044	0.2	<1
8.	Desulphurization Unit	ARDS4	0.100	0.4	<1
9.		ARDS5	0.100	0.4	<1
10.		ARDS6	0.044	0.2	<1
11.	Diesel Hydrotreating Unit	DHT1 Note1	0.209	0.8	<1
12.	Kerosene Hydrotreating Unit	KHT1	0.086	0.3	<1
13.	Cracked Naphtha	CNHT1	0.052	0.2	<1
14.	Hydrotreating Unit	CNHT2	0.031	0.11	<1
15.	Naphtha Hydrotreating Unit	NHT1	0.078	0.3	<1
16.		CCR1	0.311	1.1	<1
17.	Continuous Cotolutio	CCR2	0.311	1.1	<1
18.		CCR3	0.311	1.1	<1
19.	Reformer	CCR4	0.311	1.1	<1
20.		CCR5	-	-	-
21.		HPU1	0.229	0.8	<1
22.		HPU2	0.229	0.8	<1
23.	Hydrogon Production	HPU3	0.229	0.8	<1
24.	I Init	HPU4	-	-	-
25.	Offic	HPU5	-	-	-
26.		HPU6	-	-	-
27.		HPU7	-	-	-
28.	Flare System	AF1 Note1	6.0	21.4	<1
29.		SRU1 Note1	4.9	17.5	<1
30.	Sulphur Recovery Unit	SRU2	3.4	12.4	<1
31.		SRU3	3.4	12.4	<1
32.	Sulphur Solidification	SSU1	0.083	0.3	<1

GASEOUS DISPERSION STUDY

No.	Process Unit	Source ID	Total of SO ₂ emission (g/s)	Total of SO₂ emission load (Kg/hr)	Percentage (%)
33.	Units	SSU2	0.083	0.3	<1
34.		SSU3	0.083	0.3	<1
35.		SSU4	0.083	0.3	<1
36.		SSU5	0.083	0.3	<1
37.		SCC1	-	-	-
38.		SCC2	-	-	-
39.		SCC3	-	-	-
40.		SCC4	-	-	-
41.	Steam Cracker	SCC5	-	-	-
42.	Complex	SCC6	-	-	-
43.		PGH1 Note1	39.2	141.1	3
44.		SCCF1 Note1	-	-	-
45.	Refinery Tank Farm	RTFF1 Note1	733.0	2,638.8	48
46.	Olefin Storage	CF1 Note1	-	-	-
	TOTAL		1,519.3	5,463.6	100

Note:

Note1: Abnormal operation

Table 3-6: SO₂ Contribution to the Maximum GLC during Abnormal Operation

Pollutant	Process Unit	Maximum Concentration (µg/m³)	Location
	RFCC, LTU and PRU	295.1	Eastern Boundary of RAPID
	CDU, ARDS, HCDU and FOS	-	-
SO ₂ - 1 hour	DHT, KHT, CNHT, CCR and HPU	60.5	Bukit Pelali
(Abnormal)	SRU and SSU	55.1	Bukit Pelali
	SCC	905.4	Bukit Pelali
	Refinery Tank Farm	40,582.8 Note1	Within RAPID
	Olefin Storage Tankages	-	-

Note:

 $\textbf{Note1}: \text{Highest SO}_2 \text{ concentration contribution}$

- c) Emergency
 - During emergency operation, the predicted GLCs of CO, SO₂ and NO₂ are below the required respective MAAQS Standard 2020 at all receptors for the maximum 1 hour average concentration. (Table 3-9). With PM₁₀ and PM_{2.5}, the predicted 1-hour average concentration is even lower than its 24-hour average limit.
 - Predicted NMVOC are lower and H₂S concentrations are insignificant compared to the Arizona Ambient Air Quality Guideline levels (Table 3-9).

Table 3-7: Predicted Incremental GLC and Cumulative GLC for Refinery Cracker Complex (Normal Operation)

No	Soonaria	Bosontor	Baseline	Baseline Normal Operating Scenario		
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Tg. Pengelih	24		0.191	24.2
		Pengelih Naval Base	24		0.383	24.4
		Kg. Pengerang	36		0.217	36.2
	Refinery Cracker	Kg. Sg. Kapal	25		0.389	25.4
	Complex	Taman Rengit Jaya	38	1 0	0.391	38.4
1	Pollutant: PM₁₀ 24 hrs Average Limit: 100 μg/m ³	Kg. Sg. Buntu	28	(Bulit Dengerong)	0.368	28.4
		Kg. Bukit Buloh	31	(Bukit Pengerang)	0.396	31.4
		Kg. Sg. Rengit	20		0.280	20.3
		Kg. Bukit Gelugor	22		0.237	22.2
		Kg. Lepau	35		0.441	35.4
		Kg. Pasir Gogok	20		0.262	20.3
		Tg. Pengelih	NM		0.012	NA
		Pengelih Naval Base	NM		0.020	NA
		Kg. Pengerang	NM		0.017	NA
	Refinery Cracker	Kg. Sg. Kapal	NM		0.053	NA
	Complex	Taman Rengit Jaya	NM	0.205	0.048	NA
2	Pollutant: PM₁₀	Kg. Sg. Buntu	NM		0.037	NA
	Annual Average	Kg. Bukit Buloh	NM		0.038	NA
	Limit: 40 µg/m ³	Kg. Sg. Rengit	NM		0.027	NA
		Kg. Bukit Gelugor	NM		0.023	NA
		Kg. Lepau	NM		0.079	NA
		Kg. Pasir Gogok	NM		0.016	NA
	Refinery Cracker	Tg. Pengelih	NM		0.135	NA
	Complex	Pengelih Naval Base	NM	1.6	0.344	NA
3	Pollutant: PM _{2.5}	Kg. Pengerang	NM	(Bulkit Dengerong)	0.158	NA
	24 hrs Average	Kg. Sg. Kapal	NM	(Bukit Pengerang)	0.256	NA
	Limit: 35 µg/m ³	Taman Rengit Jaya	NM		0.265	NA

Ne	Seconaria	Beconter	Baseline	Normal Operating Scenario		
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Kg. Sg. Buntu	NM		0.241	NA
		Kg. Bukit Buloh	NM		0.245	NA
		Kg. Sg. Rengit	NM		0.178	NA
		Kg. Bukit Gelugor	NM		0.151	NA
		Kg. Lepau	NM		0.341	NA
		Kg. Pasir Gogok	NM		0.159	NA
		Tg. Pengelih	NM		0.008	NA
		Pengelih Naval Base	NM		0.015	NA
		Kg. Pengerang	NM		0.011	NA
	Refinery Cracker	Kg. Sg. Kapal	NM	0.214	0.032	NA
	Complex	Taman Rengit Jaya	NM		0.029	NA
4	Pollutant: PM _{2.5}	Kg. Sg. Buntu	NM		0.023	NA
	Annual Average	Kg. Bukit Buloh	NM		0.023	NA
	Limit: 15 μg/m [°]	Kg. Sg. Rengit	NM		0.016	NA
		Kg. Bukit Gelugor	NM		0.014	NA
		Kg. Lepau	NM		0.056	NA
		Kg. Pasir Gogok	NM		0.011	NA
		Tg. Pengelih	<5		67.2	72.2
		Pengelih Naval Base	<5		198.7	203.7
	Pofinary Cracker	Kg. Pengerang	<5		86.1	91.1
	Complex	Kg. Sg. Kapal	<5		165.0	170.0
	Pollutant: NO.	Taman Rengit Jaya	<5	791 5	123.9	128.9
5	Tier1	Kg. Sg. Buntu	<5	(Bukit Pelali)	91.5	96.5
	1 hr Average	Kg. Bukit Buloh	<5		163.8	168.8
	Limit: 280 $\mu a/m^3$	Kg. Sg. Rengit	ND		121.4	121.4
		Kg. Bukit Gelugor	<5		113.0	118.0
		Kg. Lepau	<5		146.2	151.2
		Kg. Pasir Gogok	ND		79.0	79.0
6	Refinery Cracker	Tg. Pengelih	NM	98.2	8.7	NA

APPENDIX 1 GASEOUS DISPERSION STUDY

Normal Operating Scenario Baseline Receptor No Scenario (Oct 2012) Max Incremental ($\mu g/m^3$) Receptor Incremental (µg/m³) Cumulative GLC (µg/m³) Complex Pengelih Naval Base NM (Bukit Pengerang) 28.1 NA Pollutant: NO₂ Kg. Pengerang NM 10.3 NA Tier1 Kg. Sg. Kapal NM 19.7 NA 24 hrs Average Taman Rengit Jaya NM 19.6 NA Limit: 70 µg/m³ Kg. Sg. Buntu NM 17.0 NA Kg. Bukit Buloh NM 13.8 NA Kg. Sg. Rengit NM 9.5 NA Kg. Bukit Gelugor NM 9.9 NA 16.0 NA Kg. Lepau NM NM Kg. Pasir Gogok 9.5 NA <5 14.2 19.2 Tg. Pengelih <5 Pengelih Naval Base 122.1 127.1 Kg. Pengerang <5 25.4 20.4 **Refinery Cracker** Kg. Sg. Kapal <5 78.8 83.8 Complex Taman Rengit Jaya <5 70.7 75.7 483.1 Pollutant: NO₂ Kg. Sg. Buntu <5 62.7 67.7 7 Tier3 (Bukit Pelali) <5 97.1 Kg. Bukit Buloh 92.1 1 hr Average ND Kg. Sg. Rengit 68.5 68.5 Limit: 280 μ g/m³ Kg. Bukit Gelugor <5 63.9 68.9 Kg. Lepau <5 73.1 68.1 Kg. Pasir Gogok ND 32.0 32.0 Ta. Pengelih <5 12.3 17.3 <5 Pengelih Naval Base 30.3 35.3 **Refinery Cracker** Kg. Pengerang <5 17.3 22.3 Complex <5 Kg. Sg. Kapal 56.2 61.2 Pollutant: NO₂ 99.6 254.5 Taman Rengit Jaya <5 57.8 52.8 8 Percentile (Bukit Pelali) <5 50.3 Kg. Sg. Buntu 45.3 1 hr Average Kg. Bukit Buloh <5 60.5 65.5 Limit: 280 μ g/m³ Kg. Sg. Rengit ND 48.3 48.3 Kg. Bukit Gelugor <5 41.1 36.1

Na	Seconaria	Deserter	Baseline	Normal Operating Scenario		
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Kg. Lepau	<5		50.8	55.8
		Kg. Pasir Gogok	ND		16.3	16.3
		Tg. Pengelih	NM		3.6	NA
		Pengelih Naval Base	NM		21.7	NA
	Bofinary Crooker	Kg. Pengerang	NM		4.6	NA
	Complex	Kg. Sg. Kapal	NM		16.0	NA
	Pollutant: NO. 99.8	Taman Rengit Jaya	NM	62.0	14.8	NA
9	Percentile	Kg. Sg. Buntu	NM	(Pukit Pololi)	12.2	NA
	24 hrs Average	Kg. Bukit Buloh	NM		11.4	NA
	Limit: 70 µg/m ³	Kg. Sg. Rengit	NM		8.7	NA
		Kg. Bukit Gelugor	NM		7.6	NA
		Kg. Lepau	NM		15.5	NA
		Kg. Pasir Gogok	NM		7.8	NA
		Tg. Pengelih	<5		18.8	23.8
		Pengelih Naval Base	<5		30.2	35.2
		Kg. Pengerang	<5		20.2	25.2
	Refinery Cracker	Kg. Sg. Kapal	<5		52.7	57.7
	Complex	Taman Rengit Jaya	<5	05.6	37.4	42.4
10	Pollutant: SO₂	Kg. Sg. Buntu	<5		29.1	34.1
	1 hr Average	Kg. Bukit Buloh	<5		51.2	56.2
	Limit: 250 µg/m ³	Kg. Sg. Rengit	ND		36.9	36.9
		Kg. Bukit Gelugor	<5		33.4	38.4
		Kg. Lepau	<5		51.5	56.5
		Kg. Pasir Gogok	ND		23.9	23.9
	Refinery Cracker	Tg. Pengelih	NM		2.2	NA
	Complex	Pengelih Naval Base	NM	18.0	4.5	NA
11	Pollutant: SO2	Kg. Pengerang	NM		2.2	NA
	24 hrs Average	Kg. Sg. Kapal	NM		5.0	NA
	Limit: 80 µg/m ³	Taman Rengit Jaya	NM		4.8	NA

No	Seconaria	Becenter	Baseline	Normal Operating Scenario		
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Kg. Sg. Buntu	NM		4.2	NA
		Kg. Bukit Buloh	NM		4.1	NA
		Kg. Sg. Rengit	NM		2.9	NA
		Kg. Bukit Gelugor	NM		2.7	NA
		Kg. Lepau	NM		5.7	NA
		Kg. Pasir Gogok	NM		3.3	NA
		Tg. Pengelih	NM		31.4	NA
		Pengelih Naval Base	NM		74.6	NA
		Kg. Pengerang NM		34.1	NA	
	Refinery Cracker	Kg. Sg. Kapal	NM	455.4 (Eastern side of RAPID)	87.3	NA
	Complex	Taman Rengit Jaya	NM		77.8	NA
12	Pollutant: CO	Kg. Sg. Buntu	NM		44.1	NA
	1 hr Average	Kg. Bukit Buloh	NM		455.4	NA
	Limit: 30,000 µg/m³	Kg. Sg. Rengit	NM		54.8	NA
		Kg. Bukit Gelugor	NM		50.8	NA
		Kg. Lepau	NM		72.7	NA
		Kg. Pasir Gogok	NM		37.6	NA
		Tg. Pengelih	<100		9.6	109.6
		Pengelih Naval Base	<100		26.5	126.5
		Kg. Pengerang	<100		8.5	108.5
	Refinery Cracker	Kg. Sg. Kapal	<100		21.5	121.5
	Complex	Taman Rengit Jaya	<100	204.8	41.5	141.5
13	Pollutant: CO	Kg. Sg. Buntu	<100		20.6	120.6
	8 hrs Average	Kg. Bukit Buloh	<100		204.8	304.8
	Limit: 10,000 µg/m³	Kg. Sg. Rengit	ND		11.5	11.5
		Kg. Bukit Gelugor	<100		9.9	109.9
		Kg. Lepau	<100		22.4	122.4
		Kg. Pasir Gogok	ND		10.6	10.6
14	Refinery Cracker	Tg. Pengelih	NM	1.6	0.088	NA

APPENDIX 1 GASEOUS DISPERSION STUDY

Normal Operating Scenario Baseline Receptor No Scenario (Oct 2012) Max Incremental ($\mu g/m^3$) Receptor Incremental (µg/m³) Cumulative GLC (µg/m³) Complex Pengelih Naval Base NM 0.036 NA Within RAPID Pollutant: NH₃ Kg. Pengerang NM 0.099 NA NA 1 hr Average Kg. Sg. Kapal NM 0.189 Limit: NA Taman Rengit Jaya NM 0.311 NA 0.138 Kg. Sg. Buntu NM NA Kg. Bukit Buloh NM 1.036 NA Kg. Sg. Rengit NM NA 0.103 NA Kg. Bukit Gelugor NM 0.091 NA Kg. Lepau NM 0.130 NM Kg. Pasir Gogok 0.067 NA NM Tg. Pengelih 0.023 NA NM NA Pengelih Naval Base 0.005 Kg. Pengerang NM 0.025 NA **Refinery Cracker** Kg. Sg. Kapal NM 0.066 NA Taman Rengit Jaya Complex NM NA 0.141 0.828 15 Pollutant: NH₃ NM Kg. Sg. Buntu 0.056 NA Within RAPID 8 hrs Average NM Kg. Bukit Buloh 0.535 NA Limit: NA NM NA Kg. Sg. Rengit 0.017 Kg. Bukit Gelugor NM 0.019 NA Kg. Lepau NM 0.025 NA Kg. Pasir Gogok NM 0.024 NA Tg. Pengelih NM 0.008 NA Pengelih Naval Base NA NM 0.002 Kg. Pengerang NM NA 0.011 **Refinery Cracker** Complex Kg. Sg. Kapal NM NA 0.027 0.302 Pollutant: NH₃ NA 16 Taman Rengit Jaya NM 0.043 Within RAPID 24 hrs Average Kg. Sg. Buntu NA NM 0.020 Limit: NA NM NA Kg. Bukit Buloh 0.188 Kg. Sg. Rengit NM NA 0.006 Kg. Bukit Gelugor NM 0.006 NA

No	Sconario	Pacantar	Baseline	Normal Operating Scenario		
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Kg. Lepau	NM		0.008	NA
		Kg. Pasir Gogok	NM		0.008	NA
		Tg. Pengelih	NM		1.804	NA
		Pengelih Naval Base	NM		0.740	NA
		Kg. Pengerang	NM		2.030	NA
	Refinery Cracker	efinery Cracker Kg. Sg. Kapal NM	3.850	NA		
	Complex	Taman Rengit Jaya	NM	22.2	6.337	NA
17	Pollutant: Methanol	Kg. Sg. Buntu	NM	(Within RAPID)	2.812	NA
	1 hr Average	Kg. Bukit Buloh	NM		21.148	NA
	Limit: NA	Kg. Sg. Rengit	NM		2.103	NA
		Kg. Bukit Gelugor	NM		1.855	NA
		Kg. Lepau	NM		2.645	NA
		Kg. Pasir Gogok	NM		1.359	NA
	Tg. Pengelih NM	0.476	NA			
		Pengelih Naval Base	NM		0.100	NA
		Kg. Pengerang	NM		0.507	NA
	Refinery Cracker	Kg. Sg. Kapal	NM		1.344	NA
	Complex	Taman Rengit Jaya	NM	16.0	2.887	NA
18	Pollutant: Methanol	Kg. Sg. Buntu	NM		1.135	NA
	8 hrs Average	Kg. Bukit Buloh	NM		10.917	NA
	Limit: NA	Kg. Sg. Rengit	NM		0.349	NA
		Kg. Bukit Gelugor	NM		0.394	NA
		Kg. Lepau	NM		0.510	NA
		Kg. Pasir Gogok	NM		0.498	NA
	Refinery Cracker	Tg. Pengelih	NM		0.159	NA
	Complex	Pengelih Naval Base	NM	6.2	0.033	NA
19	Pollutant: Methanol	Kg. Pengerang	NM		0.229	NA
	24 hrs Average	Kg. Sg. Kapal	NM		0.552	NA
	Limit: NA	Taman Rengit Jaya	NM		0.885	NA

No	Soonaria	Poportor	Baseline	e Normal Operating Scenario		
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Kg. Sg. Buntu	NM		0.406	NA
		Kg. Bukit Buloh	NM		3.836	NA
		Kg. Sg. Rengit	NM		0.117	NA
		Kg. Bukit Gelugor	NM		0.132	NA
		Kg. Lepau	NM		0.170	NA
		Kg. Pasir Gogok	NM		0.166	NA
		Tg. Pengelih	NM		1.087	NA
		Pengelih Naval Base	NM		15.255	NA
		Kg. Pengerang	NM		1.964	NA
	Refinery Cracker	Kg. Sg. Kapal	NM	42.2	1.967	NA
	Complex	Taman Rengit Jaya	NM		2.051	NA
20	Pollutant: NMVOC	Kg. Sg. Buntu	NM	42.2 (Rukit Pololi)	1.885	NA
	1 hr Average	Kg. Bukit Buloh	NM		2.219	NA
	Limit: NA	Kg. Sg. Rengit	NM		2.084	NA
		Kg. Bukit Gelugor	NM		1.865	NA
		Kg. Lepau	NM		1.853	NA
		Kg. Pasir Gogok	NM		1.714	NA
		Tg. Pengelih	NM		0.228	NA
		Pengelih Naval Base	NM		6.060	NA
		Kg. Pengerang	NM		0.265	NA
	Refinery Cracker	Kg. Sg. Kapal	NM		0.866	NA
	Complex	Taman Rengit Jaya	NM	0.6	0.794	NA
21	Pollutant: NMVOC	Kg. Sg. Buntu	NM	9.0 (Rukit Pongorang)	0.658	NA
	8 hrs Average	Kg. Bukit Buloh	NM	(Bukit Feligelalig)	0.444	NA
	Limit: NA	Kg. Sg. Rengit	NM		0.364	NA
		Kg. Bukit Gelugor	NM		0.379	NA
		Kg. Lepau	NM		0.516	NA
		Kg. Pasir Gogok	NM		0.305	NA
22	Refinery Cracker	Tg. Pengelih	NM	3.2	0.136	NA

APPENDIX 1 GASEOUS DISPERSION STUDY

Normal Operating Scenario Baseline Receptor No Scenario (Oct 2012) Max Incremental (µg/m³) Receptor Incremental (µg/m³) Cumulative GLC (µg/m³) Complex Pengelih Naval Base NM (Bukit Pelali) 2.033 NA Pollutant: NMVOC Kg. Pengerang NM 0.184 NA 24 hrs Average Kg. Sg. Kapal NM 0.471 NA Limit: NA Taman Rengit Jaya NM 0.464 NA 0.360 Kg. Sg. Buntu NM NA Kg. Bukit Buloh NM 0.188 NA Kg. Sg. Rengit NM 0.149 NA Kg. Bukit Gelugor NM NA 0.142 NA Kg. Lepau NM 0.206 NM Kg. Pasir Gogok NA 0.115 NM 1.240 Tg. Pengelih NA NM NA Pengelih Naval Base 0.791 Kg. Pengerang NM 1.007 NA **Refinery Cracker** Kg. Sg. Kapal NM 1.430 NA Complex Taman Rengit Jaya NM 1.266 NA 4.2 NM NA 23 Pollutant: H₂S Kg. Sg. Buntu 1.312 (Within RAPID) 1 hr Average NM Kg. Bukit Buloh 1.711 NA Limit: NA NA Kg. Sg. Rengit NM 1.281 Kg. Bukit Gelugor NM 1.307 NA Kg. Lepau NM 2.351 NA Kg. Pasir Gogok NM 0.972 NA Tg. Pengelih NM 0.155 NA Pengelih Naval Base NA NM 0.165 Kg. Pengerang NM 0.134 NA **Refinery Cracker** Complex Kg. Sg. Kapal NM 0.428 NA 2.4 Pollutant: H₂S NA 24 Taman Rengit Jaya NM 0.367 (Within RAPID) 8 hrs Average Kg. Sg. Buntu 0.339 NA NM Limit: NA NM NA Kg. Bukit Buloh 0.384 Kg. Sg. Rengit NM NA 0.302 Kg. Bukit Gelugor NM 0.216 NA

APPENDIX 1 GASEOUS DISPERSION STUDY

No	Soonaria	Bas	Baseline	Normal Operating Scenario		
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Kg. Lepau	NM		0.625	NA
		Kg. Pasir Gogok	NM		0.243	NA
		Tg. Pengelih	NM		0.096	NA
	Refinery Cracker	Pengelih Naval Base	NM		0.094	NA
		Kg. Pengerang	NM		0.087	NA
		Kg. Sg. Kapal	NM		0.170	NA
	Complex	Taman Rengit Jaya	NM	0.907	0.145	NA
25	Pollutant: H ₂ S	Kg. Sg. Buntu	NM		0.136	NA
	24 hrs Average	Kg. Bukit Buloh	NM		0.153	NA
	Limit: NA	Kg. Sg. Rengit	NM		0.120	NA
		Kg. Bukit Gelugor	NM		0.110	NA
		Kg. Lepau	NM		0.253	NA
		Kg. Pasir Gogok	NM		0.083	NA

Note:

All concentration unit in μ g/m³ NM = Not monitored

NA = Not Available

APPENDIX 1 GASEOUS DISPERSION STUDY

Table 3-8: Predicted Incremental GLC and Cumulative GLC for Refinery Cracker Complex (Abnormal Operation)

No	Soonaria	Pagantar	Baseline		Abnormal Operating Scenario	
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (μg/m³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Tg. Pengelih	NM		6.3	NA
		Pengelih Naval Base	NM		16.5	NA
		Kg. Pengerang	NM		6.1	NA
	Refinery Cracker	Kg. Sg. Kapal	NM		11.7	NA
	Complex	Taman Rengit Jaya	NM	25.1	9.9	NA
1	Pollutant: PM 10	Kg. Sg. Buntu	NM	33. i (Bukit Balali)	7.6	NA
	1 hr Average	Kg. Bukit Buloh	NM	(Dukit Pelali)	12.1	NA
	Limit: NA	Kg. Sg. Rengit	NM		9.9	NA
		Kg. Bukit Gelugor	NM		9.4	NA
		Kg. Lepau	NM		11.7	NA
		Kg. Pasir Gogok	NM		7.7	NA
		Tg. Pengelih	NM		2.5	NA
		Pengelih Naval Base	NM		3.3	NA
		Kg. Pengerang	NM		2.4	NA
	Refinery Cracker	Kg. Sg. Kapal	NM		4.5	NA
	Complex	Taman Rengit Jaya	NM		4.1	NA
2	Pollutant: PM _{2.5}	Kg. Sg. Buntu	NM	(Bukit Dongorong)	2.9	NA
	1 hr Average	Kg. Bukit Buloh	NM	(Bukit Pengerang)	4.5	NA
	Limit: NA	Kg. Sg. Rengit	NM		3.5	NA
		Kg. Bukit Gelugor	NM		3.5	NA
		Kg. Lepau	NM		4.0	NA
		Kg. Pasir Gogok	NM		2.7	NA
	Refinery Cracker	Tg. Pengelih	<5		81.7	86.7
	Complex	Pengelih Naval Base	<5		923.4	928.4
2	Pollutant: NO2	Kg. Pengerang	<5	2073.8	90.5	95.5
J	Tier1	Kg. Sg. Kapal	<5	(Within RAPID)	208.6	213.6
	1 hr Average	Taman Rengit Jaya	<5		187.7	192.7
	Limit: 280 μg/m ³	Kg. Sg. Buntu	<5		157.1	162.1

No	Soonaria	Pagantar	Baseline	Abnormal Operating Scenario		
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (μg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Kg. Bukit Buloh	<5		295.3	300.3
		Kg. Sg. Rengit	ND		119.2	119.2
		Kg. Bukit Gelugor	<5		112.5	117.5
		Kg. Lepau	<5		170.2	175.2
		Kg. Pasir Gogok	ND		106.8	106.8
		Tg. Pengelih	<5		1298.9	1303.9
		Pengelih Naval Base	<5		16620.7	16625.7
		Kg. Pengerang	<5		1542.3	1547.3
	Refinery Cracker	Kg. Sg. Kapal	<5		3740.9	3745.9
	Complex	Complex Taman Rengit Jaya	<5	40582.8	3436.2	3441.2
4	Pollutant: SO₂ 1 hr Average Limit: 250 μg/m ³	Kg. Sg. Buntu	<5	(Within RAPID)	2865.0	2870.0
		Kg. Bukit Buloh	<5		5397.5	5402.5
		Kg. Sg. Rengit	ND		2051.7	2051.7
		Kg. Bukit Gelugor	<5		1700.7	1705.7
		Kg. Lepau	<5		3056.3	3061.3
		Kg. Pasir Gogok	ND		1890.4	1890.4
		Tg. Pengelih	NM		99.1	NA
		Pengelih Naval Base	NM		714.5	NA
		Kg. Pengerang	NM		112.1	NA
	Refinery Cracker	Kg. Sg. Kapal	NM		173.2	NA
	Complex	Taman Rengit Jaya	NM	1814.0	160.9	NA
5	Pollutant: CO	Kg. Sg. Buntu	NM	(Western Boundary of	132.1	NA
	1 hr Average	Kg. Bukit Buloh	NM	RAPID)	455.5	NA
	Limit: 30,000 μg/m ³	Kg. Sg. Rengit	NM		111.3	NA
		Kg. Bukit Gelugor	NM		87.7	NA
		Kg. Lepau	NM		147.8	NA
		Kg. Pasir Gogok	NM		84.9	NA
<u>^</u>	Refinery Cracker	Tg. Pengelih	NM	57.3	1.9	NA
6	Complex	Pengelih Naval Base	NM	(Bukit Pelali)	26.0	NA

APPENDIX 1 GASEOUS DISPERSION STUDY

Abnormal Operating Scenario Baseline Receptor No Scenario (Oct 2012) Max Incremental $(\mu g/m^3)$ Cumulative GLC (μ g/m³) Receptor Incremental (µg/m³) Pollutant: NMVOC Kg. Pengerang NM 2.5 NA 1 hr Average Kg. Sg. Kapal NM 3.3 NA Limit: NA Taman Rengit Jaya NM 2.6 NA NM 2.8 NA Kg. Sg. Buntu NM Kg. Bukit Buloh 3.6 NA Kg. Sg. Rengit NM NA 2.7 Kg. Bukit Gelugor NM 2.3 NA NA Kg. Lepau NM 3.4 Kg. Pasir Gogok NM NA 2.4 Tg. Pengelih NM 24.5 NA Pengelih Naval Base NM NA 182.3 NM NA Kg. Pengerang 31.3 Kg. Sg. Kapal NM NA 45.8 **Refinery Cracker** Taman Rengit Jaya NM NA 50.1 Complex 456.1 Pollutant: H₂S 7 Kg. Sg. Buntu NM 39.9 NA (Within RAPID) 1 hr Average Kg. Bukit Buloh NM NA 62.8 Limit: NA NA Kg. Sg. Rengit NM 29.1 NA Kg. Bukit Gelugor NM 22.1 NM Kg. Lepau 38.4 NA Kg. Pasir Gogok NA NM 22.0 Ta. Penaelih NM 220.8 NA Pengelih Naval Base NM NA 1640.3 **Refinery Cracker** Kg. Pengerang NM 282.0 NA Complex 4104.6 Pollutant: **UHC** NM NA Kg. Sg. Kapal 8 412.0 (Within RAPID) 1 hr Average Taman Rengit Jaya NM 450.5 NA Limit: NA NA Kg. Sg. Buntu NM 358.8 Kg. Bukit Buloh NM NA 565.5

APPENDIX 1 GASEOUS DISPERSION STUDY

No	Sconario	Pacantar	Baseline		Abnormal Operating Scenario	
NO	ocenano	((Oct 2012)	Max Incremental (μg/m³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Kg. Sg. Rengit	NM		261.9	NA
		Kg. Bukit Gelugor	NM		198.7	NA
		Kg. Lepau	NM		345.2	NA
		Kg. Pasir Gogok	NM		198.3	NA

Note:

All concentration unit in $\mu g/m^3$ NM = Not monitored

NA = Not Available

APPENDIX 1 GASEOUS DISPERSION STUDY

Table 3-9: Predicted Incremental GLC and Cumulative GLC for Refinery Cracker Complex (Emergency Operation)

No	Soonaria	Pagantar	Baseline	ne Emergency Operating Scenario		
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Tg. Pengelih	NM	-	8.7	NA
		Pengelih Naval Base	NM		9.5	NA
		Kg. Pengerang	NM		7.6	NA
	Refinery Cracker	Kg. Sg. Kapal	NM		9.5	NA
	Complex Pollutant: PM ₁₀ 1 hr Average	Taman Rengit Jaya	NM	11.5	8.8	NA
1		Kg. Sg. Buntu	NM	(Ocean – Southern of	8.1	NA
		Kg. Bukit Buloh	NM	RAPID)	9.1	NA
	Limit: NA	Kg. Sg. Rengit	NM		9.9	NA
		Kg. Bukit Gelugor	NM	-	10.2	NA
		Kg. Lepau	NM		9.0	NA
		Kg. Pasir Gogok	NM		9.9	NA
		Tg. Pengelih	NM	-	5.2	NA
		Pengelih Naval Base	NM		5.7	NA
		Kg. Pengerang	NM		4.6	NA
	Refinery Cracker	Kg. Sg. Kapal	NM		5.7	NA
	Complex	Taman Rengit Jaya	NM	6.9	5.3	NA
2	Pollutant: PM _{2.5}	Kg. Sg. Buntu	NM	(Ocean – Southern of	4.9	NA
	1 hr Average	Kg. Bukit Buloh	NM	RAPID)	5.5	NA
	Limit: NA	Kg. Sg. Rengit	NM		5.9	NA
		Kg. Bukit Gelugor	NM		6.1	NA
		Kg. Lepau	NM	_	5.4	NA
		Kg. Pasir Gogok	NM		6.0	NA
	Refinery Cracker	Tg. Pengelih	<5		7.1	12.1
	Complex	Pengelih Naval Base	<5	0.2	7.7	12.7
2	Pollutant: NO ₂	Kg. Pengerang	<5	9.5 (Occor Southern of	6.2	11.2
	Tier1	Kg. Sg. Kapal	<5		7.7	12.7
	1 hr Average	Taman Rengit Jaya	<5	KAFID)	7.1	12.1
	Limit: 280 µg/m ³	Kg. Sg. Buntu	<5		6.6	11.6

No	Seconaria	Deserter	Baseline	Emergency Operating Scenario		
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Kg. Bukit Buloh	<5		7.4	12.4
		Kg. Sg. Rengit	ND		8.0	8.0
		Kg. Bukit Gelugor	<5		8.2	13.2
		Kg. Lepau	<5		7.3	12.3
		Kg. Pasir Gogok	ND		8.1	8.1
		Tg. Pengelih	<5		91.1	96.1
		Pengelih Naval Base	<5		99.7	104.7
	Refinery Cracker Complex Pollutant: SO ₂	Kg. Pengerang	<5		80.0	85.0
		Kg. Sg. Kapal	<5	120.4	99.3	104.3
		Taman Rengit Jaya	<5		92.2	97.2
4		Kg. Sg. Buntu	<5	(Ocean – Southern of	84.7	89.7
	1 hr Average	Kg. Bukit Buloh	<5	RAPID)	95.5	100.5
	Limit: 250 µg/m°	Kg. Sg. Rengit	ND		103.3	103.3
		Kg. Bukit Gelugor	<5		106.5	111.5
		Kg. Lepau	<5	-	93.8	98.8
		Kg. Pasir Gogok	ND		104.1	104.1
		Tg. Pengelih	NM		38.4	NA
		Pengelih Naval Base	NM		42.0	NA
		Kg. Pengerang	NM		33.7	NA
	Refinery Cracker	Kg. Sg. Kapal	NM		41.8	NA
	Complex	Taman Rengit Jaya	NM	50.7	38.9	NA
5	Pollutant: CO	Kg. Sg. Buntu	NM	(Ocean – Southern of	35.7	NA
	1 hr Average	Kg. Bukit Buloh	NM	` RAPID)	40.3	NA
	Limit: 30,000 µg/m ³	Kg. Sg. Rengit	NM		43.5	NA
		Kg. Bukit Gelugor	NM		44.9	NA
		Kg. Lepau	NM	1	39.5	NA
		Kg. Pasir Gogok	NM		43.8	NA
_	Refinery Cracker	Tg. Pengelih	NM	102.1	77.3	NA
6	Complex	Pengelih Naval Base	NM	(Ocean – Southern of	84.5	NA

APPENDIX 1 GASEOUS DISPERSION STUDY

Emergency Operating Scenario Baseline No Scenario Receptor (Oct 2012) Max Incremental (µg/m³) Receptor Incremental (µg/m³) Cumulative GLC (µg/m³) RAPID) Pollutant: NMVOC Kg. Pengerang NM 67.9 NA 1 hr Average Kg. Sg. Kapal NA NM 84.2 Limit: NA Taman Rengit Jaya NM 78.2 NA NM NA Kg. Sg. Buntu 71.8 Kg. Bukit Buloh NM NA 81.0 Kg. Sg. Rengit NM NA 87.6 Kg. Bukit Gelugor NM NA 90.3 NA Kg. Lepau NM 79.6 NM Kg. Pasir Gogok NA 88.2 Tg. Pengelih NM 0.992 NA Pengelih Naval Base NM NA 1.085 NM NA Kg. Pengerang 0.871 Kg. Sg. Kapal NM NA 1.081 **Refinery Cracker** Taman Rengit Jaya NM NA Complex 1.3 1.004 Pollutant: H₂S NM 7 Kg. Sg. Buntu (Ocean - Southern of 0.922 NA 1 hr Average NM RAPID) Kg. Bukit Buloh NA 1.040 Limit: NA NA Kg. Sg. Rengit NM 1.125 NM NA Kg. Bukit Gelugor 1.160 NM Kg. Lepau 1.022 NA Kg. Pasir Gogok NA NM 1.133

Note:

All concentration unit in µg/m³

NM = Not monitored

NA = Not Available

3.3 Cumulative RAPID Complex

For the cumulative RAPID Complex modelling, only the common air pollutants that are emitted by all RAPID components are assessed for the three scenarios described above.

- a) Normal
 - The max ground level concentration (GLC) for all criteria pollutants are below the MAAQS 2013 (IT 2020) except for NO₂ where the GLC limit is exceeded at Bukit Pelali for the 1hour average and Bukit Pengerang for the 24-hour average (Table 3-11). However, at the sensitive receptors, all pollutants meet the Malaysia Ambient Air Quality Standards (MAAQS) Standard 2020 at these identified sensitive receptors.
 - The NO₂ Tier 1 and NO₂ Tier 3 1-hour average GLC of 806.7 μ g/m³ (Bukit Pelali) and 523.0 μ g/m³ (Bukit Pelali) exceeded the 1 hour average limit of 280 μ g/m³. With percentile analysis of modelling results, approximately 0.5 percentile or translated into probability to occur at 9 days in every 5 years operating period that the standard limit is exceeded.
 - The NO₂ Tier 1 24-hour average GLC of 114.5 (Bukit Pengerang) exceeded the 24 hours averaging limit of 70 μ g/m³ at approximately 0.3 percentile or translated into a probability to occur at 5 days in every 5 years operating period. Tabulated below are the predicted gaseous concentrations at the sensitive and discrete receptors along with the contours of the predicted gaseous concentrations in the 5-km radius receptor grid.

Table 3-10: NO₂ Emission Contribution from Each Complex in RAPID

No.	Sources	Total of NO ₂ emission rate (g/s)	Total of NO ₂ emission load (Kg/hr)	Percentage (%)
1.	Refinery Cracker Complex	212.9	766.5	50
2.	Petrochemical Complex	26.1	94.1	6
3.	Pengerang Cogeneration Plant (PCP)	174.0	626.4	41
4.	Utilities	15	54.0	4
	TOTAL	428.1	1541.0	100

- b) Abnormal
 - During abnormal operation, the predicted GLCs of CO is below the required respective MAAQS Standard 2020 at all receptors for the maximum 1 hour average concentration. However, predicted SO₂ concentrations exceed the MAAQS Standard 2020 at all receptors and the NO₂ limit is exceeded at Pengelih Naval Base and Kg Bukit Buloh. (**Table 3-12**). With PM₁₀ and PM_{2.5}, the predicted 1-hour average concentration is even lower than its 24-hour average limit.
- c) Emergency
 - During emergency operation, the predicted GLCs of CO, SO₂ and NO₂ are below the required respective MAAQS Standard 2020 at all receptors for the maximum 1 hour average concentration. (Table 3-13). With PM₁₀ and PM_{2.5}, the predicted 1-hour average concentration is even lower than its 24-hour average limit.

Table 3-11: Predicted Incremental GLC and Cumulative GLC for Cumulative RAPID Complex (Normal Operation)

No	Scenario	Beconter	Baseline	eline Normal Operating Scenario		
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Tg. Pengelih	24		0.339	24.3
		Pengelih Naval Base	24		2.5	26.5
		Kg. Pengerang	36		0.467	36.5
	Cumulative RAPID	Kg. Sg. Kapal	25		0.544	25.5
	Complex	Taman Rengit Jaya	38	2.2	0.531	38.5
1	Pollutant: PM ₁₀	Kg. Sg. Buntu	28	(Bukit Pongerang)	0.476	28.5
	24 hrs Average	Kg. Bukit Buloh	31	(Bukit Pengerang)	0.513	31.5
	Limit: 100 µg/m°	Kg. Sg. Rengit	20		0.428	20.4
		Kg. Bukit Gelugor	22		0.361	22.4
		Kg. Lepau	35		0.666	35.7
		Kg. Pasir Gogok	20		0.381	20.4
		Tg. Pengelih	NM		0.023	NA
		Pengelih Naval Base	NM		0.080	NA
		Kg. Pengerang	NM		0.032	NA
	Cumulative RAPID	Kg. Sg. Kapal	NM		0.081	NA
	Complex	Taman Rengit Jaya	NM	0.406	0.077	NA
2	Pollutant: PM 10	Kg. Sg. Buntu	NM		0.064	NA
	Annual Average	Kg. Bukit Buloh	NM		0.063	NA
	Limit: 40 µg/m [°]	Kg. Sg. Rengit	NM		0.047	NA
		Kg. Bukit Gelugor	NM		0.042	NA
		Kg. Lepau	NM		0.126	NA
		Kg. Pasir Gogok	NM		0.031	NA
3	Cumulative RAPID	Tg. Pengelih	NM	2.5	0.244	NA

Na	Cooperio	December	Baseline	Normal Operating Scenario		
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
	Complex	Pengelih Naval Base	NM	(Bukit Pengerang)	1.6	NA
	Pollutant: PM _{2.5} 24 hrs Average	Kg. Pengerang	NM		0.321	NA
		Kg. Sg. Kapal	NM		0.361	NA
	Limit: 35 µg/m	Taman Rengit Jaya	NM		0.361	NA
		Kg. Sg. Buntu	NM		0.314	NA
		Kg. Bukit Buloh	NM		0.339	NA
		Kg. Sg. Rengit	NM		0.296	NA
		Kg. Bukit Gelugor	NM		0.253	NA
		Kg. Lepau	NM		0.491	NA
		Kg. Pasir Gogok	NM		0.267	NA
		Tg. Pengelih	NM		0.017	NA
		Pengelih Naval Base	NM		0.052	NA
		Kg. Pengerang	NM		0.023	NA
		Kg. Sg. Kapal	NM		0.054	NA
	Complex	Taman Rengit Jaya	NM	0.001	0.052	NA
4	Pollutant: PM _{2.5}	Kg. Sg. Buntu	NM		0.045	NA
	Annual Average	Kg. Bukit Buloh	NM		0.044	NA
	Limit: 15 µg/m [°]	Kg. Sg. Rengit	NM		0.034	NA
		Kg. Bukit Gelugor	NM		0.031	NA
		Kg. Lepau	NM		0.090	NA
		Kg. Pasir Gogok	NM		0.023	NA
		Tg. Pengelih	<5		81.0	86.0
	Complex	Pengelih Naval Base	<5	000.0	281.4	286.4
5	Pollutant: NO2 Tier1	Kg. Pengerang	<5	ÖUÖ.J	103.0	108.0
	1 hr Average	Kg. Sg. Kapal	<5	(Bukit Pelali)	181.5	186.5
	Limit: 280 µg/m ³	Taman Rengit Java	<5		141.0	146.0

APPENDIX 1 GASEOUS DISPERSION STUDY

No	Scenario	Pagantar	Baseline	Normal Operating Scenario		
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Kg. Sg. Buntu	<5		99.9	104.9
		Kg. Bukit Buloh	<5		175.6	180.6
		Kg. Sg. Rengit	ND		133.3	133.3
		Kg. Bukit Gelugor	<5		127.8	132.8
		Kg. Lepau	<5		161.9	166.9
		Kg. Pasir Gogok	ND		92.2	92.2
		Tg. Pengelih	NM		10.9	NA
		Pengelih Naval Base	NM		41.8	NA
		Kg. Pengerang	NM	115.5 (Bukit Pengerang)	13.2	NA
	Cumulative RAPID Complex Pollutant: NO₂ Tier1 24 hrs Average Limit: 70 μg/m ³	Kg. Sg. Kapal	NM		21.4	NA
		Taman Rengit Jaya	NM		21.2	NA
6		Kg. Sg. Buntu	NM		18.9	NA
		Kg. Bukit Buloh	NM		16.1	NA
		Kg. Sg. Rengit	NM		12.1	NA
		Kg. Bukit Gelugor	NM		12.2	NA
		Kg. Lepau	NM		18.5	NA
		Kg. Pasir Gogok	NM		12.1	NA
		Tg. Pengelih	<5		18.5	23.5
		Pengelih Naval Base	<5		178.9	183.9
	Cumulative RAPID	Kg. Pengerang	<5		24.8	29.8
	Complex	Kg. Sg. Kapal	<5	526.0	86.5	91.5
7	Pollutant: NO2 Tier3	Taman Rengit Jaya	<5	(Bukit Pelali)	77.5	82.5
	1 hr Average	Kg. Sg. Buntu	<5		71.4	76.4
	Limit: 280 µg/m°	Kg. Bukit Buloh	<5		100.5	105.5
		Kg. Sg. Rengit	ND		77.4	77.4
		Kg. Bukit Gelugor	<5		75.5	80.5

Page | 56

Ne	Seconaria	Beconter	Baseline	Normal Operating Scenario		
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Kg. Lepau	<5		73.0	78.0
		Kg. Pasir Gogok	ND		41.1	41.1
		Tg. Pengelih	<5		16.0	21.0
		Pengelih Naval Base	<5		48.7	53.7
		Kg. Pengerang	<5		22.1	27.1
	Cumulative RAPID	Kg. Sg. Kapal	<5		57.3	62.3
	Complex	Taman Rengit Jaya	<5	256.0	54.1	59.1
8	Pollutant: NU ₂ 99.3 Percentile	Kg. Sg. Buntu	<5	(Bukit Polali)	46.6	51.6
	1 hr Average	Kg. Bukit Buloh	<5		62.1	67.1
	Limit: 280 µg/m ³	Kg. Sg. Rengit	ND		53.2	53.2
		Kg. Bukit Gelugor	<5		41.1	46.1
		Kg. Lepau	<5		56.2	61.2
		Kg. Pasir Gogok	ND		20.4	20.4
		Tg. Pengelih	NM		4.4	NA
		Pengelih Naval Base	NM		25.9	NA
		Kg. Pengerang	NM		5.9	NA
	Cumulative RAPID	Kg. Sg. Kapal	NM		16.0	NA
	Complex	Taman Rengit Jaya	NM	66.9	15.2	NA
9	Poliulani. NO ₂ 99.7 Percentile	Kg. Sg. Buntu	NM	(Bukit Pelali)	13.7	NA
	24 hrs Average	Kg. Bukit Buloh	NM		13.3	NA
	Limit: 70 μg/m ³	Kg. Sg. Rengit	NM		10.6	NA
		Kg. Bukit Gelugor	NM	1	9.4	NA
		Kg. Lepau	NM		17.1	NA
		Kg. Pasir Gogok	NM		9.9	NA
10	Cumulative RAPID	Tg. Pengelih	<5	01.0	19.3	24.3
10	Complex	Pengelih Naval Base	<5	91.0	30.3	35.3

APPENDIX 1 GASEOUS DISPERSION STUDY

Normal Operating Scenario Baseline Receptor No Scenario (Oct 2012) Max Incremental (µg/m³) Receptor Incremental (µg/m³) Cumulative GLC (µg/m³) (Within RAPID) 20.7 Pollutant: SO₂ Kg. Pengerang <5 25.7 1 hr Average 53.6 Kg. Sg. Kapal <5 58.6 Limit: 250 μ g/m³ <5 38.0 43.0 Taman Rengit Jaya <5 34.4 Kg. Sg. Buntu 29.4 56.9 Kg. Bukit Buloh <5 51.9 ND Kg. Sg. Rengit 37.4 37.4 38.9 Kg. Bukit Gelugor <5 33.9 Kg. Lepau <5 51.8 56.8 ND Kg. Pasir Gogok 24.4 24.4 2.2 NA Tg. Pengelih NM Pengelih Naval Base NM 4.6 NA 2.3 NA NM Kg. Pengerang NA Kg. Sg. Kapal NM 5.1 Cumulative RAPID Taman Rengit Jaya NM 4.9 NA Complex 16.6 Pollutant: SO₂ 4.3 NA 11 Kg. Sg. Buntu NM (Within RAPID) 24 hrs Average 4.2 NA Kg. Bukit Buloh NM Limit: 80 µg/m³ Kg. Sg. Rengit NM 3.0 NA 2.8 Kg. Bukit Gelugor NA NM 5.8 Kg. Lepau NM NA Kg. Pasir Gogok NM 3.3 NA NM NA Tg. Pengelih 50.1 **Cumulative RAPID** Pengelih Naval Base NA NM 569.8 Complex Kg. Pengerang NM 77.7 NA 569.8 12 Pollutant: CO (Eastern side of RAPID) 104.1 NA Kg. Sg. Kapal NM 1 hr Average Taman Rengit Jaya NA NM 85.3 Limit: 30,000 µg/m³ NM 64.5 NA Kg. Sg. Buntu

Na	Seconaria	Becenter	Baseline	e Normal Operating Scenario		
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Kg. Bukit Buloh	NM		455.4	NA
		Kg. Sg. Rengit	NM		87.7	NA
		Kg. Bukit Gelugor	NM		76.4	NA
		Kg. Lepau	NM		86.0	NA
		Kg. Pasir Gogok	NM		48.7	NA
		Tg. Pengelih	<100		12.8	112.8
		Pengelih Naval Base	<100		164.1	264.1
		Kg. Pengerang	<100		16.8	116.8
	Cumulative RAPID	Kg. Sg. Kapal	<100	205.0 (Within RAPID)	27.9	127.9
13	Complex Pollutant: CO 8 hrs Average Limit: 10,000 μg/m ³	Taman Rengit Jaya	<100		41.5	141.5
		Kg. Sg. Buntu	<100		21.5	121.5
		Kg. Bukit Buloh	<100		205.0	305.0
		Kg. Sg. Rengit	ND		22.1	22.1
		Kg. Bukit Gelugor	<100		15.8	115.8
		Kg. Lepau	<100		27.1	127.1
		Kg. Pasir Gogok	ND		17.7	17.7
		Tg. Pengelih	NM		0.088	NA
		Pengelih Naval Base	NM		0.036	NA
		Kg. Pengerang	NM		0.099	NA
	Cumulative RAPID	Kg. Sg. Kapal	NM		0.189	NA
1/	Complex Pollutant: NH.	Taman Rengit Jaya	NM	1.6	0.311	NA
14	1 hr Average	Kg. Sg. Buntu	NM	Within RAPID	0.138	NA
	Limit: NA	Kg. Bukit Buloh	NM		1.036	NA
		Kg. Sg. Rengit	NM		0.103	NA
		Kg. Bukit Gelugor	NM		0.091	NA
		Kg. Lepau	NM		0.130	NA

No	Seconaria	Poportor	Baseline	Normal Operating Scenario		
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Kg. Pasir Gogok	NM		0.067	NA
		Tg. Pengelih	NM		0.023	NA
		Pengelih Naval Base	NM		0.005	NA
		Kg. Pengerang	NM		0.025	NA
	Cumulative RAPID	Kg. Sg. Kapal	NM		0.066	NA
	Complex	Taman Rengit Jaya	NM	0.828	0.141	NA
15	Pollutant: NH ₃	Kg. Sg. Buntu	NM		0.056	NA
	8 hrs Average	Kg. Bukit Buloh	NM		0.535	NA
	Limit: NA	Kg. Sg. Rengit	NM		0.017	NA
		Kg. Bukit Gelugor	NM		0.019	NA
		Kg. Lepau	NM		0.025	NA
		Kg. Pasir Gogok	NM		0.024	NA
		Tg. Pengelih	NM	-	0.008	NA
		Pengelih Naval Base	NM		0.002	NA
		Kg. Pengerang	NM		0.011	NA
	Cumulative RAPID	Kg. Sg. Kapal	NM		0.027	NA
	Complex	Taman Rengit Jaya	NM	0 303	0.043	NA
16	Pollutant: NH ₃	Kg. Sg. Buntu	NM		0.020	NA
	24 hrs Average	Kg. Bukit Buloh	NM		0.188	NA
	Limit: NA	Kg. Sg. Rengit	NM		0.006	NA
		Kg. Bukit Gelugor	NM		0.006	NA
		Kg. Lepau	NM		0.008	NA
		Kg. Pasir Gogok	NM		0.008	NA
	Cumulative RAPID	Tg. Pengelih	NM	22.2	1.804	NA
17	Complex	Pengelih Naval Base	NM	یی (۱۸/ithin BADI)	0.740	NA
	Pollutant: Methanol	Kg. Pengerang	NM	(Within RAPID)	2.030	NA

No	Seconaria	Poportor	Baseline	Normal Operating Scenario		
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
	1 hr Average	Kg. Sg. Kapal	NM		3.850	NA
	Limit: NA	Taman Rengit Jaya	NM		6.337	NA
		Kg. Sg. Buntu	NM		2.812	NA
		Kg. Bukit Buloh	NM		21.148	NA
		Kg. Sg. Rengit	NM		2.103	NA
		Kg. Bukit Gelugor	NM		1.855	NA
		Kg. Lepau	NM		2.645	NA
		Kg. Pasir Gogok	NM		1.359	NA
	Cumulative RAPID Complex	Tg. Pengelih	NM	16.9 (Within RAPID)	0.476	NA
		Pengelih Naval Base	NM		0.100	NA
		Kg. Pengerang	NM		0.507	NA
		Kg. Sg. Kapal	NM		1.344	NA
		Taman Rengit Jaya	NM		2.887	NA
18	Pollutant: Methanol	Kg. Sg. Buntu	NM		1.135	NA
	8 hrs Average	Kg. Bukit Buloh	NM		10.917	NA
	Limit: NA	Kg. Sg. Rengit	NM		0.349	NA
		Kg. Bukit Gelugor	NM		0.394	NA
		Kg. Lepau	NM		0.510	NA
		Kg. Pasir Gogok	NM		0.498	NA
		Tg. Pengelih	NM		0.159	NA
	Cumulative RAPID	Pengelih Naval Base	NM		0.033	NA
	Complex	Kg. Pengerang	NM	<u> </u>	0.229	NA
19	Pollutant: Methanol	Kg. Sg. Kapal	NM		0.552	NA
	24 hrs Average	Taman Rengit Jaya	NM		0.885	NA
	Limit: NA	Kg. Sg. Buntu	NM		0.406	NA
		Kg. Bukit Buloh	NM	1	3.836	NA

Na	Seconaria	Beconter	Baseline	Normal Operating Scenario		
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Kg. Sg. Rengit	NM		0.117	NA
		Kg. Bukit Gelugor	NM		0.132	NA
		Kg. Lepau	NM		0.170	NA
		Kg. Pasir Gogok	NM		0.166	NA
		Tg. Pengelih	NM		1.087	NA
		Pengelih Naval Base	NM		15.255	NA
		Kg. Pengerang	NM		1.964	NA
20	Cumulative RAPID	Kg. Sg. Kapal	NM		1.967	NA
	Complex	Taman Rengit Jaya	NM	42.2 (Bukit Pelali)	2.051	NA
	Pollutant: NMVOC 1 hr Average Limit: NA	Kg. Sg. Buntu	NM		1.885	NA
		Kg. Bukit Buloh	NM		2.219	NA
		Kg. Sg. Rengit	NM		2.084	NA
		Kg. Bukit Gelugor	NM		1.865	NA
		Kg. Lepau	NM		1.853	NA
		Kg. Pasir Gogok	NM		1.714	NA
		Tg. Pengelih	NM		0.228	NA
		Pengelih Naval Base	NM		6.060	NA
		Kg. Pengerang	NM		0.265	NA
	Cumulative RAPID	Kg. Sg. Kapal	NM		0.866	NA
	Complex	Taman Rengit Jaya	NM	0.6	0.794	NA
21	Pollutant: NMVOC	Kg. Sg. Buntu	NM	9.0 (Bukit Pengerang)	0.658	NA
	8 hrs Average	Kg. Bukit Buloh	NM	(Bukit Pengerang)	0.444	NA
	Limit: NA	Kg. Sg. Rengit	NM		0.364	NA
		Kg. Bukit Gelugor	NM		0.379	NA
		Kg. Lepau	NM		0.516	NA
		Kg. Pasir Gogok	NM		0.305	NA

Na	Seconaria	Beconter	Baseline	Normal Operating Scenario		
NO	Scenario	Receptor	(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Tg. Pengelih	NM		0.136	NA
		Pengelih Naval Base	NM		2.033	NA
		Kg. Pengerang	NM		0.184	NA
	Cumulative RAPID	Kg. Sg. Kapal	NM		0.471	NA
	Complex	Taman Rengit Jaya	NM	2.2	0.464	NA
22	Pollutant: NMVOC	Kg. Sg. Buntu	NM	3.2 (Rukit Pololi)	0.360	NA
	24 hrs Average	Kg. Bukit Buloh	NM		0.188	NA
	Limit: NA	Kg. Sg. Rengit	NM		0.149	NA
		Kg. Bukit Gelugor	NM		0.142	NA
		Kg. Lepau	NM		0.206	NA
		Kg. Pasir Gogok	NM		0.115	NA
		Tg. Pengelih	NM		1.240	NA
		Pengelih Naval Base	NM		0.791	NA
		Kg. Pengerang	NM		1.007	NA
	Cumulative RAPID	Kg. Sg. Kapal	NM		1.430	NA
	Complex	Taman Rengit Jaya	NM	4.2	1.266	NA
23	Pollutant: H₂S	Kg. Sg. Buntu	NM		1.312	NA
	1 hr Average	Kg. Bukit Buloh	NM		1.711	NA
	Limit: NA	Kg. Sg. Rengit	NM		1.281	NA
		Kg. Bukit Gelugor	NM		1.307	NA
		Kg. Lepau	NM		2.351	NA
		Kg. Pasir Gogok	NM		0.972	NA
	Cumulative RAPID	Tg. Pengelih	NM		0.155	NA
24	Complex	Pengelih Naval Base	NM	2.4	0.165	NA
24	Pollutant: H₂S	Kg. Pengerang	NM	(Within RAPID)	0.134	NA
	8 hrs Average	Kg. Sg. Kapal	NM	(0.428	NA

APPENDIX 1 GASEOUS DISPERSION STUDY

No	Scenario	Receptor Baseline (Oct 2012)	Normal Operating Scenario			
			(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
	Limit: NA	Taman Rengit Jaya	NM		0.367	NA
		Kg. Sg. Buntu	NM		0.339	NA
		Kg. Bukit Buloh	NM		0.384	NA
		Kg. Sg. Rengit	NM		0.302	NA
		Kg. Bukit Gelugor	NM		0.216	NA
		Kg. Lepau	NM		0.625	NA
		Kg. Pasir Gogok	NM		0.243	NA
	Cumulative RAPID Complex Pollutant: H₂S 24 hrs Average Limit: NA	Tg. Pengelih	NM	0.907 (Within RAPID)	0.096	NA
		Pengelih Naval Base	NM		0.094	NA
		Kg. Pengerang	NM		0.087	NA
		Kg. Sg. Kapal	NM		0.170	NA
		Taman Rengit Jaya	NM		0.145	NA
25		Kg. Sg. Buntu	NM		0.136	NA
		Kg. Bukit Buloh	NM		0.153	NA
		Kg. Sg. Rengit	NM		0.120	NA
		Kg. Bukit Gelugor	NM		0.110	NA
		Kg. Lepau	NM		0.253	NA
		Kg. Pasir Gogok	NM		0.083	NA

Note:

All concentration unit in μ g/m³

NM = Not monitored

NA = Not Available

APPENDIX 1 GASEOUS DISPERSION STUDY

Table 3-12: Predicted Incremental GLC and Cumulative GLC for RAPID Complex (Abnormal Operation)

No	Scenario	Pocontor	Receptor Baseline (Oct 2012)	Abnormal Operating Scenario		
NO		Receptor		Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
	Cumulative RAPID Complex Pollutant: PM ₁₀	Tg. Pengelih	NM		7.2	NA
		Pengelih Naval Base	NM		22.8	NA
		Kg. Pengerang	NM		7.0	NA
		Kg. Sg. Kapal	NM		12.6	NA
		Taman Rengit Jaya	NM	25.1	11.0	NA
1		Kg. Sg. Buntu	NM	Bukit Pelali)	8.2	NA
	1 hr Average	Kg. Bukit Buloh	NM		13.0	NA
	Limit: NA	Kg. Sg. Rengit	NM		10.5	NA
		Kg. Bukit Gelugor	NM		10.2	NA
		Kg. Lepau	NM		12.0	NA
		Kg. Pasir Gogok	NM		8.4	NA
	Cumulative RAPID	Tg. Pengelih	NM		3.1	NA
		Pengelih Naval Base	NM		13.6	NA
		Kg. Pengerang	NM		3.1	NA
		Kg. Sg. Kapal	NM		5.1	NA
	Complex	Taman Rengit Jaya	NM 14.7	147	4.8	NA
2	Pollutant: PM _{2.5} 1 hr Average Limit: NA	Kg. Sg. Buntu	NM	(Bukit Pengerang)	3.6	NA
		Kg. Bukit Buloh	NM		5.1	NA
		Kg. Sg. Rengit	NM		4.0	NA
		Kg. Bukit Gelugor	NM		4.1	NA
		Kg. Lepau	NM		4.6	NA
		Kg. Pasir Gogok	NM		3.3	NA
	Cumulative RAPID	Tg. Pengelih	<5	2073.8 (Within RAPID)	87.4	92.4
	Complex	Pengelih Naval Base	<5		931.1	936.1
2	Pollutant: NO ₂	Kg. Pengerang	<5		95.0	100.0
5	Tier1	Kg. Sg. Kapal	<5		208.7	213.7
	1 hr Average	Taman Rengit Jaya	<5		188.0	193.0
	Limit: 280 µg/m ³	Kg. Sg. Buntu	<5		158.5	163.5

No	Scenario	Receptor	Baseline	Abnormal Operating Scenario		
			(Oct 2012)	Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Kg. Bukit Buloh	<5		295.3	300.3
		Kg. Sg. Rengit	ND		127.2	127.2
		Kg. Bukit Gelugor	<5		121.6	126.6
		Kg. Lepau	<5		175.8	180.8
		Kg. Pasir Gogok	ND		112.1	112.1
		Tg. Pengelih	<5	-	1298.9	1303.9
		Pengelih Naval Base	<5		16620.7	16625.7
		Kg. Pengerang	<5		1542.3	1547.3
	Cumulative RAPID	Kg. Sg. Kapal	<5		3740.9	3745.9
	Complex	Taman Rengit Jaya	<5	10582.8	3436.2	3441.2
4	Pollutant: SO₂	Kg. Sg. Buntu	<5		2865.0	2870.0
	1 hr Average Kg. Bukit Buloh Limit: 250 μg/m³ Kg. Sg. Rengit Kg. Bukit Gelugor Kg. Lepau	<5		5397.5	5402.5	
		Kg. Sg. Rengit	ND	-	2051.7	2051.7
		Kg. Bukit Gelugor	<5		1700.7	1705.7
		Kg. Lepau	<5		3056.3	3061.3
		Kg. Pasir Gogok	ND		1890.4	1890.4
	Cumulative RAPID Complex Pollutant: CO	Tg. Pengelih	NM		99.5	NA
		Pengelih Naval Base	NM	1814.1 (Western Boundary of RAPID)	744.4	NA
		Kg. Pengerang	NM		112.1	NA
		Kg. Sg. Kapal	NM		174.5	NA
		Taman Rengit Jaya	NM		160.9	NA
5		Kg. Sg. Buntu	NM		142.3	NA
	1 hr Average	Kg. Bukit Buloh	NM		455.6	NA
	Limit: 30,000 μg/m ³	Kg. Sg. Rengit	NM		111.3	NA
		Kg. Bukit Gelugor	NM		93.5	NA
		Kg. Lepau	NM		184.9	NA
		Kg. Pasir Gogok	NM		107.1	NA
6	Cumulative RAPID	Tg. Pengelih	NM	57.2	1.9	NA
	Complex	Pengelih Naval Base	NM	(Bukit Pelali)	26.0	NA
	Pollutant: NMVOC	Kg. Pengerang	NM		2.5	NA

No	Scenario	Receptor	Baseline (Oct 2012)	Abnormal Operating Scenario		
				Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
	1 hr Average	Kg. Sg. Kapal	NM		3.3	NA
	Limit: NA	Taman Rengit Jaya	NM		2.6	NA
		Kg. Sg. Buntu	NM		2.8	NA
		Kg. Bukit Buloh	NM		3.6	NA
		Kg. Sg. Rengit	NM		2.7	NA
		Kg. Bukit Gelugor	NM		2.3	NA
		Kg. Lepau	NM		3.4	NA
		Kg. Pasir Gogok	NM		2.4	NA
		Tg. Pengelih	NM		24.5	NA
		Pengelih Naval Base	NM		182.3	NA
		Kg. Pengerang	NM		31.3	NA
	Cumulative RAPID	Kg. Sg. Kapal	NM		45.8	NA
	Complex	Taman Rengit Jaya	NM	450.4	50.1	NA
7	Pollutant: H₂S	Kg. Sg. Buntu	NM		39.9	NA
	1 hr Average	Kg. Bukit Buloh	NM		62.8	NA
	Limit: NA	Kg. Sg. Rengit	NM		29.1	NA
		Kg. Bukit Gelugor	NM		22.1	NA
		Kg. Lepau	NM		38.4	NA
		Kg. Pasir Gogok	NM		22.0	NA
		Tg. Pengelih	NM		220.8	NA
		Pengelih Naval Base	NM		1640.3	NA
		Kg. Pengerang	NM	-	282.0	NA
	Cumulative RAPID	Kg. Sg. Kapal	NM		412.0	NA
	Complex	Taman Rengit Jaya	NM	4104.6	450.5	NA
8	Pollutant: UHC	Kg. Sg. Buntu	NM	4104.0 Within RAPID)	358.8	NA
	1 hr Average	Kg. Bukit Buloh	NM		565.5	NA
	Limit: NA	Kg. Sg. Rengit	NM		261.9	NA
		Kg. Bukit Gelugor	NM		198.7	NA
		Kg. Lepau	NM		345.2	NA
		Kg. Pasir Gogok	NM		198.3	NA

APPENDIX 1 GASEOUS DISPERSION STUDY

Note: All concentration unit in $\mu g/m^3$ NM = Not monitored. NA = Not Available

Table 3-13: Predicted Incremental GLC and Cumulative GLC for Cumulative RAPID Complex (Emergency Operation)

No	Scenario	Decenter	Baseline (Oct 2012)	Emergency Operating Scenario		
NU		Receptor		Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
	Cumulative RAPID Complex Pollutant: PM ₁₀	Tg. Pengelih	NM	21.7	8.9	NA
		Pengelih Naval Base	NM		21.7	NA
		Kg. Pengerang	NM		7.8	NA
		Kg. Sg. Kapal	NM		10.0	NA
		Taman Rengit Jaya	NM		9.2	NA
1		Kg. Sg. Buntu	NM		8.3	NA
	1 hr Average	Kg. Bukit Buloh	NM	(Bukit Feligeralig)	9.3	NA
	Limit: 100 µg/m ³	Kg. Sg. Rengit	NM		10.1	NA
		Kg. Bukit Gelugor	NM		10.5	NA
		Kg. Lepau	NM		9.4	NA
		Kg. Pasir Gogok	NM		10.2	NA
	Cumulative RAPID Complex Pollutant: PM _{2.5} 1 hr Average	Tg. Pengelih	NM	12.4 (Bukit Pengerang)	5.4	NA
		Pengelih Naval Base	NM		12.4	NA
		Kg. Pengerang	NM		4.7	NA
		Kg. Sg. Kapal	NM		6.1	NA
		Taman Rengit Jaya	NM		5.7	NA
2		Kg. Sg. Buntu	NM		5.0	NA
		Kg. Bukit Buloh	NM		5.6	NA
	Limit: 35 µg/m ³	Kg. Sg. Rengit	NM		6.2	NA
		Kg. Bukit Gelugor	NM		6.4	NA
		Kg. Lepau	NM		5.8	NA
		Kg. Pasir Gogok	NM		6.2	NA
3	Cumulative RAPID	Tg. Pengelih	<5	165.0	15.7	20.7
3	Complex	Pengelih Naval Base	<5	0.00	165.0	170.0

ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS

APPENDIX 1 GASEOUS DISPERSION STUDY

Emergency Operating Scenario Baseline Receptor No Scenario (Oct 2012) Max Incremental (µg/m³) Receptor Incremental (µg/m³) Cumulative GLC (µg/m³) Kg. Pengerang 17.0 Pollutant: NO₂ Tier1 <5 (Bukit Pengerang) 22.0 <5 1 hr Average Kg. Sg. Kapal 18.1 23.1 Limit: 280 μ g/m³ <5 Taman Rengit Jaya 19.8 24.8 <5 21.2 Kg. Sg. Buntu 16.2 <5 Kg. Bukit Buloh 20.3 25.3 ND Kg. Sg. Rengit 19.4 19.4 Kg. Bukit Gelugor <5 21.0 26.0 <5 29.5 Kg. Lepau 24.5 ND 15.8 Kg. Pasir Gogok 15.8 Tg. Pengelih <5 91.2 96.2 Pengelih Naval Base <5 99.8 104.8 <5 85.1 Kg. Pengerang 80.1 Kg. Sg. Kapal <5 104.5 99.5 Cumulative RAPID Taman Rengit Jaya <5 97.4 Complex 120.5 92.4 Pollutant: SO2 Kg. Sg. Buntu <5 (Ocean - Southern of 84.8 89.8 4 1 hr Average Kg. Bukit Buloh <5 RAPID) 95.6 100.6 Limit: 250 μ g/m³ ND 103.5 Kg. Sg. Rengit 103.5 Kg. Bukit Gelugor <5 111.7 106.7 <5 Kg. Lepau 94.1 99.1 ND Kg. Pasir Gogok 104.2 104.2 NM Tg. Pengelih 42.7 NA Pengelih Naval Base NM NA 546.4 Kg. Pengerang NM 47.3 NA Cumulative RAPID Kg. Sg. Kapal NM 57.7 NA Complex NM Taman Rengit Java 65.8 NA 546.4 5 Pollutant: CO Kg. Sg. Buntu NM 52.3 NA (Bukit Pengerang) 1 hr Average NM NA Kg. Bukit Buloh 53.2 Limit: 30,000 µg/m³ Kg. Sg. Rengit NM 49.8 NA Kg. Bukit Gelugor NM 51.3 NA NM NA Kg. Lepau 82.4

ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS

APPENDIX 1 GASEOUS DISPERSION STUDY

No	Scenario	Decenter	Baseline (Oct 2012)	ine Emergency Operating Scenario		
		Receptor		Max Incremental (µg/m ³)	Receptor Incremental (µg/m ³)	Cumulative GLC (µg/m ³)
		Kg. Pasir Gogok	NM		50.1	NA
6		Tg. Pengelih	NM		77.3	NA
		Pengelih Naval Base	NM		84.5	NA
		Kg. Pengerang	NM		67.9	NA
	Cumulative RAPID	Kg. Sg. Kapal	NM		84.2	NA
	Complex	Taman Rengit Jaya	NM	102.1	78.2	NA
	Pollutant: NMVOC	Kg. Sg. Buntu	NM	(Ocean – Southern of	71.8	NA
	1 hr Average Limit: NA	Kg. Bukit Buloh	NM	RAPID)	81.0	NA
		Kg. Sg. Rengit	NM		87.6	NA
		Kg. Bukit Gelugor	NM		90.3	NA
		Kg. Lepau	NM		79.6	NA
		Kg. Pasir Gogok	NM		88.2	NA
	Cumulative RAPID	Tg. Pengelih	NM	1.3	0.992	NA
		Pengelih Naval Base	NM		1.085	NA
		Kg. Pengerang	NM		0.871	NA
		Kg. Sg. Kapal	NM		1.081	NA
	Complex	Taman Rengit Jaya	NM		1.004	NA
7	Pollutant: H ₂ S	tant: H ₂ S Kg. Sg. Buntu NM (Ocean – Sout	(Ocean – Southern of	0.922	NA	
	1 hr Average Kg. Bukit Limit: NA Kg. Sg. R Kg. Bukit	Kg. Bukit Buloh	NM	RAPID)	1.040	NA
		Kg. Sg. Rengit	NM		1.125	NA
		Kg. Bukit Gelugor	NM		1.160	NA
		Kg. Lepau	NM		1.022	NA
		Kg. Pasir Gogok	NM		1.133	NA

Note:

All concentration unit in µg/m³

NM = Not monitored

NA = Not Available

4.0 CONCLUSION

For gaseous emission, the normal operations of EURO5 MOGAS expansion indicate that it meets the MAAQS 2013 Standard 2020 limits for all pollutants. No abnormal operation for EURO5 MOGAS modelled. As for Olefin Storage tankages, no normal continuous emission from it as the vent will be routed to either the Cold Flare or Refinery Tank Farm Flare. Under abnormal operation, the cold flare modelling result shows the predicted GLCs of CO is below the required respective MAAQS Standard 2020 at all receptors for the maximum 1 hour average concentration while the predicted maximum GLC of NO₂ exceeds the stipulated limit but it is located within the RAPID Complex. While under emergency operation, the predicted GLCs of CO, SO₂ and NO₂ are below the required respective MAAQS (Standard 2020) at all receptors and the predicted maximum 1 hour average concentration for the prescribed parameters were well within the MAAQS Standard 2020.

During normal operations based on cumulative emissions from all process units in the Refinery and Cracker Complex, predicted ground level concentrations (GLC) of all pollutants except NO₂ are within the Malaysia Ambient Air Quality Standards (MAAQS) Standard 2020 limits. NO₂ concentrations exceeded the limit only at Bukit Pelali (1-hour average) and Bukit Pengerang (24-hour average) for less than 0.4% of the time which is equivalent to less than 7 days over a 5-year period. Predicted concentrations of ammonia (NH_3), methanol, NMVOC and hydrogen sulphide (H_2S) are insignificant and are further assess in the health impact assessment. With the inclusion of cumulative emissions from other RAPID components, modelling findings indicated no issue of concern except for NO₂ where the NO₂ level exceeds the MAAQS 2013 (Standard 2020) limit. Results indicated that the maximum GLC takes place at Bukit Pelali and Bukit Pengerang for the normal operating conditions and three locations at sensitive receptor located surrounding the RAPID Complex i.e. Pengelih Naval Base, Sg Rengit and Kg Bukit Buloh will have NO₂ level marginally exceeding the MAAQS 2013 (Standard 2020).

With abnormal operating conditions, which is temporary and transient, predicted CO, PM_{10} and $PM_{2.5}$, concentrations are within the required limits. However, SO_2 and NO_2 concentrations exceed the MAAQS Standard 2020 for the maximum 1 hour average concentration. A similar set of results and conclusions are arrived at with the inclusion of other RAPID components.

During an emergency, operating condition when emissions are totally flared, predicted concentrations of CO, SO_2 and NO_2 are below the required respective MAAQS Standard 2020 at all receptors for the maximum 1 hour average concentration and for comparison purposes, predicted 1-hour average PM10 and PM2.5 concentrations are even below its 24-hour average limit. A similar set of results and conclusions are arrived at with the inclusion of other RAPID components.

SUB-APPENDIX 1A: INDIVIDUAL UNITS AIR DISPERSION CONCENTRATION CONTOUR

APPENDIX 1 GASEOUS DISPERSION STUDY

Figure 1: Predicted Incremental Ground Level Concentration for PM₁₀ During Normal Operation for EURO5 MOGAS (Maximum 24 hours Average in µg/m³)

	MUE & PLAN MUE & SUCH OT
ational boundary	2007 N SP
sion source(s)	
otor location	
cted incremental co	ncentration contour <mark>l</mark> ines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
in Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 — 5 km

APPENDIX 1 GASEOUS DISPERSION STUDY

	10 10. M
	state * Some
	Ť
ational boundary	har
ion source(s)	
otor location	
cted incremental o	concentration contour lines
Air Monitoring Lo	cations:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1.200 000
0	
	= 5 KM

APPENDIX 1 GASEOUS DISPERSION STUDY

	HUE S PLANT NOTE S SOTE
	1 1 N 1
	ï
ational boundary	142*
ion source(s)	
otor location	
ted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000
0	5 km

APPENDIX 1 GASEOUS DISPERSION STUDY

	The state of the s
ational boundary	
ion source(s)	
otor location	
ted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE: 0	1:200,000 — 5 km

APPENDIX 1 GASEOUS DISPERSION STUDY

	Rights s runn 2007 N Sector
ational boundary	I) iter
ion source(s)	
otor location	
ted incremental co	ncentration contour lines
Air Monitoring Loca	ations:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 ┶━┘ 5 km

APPENDIX 1 GASEOUS DISPERSION STUDY

	70,61 10,010 & 7,611
	N N
ational boundary	Nur-
ion source(s)	
otor location	
ted incremental cor	ncentration contour lines
Air Monitoring Locat	ions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE: 0	1:200,000 — 5 km
•	

APPENDIX 1 GASEOUS DISPERSION STUDY

Figure 7: Predicted Incremental Ground Level Concentration for SO₂ During Normal Operation for EURO5 MOGAS (Maximum 1 hour Average in µg/m³)

ational boundary	Line-
ion source(s)	
otor location	
ted incremental cor	ncentration contour lines
Air Monitoring Locat	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 — 5 km

APPENDIX 1 GASEOUS DISPERSION STUDY

ational boundary	lur.
ion source(s)	
otor location	
ted incremental c	oncentration contour lines
Air Monitoring Loc	ations:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE: 0	1:200,000 ╧━━━ 5 km

APPENDIX 1 GASEOUS DISPERSION STUDY

ational boundary	ing-
ion source(s)	
otor location	
ted incremental o	concentration contour lines
Air Monitoring Loo	cations:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 ➡━━ 5 km

APPENDIX 1 GASEOUS DISPERSION STUDY

	nug s rain) south s rains for
ational boundary	Ing*
ion source(s)	
otor location	
ted incremental cor	ncentration contour lines
Air Monitoring Locat	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000
	5 km
·	•

APPENDIX 1 GASEOUS DISPERSION STUDY

	HILL & PLANT NOTICE & Souther LOT
	£.
	N N
ational boundary	Line-
ion source(s)	
otor location	
ted incremental c	oncentration contour lines
Air Monitoring Loc	ations:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1.200 000
	⊐ === 5 KM
m ³)	

APPENDIX 1 GASEOUS DISPERSION STUDY

	ACULE & LANI
-tion of the sum damage	Ĩ
ational boundary	litz.
ion source(s)	
otor location	
cted incremental o	concentration contour lines
Air Monitoring Loo	cations:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000
0	3 Km

APPENDIX 1 GASEOUS DISPERSION STUDY

	NUME & PLANT NUME & ADDITE
ational boundary	hat*
ion source(s)	
otor location	
cted incremental o	concentration contour lines
Air Monitoring Loo	cations:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1.200.000
0	
	J KIII

APPENDIX 1 GASEOUS DISPERSION STUDY

ational boundary	1102*
ion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE: 0	1:200,000 ━ 5 km

APPENDIX 1 GASEOUS DISPERSION STUDY

	NUME & PLANT
	100 N W
ational boundary	L her
ion source(s)	
otor location	
cted incremental o	concentration contour lines
Air Monitoring Loo	cations:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 ––– i 5 km

SUB-APPENDIX 1B: CUMULATIVE AIR DISPERSION CONCENTRATION CONTOUR

APPENDIX 1 GASEOUS DISPERSION STUDY

Figure 1:Predicted Incremental Ground Level Concentration for PM₁₀ During Normal Operation for Cumulative Refinery Cracker Complex (Maximum 24 hours A

	ingl s (1, se) scribe contraction contract
ational boundary	har.
ion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE: 0	1:200,000 — 5 km
Verage in µg/m ³)

APPENDIX 1 GASEOUS DISPERSION STUDY

	HILE & PLANT NOTINE & SOUTH OF
	1
	N N
ational boundary	ing-
ion source(s)	
otor location	
ted incremental co	uncentration contour lines
Air Monitoring Loca	ations:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000
0	🛏 5 km
verage in µg/m°)	

APPENDIX 1 GASEOUS DISPERSION STUDY

Figure 3: Predicted Incremental Ground Level Concentration for PM_{2.5} During Normal Operation for Cumulative Refinery Cracker Complex (Maximum 24 hours)

	N N
ational boundary	Trage
ion source(s)	
otor location	
ted incremental cor	ncentration contour lines
Air Monitoring Locat	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000
	5 km
	9.
Average in µg/m	³)

APPENDIX 1 GASEOUS DISPERSION STUDY

ational boundary	L. Iter
ion source(s)	
otor location	
ted incremental cor	ncentration contour lines
Air Monitoring Locat	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 — 5 km
verage in µg/m³)	

Figure 5: Predicted Incremental Ground Level Concentration for NO₂ Tier1 During Normal Operation for Cumulative Refinery Cracker Complex (Maximum 1 ho

ational boundary	Line-
ion source(s)	
tor location	
ted incremental cor	ncentration contour lines
Air Monitoring Locat	tions:
engelih	AQ7 Kg. Bukit Buloh
lih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 → 5 km
our Average in μ	g/m³)

APPENDIX 1 GASEOUS DISPERSION STUDY

	10g - 19.401
	NOTE ANTH
	Ÿ
ational boundary	ling-
ion source(s)	
otor location	
ted incremental c	oncentration contour lines
Air Monitoring Loc	ations:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000
0	
nours Average	in μg/m³)

APPENDIX 1 GASEOUS DISPERSION STUDY

Figure 7: Predicted Incremental Ground Level Concentration for NO₂ Tier3 During Normal Operation for Cumulative Refinery Cracker Complex (Maximum 1 hou

ational boundary	Line:
ion source(s)	
otor location	
ted incremental cor	ncentration contour lines
Air Monitoring Locat	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 — 5 km
ur Average in µg	/m³)

APPENDIX 1 GASEOUS DISPERSION STUDY

	and a rank
ational boundary	
ion source(s)	
otor location	
ted incremental c	concentration contour lines
Air Monitoring Loo	cations:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE: 0	1:200,000 ⊐— 5 km
6 Percentile 1 h	nour Average in μg/m³)

APPENDIX 1 GASEOUS DISPERSION STUDY

	ENTER & PANT NATE & NATE ENTER & NATE
ational boundary	i) Iner
ion source(s)	
otor location	
ted incremental co	oncentration contour lines
Air Monitoring Loca	ations:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 ₩ 5 km
3 Percentile 24 I	nours Average in μg/m³)

ational boundary	L.
ion source(s)	
otor location	
ted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 — 5 km

Figure 11: Predicted Incremental Ground Level Concentration for SO₂ During Normal Operation for Cumulative Refinery Cracker Complex (Maximum 24 hours)

	HILE A PLANT NOTE & SCHOOL
	f
	N N
ational boundary	i) Ivez
ion source(s)	
otor location	
ted incremental co	oncentration contour lines
Air Monitoring Loca	ations:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000
0	5 km
	-
Average in µg/n	n ³)

PETRONAS

APPENDIX 1 GASEOUS DISPERSION STUDY

	THE & PLAN NUME & WINN OF
ational boundary	
ion source(s)	
otor location	
cted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000
	🛁 5 km
erage in µg/m³)	

APPENDIX 1 GASEOUS DISPERSION STUDY

Figure 13: Predicted Incremental Ground Level Concentration for CO During Normal Operation for Cumulative Refinery Cracker Complex (Maximum 8 hours Av

	inge s rater spins s rater or	
	1 2007 N - 12	
ational boundary	ing.	
ion source(s)		
otor location		
cted incremental (concentration contour lines	
Air Monitoring Lo	cations:	
engelih	AQ7 Kg. Bukit Buloh	
elih Naval Base	AQ8 Kg. Sg. Rengit	
engerang	AQ9 Kg. Bukit Gelugor	
g. Kapal	AQ10 Kg. Lepau	
n Rengit Jaya	AQ11 Kg. Pasir Gogok	
g. Buntu		
SCALE:	1:200,000 ——— 5 km	
verage in µg/m	1 ³)	
0 verage in µg/m	⇒ 5 km	

Figure 14: Predicted Incremental Ground Level Concentration for PM₁₀ During Normal Operation for Cumulative RAPID Complex (Maximum 24 hours Average in

	With a runni
ational boundary	
ion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE: 0	1:200,000 — 5 km
n μg/m³)	

APPENDIX 1 GASEOUS DISPERSION STUDY

	High a Priorit
	4
	100 N 100
ational houndary	Ľ
ational boundary	ne -
ion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000
0	5 km
µg/m²)	

	NAL & TAN
ational boundary	ine-
ion source(s)	
otor location	
cted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 — 5 km
in µg/m³)	

APPENDIX 1 GASEOUS DISPERSION STUDY

	THE & PLANT
	ALL
	177 N 17
	\mathbb{Y}
ational boundary	ing-
ion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Locat	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000
	5 km
0	
µg/m³)	
-	

Figure 18: Predicted Incremental Ground Level Concentration for NO2 Tier1 During Normal Operation for Cumulative RAPID Complex (Maximum 1 hour Average

	THE S PLAN SCOP
ational boundary	L Ing-
ion source(s)	
otor location	
ted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE: 0	1:200,000 — 5 km
le in μg/m³)	

APPENDIX 1 GASEOUS DISPERSION STUDY

Figure 19: Predicted Incremental Ground Level Concentration for NO₂ Tier1 During Normal Operation for Cumulative RAPID Complex (Maximum 24 hours Avera

	NALE & LEAD
ational boundary	
ion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Locat	lions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 — 5 km
age in µg/m³)	

APPENDIX 1 GASEOUS DISPERSION STUDY

Figure 20: Predicted Incremental Ground Level Concentration for NO2 Tier3 During Normal Operation for Cumulative RAPID Complex (Maximum 1 hour Average

	THE S PLAN SCOTE S PLAN
ational boundary	∎] rage
ion source(s)	
otor location	
ted incremental co	ncentration contour <mark>l</mark> ines
Air Monitoring Loca	itions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 — 5 km
$a in u (m^3)$	

APPENDIX 1 GASEOUS DISPERSION STUDY

Figure 21: Predicted Incremental Ground Level Concentration for NO₂ Tier1 During Normal Operation for Cumulative RAPID Complex (Maximum 99.5 Percentile

	EXTERNAL SPLAN
ational boundary	
ion source(s)	
otor location	
cted incremental co	ncentration contour lines
Air Monitoring Loca	ations:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 ➡ 5 km
e 1 hour Averag	e in μg/m³)

APPENDIX 1 GASEOUS DISPERSION STUDY

	Notes a relation
ational boundary	Line:
ion source(s)	
otor location	
cted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000
0	5 km
je in μg/m³)	

Figure 24: Predicted Incremental Ground Level Concentration for SO₂ During Normal Operation for Cumulative RAPID Complex (Maximum 24 hours Average in

	TRUE & PLANT
	^o
	AND N
ational boundary	line-
sion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Locat	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000
0	— 5 km
ι μg/m³)	
/	

APPENDIX 1 GASEOUS DISPERSION STUDY

	NOTE S TO AN OF
ational boundary	Ĩ
ational boundary	110
ion source(s)	
otor location	
cted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000
	5 km
g/m³)	

APPENDIX 1 GASEOUS DISPERSION STUDY

Figure 26: Predicted Incremental Ground Level Concentration for CO During Normal Operation for Cumulative RAPID Complex (Maximum 8 hours Average in µ

	North State
ational boundary	line-
ion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Locat	lions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000
0	— 5 km
ıg/m³)	

APPENDIX 1 GASEOUS DISPERSION STUDY

AERMOD View - Lakes Environmental Software

	THE S PLANT
	NOTE OF
	AND N MARK
ational boundary	
ion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Locat	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1.200 000
	1.200,000
	5 km
e in µa/m³)	
·····/	

APPENDIX 1 GASEOUS DISPERSION STUDY

AERMOD View - Lakes Environmental Software

	Karran - Katagar
	NOTE A VIANT
ational boundary	True-
ion source(s)	
otor location	
cted incremental	concentration contour lines
Air Monitoring Lo	cations:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
• • • • • • • • • •	
SCALE:	1:200,000
0	i 5 km
-	• • • • • • • • • • • • • • • • • • • •
/m³)	

ational boundary	Line-
ion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Locat	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 — 5 km
r Average in μg/n	n³)

ational boundary	L. Iter
ion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE: 0	1:200,000 — 5 km m³)
ir Average in µg/	m ⁻)

APPENDIX 1 GASEOUS DISPERSION STUDY

Figure 31: Predicted Incremental Ground Level Concentration for NO₂ Tier1 During Abnormal Operation for Cumulative Refinery Cracker Complex (Maximum 1

	THE & PLANT
	4
	IN W
	Ŷ
ational boundary	hur
ion source(s)	
the location	
tor location	
ted incremental cor	ncentration contour lines
Air Monitoring Locat	ions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000
0	🖬 5 km
hour Average in	µg/m³)

APPENDIX 1 GASEOUS DISPERSION STUDY

Figure 32: Predicted Incremental Ground Level Concentration for CO During Abnormal Operation for Cumulative Refinery Cracker Complex (Maximum 1 hour A

Average in µg/m ³		
Ational boundary		
tion source(s) ptor location ted incremental concentration contour lines Air Monitoring Locations: engelin AO7 Kg. Bukit Buloh eih Naval Base AO8 Kg. Sg. Rengit engerang AO9 Kg. Bukit Gelugor g. Kapal AO10 Kg. Lepau in Rengit Jaya AO11 Kg. Pasir Gogok g. Buntu SCALE: 1:200,000 0 → 5 km	ational boundary	ling.
botor location cted incremental concentration contour lines Air Monitoring Locations: engelih AQ7 Kg. Bukit Buloh eih Naval Base AQ9 Kg. Bukit Gelugor g. Kapal AQ10 Kg. Lepau n Rengit Jaya AQ11 Kg. Pasir Gogok SCALE: 1:200,000 0 5 km	ion source(s)	
cted incremental concentration contour lines Air Monitoring Locations: engelih AQ7 Kg. Bukit Buloh eih Naval Base AQ8 Kg. Sg. Rengit engerang AQ9 Kg. Bukit Gelugor g. Kapal AQ10 Kg. Lepau n Rengit Jaya AQ11 Kg. Pasir Gogok g. Buntu SCALE: 1:200,000 0 → 5 km	otor location	
Air Monitoring Locations: engelih AQ7 Kg. Bukit Buloh eih Naval Base AQ8 Kg. Sg. Rengit engerang AQ9 Kg. Bukit Gelugor g. Kapal AQ10 Kg. Lepau n Rengit Jaya AQ11 Kg. Pasir Gogok g. Buntu SCALE: 1:200,000 0 → 5 km	cted incremental co	ncentration contour lines
engelih AQ7 Kg. Bukit Buloh elih Naval Base AQ8 Kg. Sg. Rengit engerang AQ9 Kg. Bukit Gelugor g. Kapal AQ10 Kg. Lepau n Rengit Jaya AQ11 Kg. Pasir Gogok g. Buntu SCALE: 1:200,000 0 → S km	Air Monitoring Loca	tions:
elih Naval Base AQ8 Kg. Sg. Rengit engerang AQ9 Kg. Bukit Gelugor g. Kapal AQ10 Kg. Lepau n Rengit Jaya AQ11 Kg. Pasir Gogok g. Buntu SCALE: 1:200,000 0 → 5 km	engelih	AQ7 Kg. Bukit Buloh
engerang AQ9 Kg. Bukit Gelugor g. Kapal AQ10 Kg. Lepau n Rengit Jaya AQ11 Kg. Pasir Gogok g. Buntu SCALE: 1:200,000 0 → 5 km	elih Naval Base	AQ8 Kg. Sg. Rengit
g. Kapal AQ10 Kg. Lepau n Rengit Jaya AQ11 Kg. Pasir Gogok g. Buntu SCALE: 1:200,000 0 → → → 5 km Average in µg/m ³)	engerang	AQ9 Kg. Bukit Gelugor
AQ11 Kg. Pasir Gogok g. Buntu SCALE: 1:200,000 0 → → 5 km	g. Kapal	AQ10 Kg. Lepau
g. Buntu SCALE: 1:200,000 0	n Rengit Jaya	AQ11 Kg. Pasir Gogok
SCALE: 1:200,000 0	g. Buntu	
SCALE: 1:200,000 0		
Average in µg/m³)	SCALE:	1:200,000 — 5 km
	Average in µg/m	³)

APPENDIX 1 GASEOUS DISPERSION STUDY

ational boundary	Line-
ion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 — 5 km
Average in µg/m	3)

APPENDIX 1 GASEOUS DISPERSION STUDY

	NOTE A PLANT NOTE A REPORT
ational boundary	her
ion source(s)	
otor location	
ted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1.200.000
0	
	J KIII
our Average in I	ug/m³)
	- ,

APPENDIX 1 GASEOUS DISPERSION STUDY

	THE & PLANT SCHE & CANTA
	ETT N ST
ational boundary	ling?
ion source(s)	
otor location	
cted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200.000
	— 5 km
0	J KIII
· Average in µg/r	n ³)

APPENDIX 1 GASEOUS DISPERSION STUDY

	NAME OF TAXABLE PARTY
ational boundary	l) Ing-
ion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Locat	lions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE: 0	1:200,000 ━ 5 km
n μg/m³)	

APPENDIX 1 GASEOUS DISPERSION STUDY

Figure 37: Predicted Incremental Ground Level Concentration for PM2.5 During Abnormal Operation for Cumulative RAPID Complex (Maximum 1 hour Average i

ational boundary	() 102*
ion source(s)	
otor location	
cted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 — 5 km
in μg/m³)	

APPENDIX 1 GASEOUS DISPERSION STUDY

Figure 38: Predicted Incremental Ground Level Concentration for NO₂ Tier1 During Abnormal Operation for Cumulative RAPID Complex (Maximum 1 hour Averation for Cumulative RAPID Complex (Maximum 1 hour Averation)

	IN N
ational boundary	iner Iner
ion source(s)	
otor location	
cted incremental co	ncentration contour <mark>lines</mark>
Air Monitoring Loca	ations:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
•	
SCALE:	1.200 000
	1.200,000
	5 km
rage in µg/m ³)	
- g · · · r · g · · · · /	

APPENDIX 1 GASEOUS DISPERSION STUDY

	North & North
ational boundary	Line:
sion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE: 0	1:200,000 — 5 km
ո µg/m³)	

	inte s rami
ational boundary	2007 N ST
ion source(s)	
otor location	
cted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE	4,000,000
SCALL.	1:200,000
	5 km
µg/m³)	

APPENDIX 1 GASEOUS DISPERSION STUDY

ational houndary	
ational boundary	
sion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE: 0	1:200,000 — 5 km
n μg/m³)	

APPENDIX 1 GASEOUS DISPERSION STUDY

	Hill a PLAN
	ſ
	N N
ational boundary	
ion source(s)	
17 NI 1725	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000
	🗕 5 km
ge in µg/m³)	

APPENDIX 1 GASEOUS DISPERSION STUDY

	11.4 × 4.41
ational boundary	har.
ion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE: 0	1:200,000 — 5 km
··· µ9/···· /	

	NAME & MANU MARK & MANU MARK & MANU
ational boundary	har.
ion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Local	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE: 0	1:200,000 — 5 km /m³)
	···· ,

ational boundary	ing.
ion source(s)	
otor location	
ted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 — 5 km
ur Average in µg	/m³)

	NOTE & PLANT NOTE & NOTE
	ſ
	N N
ational boundary	li her
ion source(s)	
otor location	
cted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE.	1.200 000
	1.200,000
	5 km
1 hour Average	in µa/m³)
Atorago	··· rʒ···· /

	ing a rear
	200/N 39
ational boundary	ing.
ion source(s)	
otor location	
cted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1.200 000
	1.200,000
	5 KM
Ir Average in ug	′m³)
	,

	THE . 1941
	NOTE ANTH
	AND N M
	Ť
ational boundary	har
ion source(s)	
otor location	
cted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000
	5 km
	_
r Average in μg/ι	m³)

	NAME & PLANT
ational boundary	iter
ion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Locat	ions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE: 0	1:200,000 ➡ 5 km
nour Average In	ру/ш)

Figure 50: Predicted Incremental Ground Level Concentration for H₂S During Emergency Operation for Cumulative Refinery Cracker Complex (Maximum 1 hour

	Mark a runni Autoria
ational boundary	
ion source(s)	
otor location	
cted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000
0	— 5 km
_	
r Average in µg/	m³)

	NOTE STOR
	Ŷ
ational boundary	her
ion source(s)	
otor location	
cted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200.000
0	
	J KIII
e in µg/m³)	
,	

ational boundary	ling.
ion source(s)	
otor location	
cted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 — 5 km
e in µg/m³)	

APPENDIX 1 GASEOUS DISPERSION STUDY

Figure 53: Predicted Incremental Ground Level Concentration for NO2 Tier1 During Emergency Operation for Cumulative RAPID Complex (Maximum 1 hour Ave

	THE . 0.41
	NOTE ANT
	Y
ational boundary	her
ion source(s)	
otor location	
cted incremental of	concentration contour lines
Air Monitoring Lo	cations:
engelih	AO7 Ko Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Ka. Bukit Geluaor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
•	
SCALE:	1:200,000
0	
J	
erage in µg/m ³)

	NOTE & PLANT NOTE & REPORT
	£.
	N N
ational boundary	iner-
ion source(s)	
ator location	
cted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000
0	5 km
$in ua/m^{3}$	
m µg/m)	

	Mark a ryan apple
ational boundary	
ion source(s)	
otor location	
cted incremental co	ncentration contour lines
Air Monitoring Loca	tions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 — 5 km
'n μg/m³)	

	NALE & LAND
ational boundary	Line-
ion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Locat	lions:
engelih	AQ7 Kg. Bukit Buloh
elih Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapal	AQ10 Kg. Lepau
n Rengit Jaya	AQ11 Kg. Pasir Gogok
g. Buntu	
SCALE:	1:200,000 — 5 km
age in μg/m³)	

ational boundary	Notes to Name
ational boundary	112*
ion source(s)	
otor location	
cted incremental cor	ncentration contour lines
Air Monitoring Locat	ions:
an monitoring Lood	1013.
engelin	AQ7 Kg. Bukit Bulon
elin Naval Base	AQ8 Kg. Sg. Rengit
engerang	AQ9 Kg. Bukit Gelugor
g. Kapai	AQ10 Kg. Lepau
in Rengit Jaya	AUTT Kg. Pasir Gogok
SCALE: 0	1:200,000 —I 5 km
in µg/m³)	

Health Impact Assessment

ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS

Prepared For:

PETRONAS REFINERY AND PETROCHEMICAL CORPORATION SDN. BHD.

Prepared By:

INTEGRATED ENVIROTECH SDN. BHD. (650387-K)

MARCH 2017

TABLE OF CONTENTS

1	INT	RODUCTION	
2	HE	ALTH RISK ASSESSMENT APPROACH	2
2.1	Α	pplicable Regulatory Framework	2
2.2	Ρ	ollutants Assessed	
2.3	ld	entification of the Receptors	4
2.4	н	ealth Impact Assessment	4
3	IMP	ACTS AND MITIGATION MEASURES	
3.1	E	xisting Public Health	
3	3.1.1	Existing Public Health Status	
3	3.1.2	Health care services in Kota Tinggi	9
3	3.1.3	Burden of Diseases	
3	3.1.4	Summary on Existing Public Health	
3.2	In	npact from emission from the Individual Units	
3	3.2.1	EURO 5 MOGAS Unit	
c)	Emo	ergency Operating Scenario	
3	3.2.2	Olefins Storage Tankages	
c)	Eme	ergency Operating Scenario	
3.3	In	npact from Cumulative Refinery & Cracker Complex	
3.4	In	npact from Cumulative RAPID Complex	
3.5	M	itigation Measures	
4	COI	NCLUSION	

LIST OF TABLES

Table 2-1: Air Pollutant Health Impact	5
Table 3-1: The number of respiratory diseases in Kota Tinggi, 2014 and 2015	11
Table 3-2: The number of vector-borne diseases in Kota Tinggi, 2014 and 2015	12
Table 3-3: The number of food and water-borne diseases in Kota Tinggi, 2014 and 2015	12
Table 3-4: The number of sexually transmitted infections in Kota Tinggi, 2014 and 2015	13
Table 3-5: The number of road traffic accidents in Kota Tinggi, 2014 and 2015	14
Table 3-6: Predicted Concentration, Hazard Quotient and Hazard Index for the EURC) 5
MOGAS Unit (Normal Operation Scenario) at Sensitive Receptor Locations	18

Table 3-7: Predicted Concentration, Hazard Quotient and Hazard Index for the Olefin Table 3-8: Predicted Concentration, Hazard Quotient and Hazard Index for Cumulative Refinery & Cracker Complex (Normal Operation Scenario) at Sensitive Receptor Locations Table 3-9: Predicted Cumulative GLC. Hazard Quotient and Hazard Index for Cumulative Refinery & Cracker Complex (Abnormal Operation Scenario) at Sensitive Receptor Table 3-10: Predicted Concentration, Hazard Quotient and Hazard Index for Cumulative Refinery & Cracker Complex (Emergency Operation Scenario) at Sensitive Receptor Table 3-11: Predicted Concentration, Hazard Quotient and Hazard Index for Cumulative Table 3-12: Predicted Concentration, Hazard Quotient and Hazard Index for Cumulative Table 3-13: Predicted Concentration, Hazard Quotient and Hazard Index for Cumulative

LIST OF FIGURES

Figure 3-1: Hospital Kota Tinggi...... 10

1

INTRODUCTION

The units within Refinery & the Cracker Complex as in DEIA RAPID 2012 are maintained. The RAPID Refinery Cracker Complex was originally designed to produce diesel that meets the EURO 5 specifications and MOGAS (motor gasoline) that meet EURO 4 specifications. To upgrade and meet the EURO 5 MOGAS specifications, Refinery Cracker Complex has been expanded to include additional units as listed below:

- 1. 2nd Stage Cracked Naphtha Hydrotreating (CNHT 2) Unit
- 2. Etherification Unit Tertiary-Armyl-Methyl-Ether (TAME) Unit
- 3. Isomerisation Unit
- 4. Additional Storage Tanks which consist of:
 - i. Two Tertiary-Armyl-Methyl-Ether (TAME) storage tanks
 - ii. Two Isomerate storage tanks
 - iii. One Medium Cracked Naptha (MCN) Storage Tank

Besides that, there will be new olefin storage tankages located in the current refinery tank farms which consists of:

- 1. Four mounded bullets for Butadiene Storage
- 2. One Ethylene Tank
- 3. Four spheres for Propylene Storage

Details of the additional units are described in **Volume 1, Chapter 2**. This additional information report conducted studies to assess the impacts from these new process units and tank farms in the Refinery and Cracker Complex.

2

ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS APPENDIX 2 HEALTH IMPACT ASSESSMENT

HEALTH RISK ASSESSMENT APPROACH

The health impact assessment (HIA) study will focus on the existing disease burden of the sensitive communities and on any potential impacts from the new units for EURO 5 MOGAS production and additional olefins storage.

The sensitive receptors are those people staying or institution located within the zone of impact (ZOI) of 5km radius from RAPID project boundaries. The current disease pattern among community members is very important as a baseline to ensure the health of present and future generations is secured and protected. Qualitative assessment is on the readiness of existing health facilities near the project site for a disaster management.

The scope of this HIA shall include:

- i. The assessment of the disease burden of the affected communities residing nearby to the proposed project site.
- ii. The estimation of the cumulative health risk status of the affected communities that based on the air dispersion modelling findings.

2.1 Applicable Regulatory Framework

In assessing the potential health impacts of the project, reference will be made to the following standards and guidelines.

- i. Guidance Document on Health Impact Assessment (HIA) in Environmental Impact Assessment (EIA) 2012.
- ii. Malaysian Ambient Air Quality Standard (2015).
- iii. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment) USEPA 2009).

2.2 Pollutants Assessed

The pollutants assessed were particulates and gaseous emission parameters from the identified sources as adopted in the Air Emission Dispersion Study:

- a) Simulation for air pollutant dispersion from the identified sources was conducted for:
 - i. Emission from Olefin Storage Tanks,
 - ii. The cumulative Refinery and Cracker Complex, and
 - iii. The cumulative RAPID Complex.
- b) The air pollutants that will be assessed for their health effects will be:
 - i. Fine particulate (PM_{2.5})
 - ii. Respirable particulate (PM₁₀)
 - iii. Nitrogen dioxide (NO₂)
 - iv. Sulphur dioxide (SO₂)
 - v. Carbon monoxide (CO)
 - vi. Ammonia (NH₃)
 - vii. Methanol
 - viii. Hydrogen sulphide (H₂S)

For non-methane volatile organic compounds (NMVOCs), it was not being assessed since there is no standard or guideline on its health effects. Similarly for unburned hydrocarbon (UH) that normally contain hydrogen and carbon, which collectively unhazardous to human being.

For the ambient air health risk exposure, three scenarios have been considered during the assessment based on air dispersion modelling that include:

i. Normal operation scenario with cumulative emissions from Refinery Complex and other RAPID components in normal operation mode,

- Abnormal operation scenario with unmitigated emissions from selected sources in the Refinery Complex including Olefin Storage Tanks with cumulative emissions from other RAPID components in normal operation mode, and
- Emergency operation scenario with unmitigated emissions from selected sources in the Refinery Complex with cumulative emissions from other RAPID components in normal operation mode.

Further details of the emission sources are shown in Volume 2, Appendix 1.

2.3 Identification of the Receptors

The identified sensitive receptors are shown in **Volume 1**, **Chapter 3** and **Chapter 4**.

2.4 Health Impact Assessment

The assessment will employ the approach adopted in the Guidance Document which comprises six basic steps, namely screening, scoping, hazard identification, dose-response assessment, exposure assessment, and risk characterization. For the characterization of the health risk, noncarcinogenic substances will be assessed as a hazard quotient (HQ) and their cumulative hazard index (HI). The cumulative HI should not more than one as representing a low risk condition with insignificant health adverse effects on the receptors. Since non of the potential pollutants behave as a carcinogen, the lifetime cancer risk is not being computed.

 Table 2-1 shows the health effects of the particulate and gaseous air

 pollutants being considered in the HRA.

Further details of the approach and methodology for this study are shown in **Volume 1**, **Chapter 3**.

 Table 2-1: Air Pollutant Health Impact

		Pollutant concentration (µg/m3) for ambient air		
No.	Pollutant	Reference Limit	Health Exposure Limit Reference	Health Impa
1	Nitrogen dioxide	280 (1-hour average)	Malaysian Ambient Air Quality Standards 2013 (Interim Target 2020)	 Acute exposure to NO₂ cause pulmonary edem obliterans. It's considered as relatively insoluble, reactive inhaled, it reaches the lower respiratory tract, alveolar spaces, where it produces pulmonary ed Many deaths from pulmonary oedema have concentrations of NO₂.
2	Carbon monoxide	30000 (1-hour average) 10000 (8-hours average)	Malaysian Ambient Air Quality Standards 2013 (Interim Target 2020)	 Exposure to carbon monoxide can occur through with the liquid. Inhalation of this asphyxiant gas causes tissue h sufficient oxygen. Carbon monoxide combin carboxyhemoglobin. The reduction in oxygen-can the amount of carboxyhemoglobin formed.
3	Sulphur Dioxide (SO ₂₎	250 (1-hour average)	Malaysian Ambient Air Quality Standards 2013 (Interim Target 2020)	 Studies have shown that inhalation of SO₂ by a wheezing at concentrations considerably lower th Concentrations as low as 0.2 ppm have a signimouth breathing or undergoing heavy exercise. increased by more prolonged exposure. The effects on moderate or severe asthmatics, or could conceivably be seen at much lower concentrations.
4	Ammonia (NH ₃)	130 (24-hours average)	Arizona Ambient Air Quality Guideline (This guideline is made as reference due to no reference limit for Ammonia (NH ₃) in Malaysian Ambient Air Quality Standards 2013 (Interim Target 2020))	 Ammonia is a colourless gas with a very sharp irr Human water taste and odour thresholds for a concentrations, respectively. It is a non-carcinogen corrosive substance that a respiratory tract, mouth, and digestive tract. The birth defects or other developmental effects.

ct

na, pneumonitis, bronchitis, and bronchiolitis

gas, such as phosgene and ozone. Once affecting the bronchioles and the adjacent dema within hours.

been induced by acute inhalation of high

inhalation of the gas and eye or skin contact

hypoxia by preventing the blood from carrying nes reversibly with haemoglobin to form rrying capacity of the blood is proportional to

asthmatics can cause a significant degree of nan those which affect non-asthmatics.

ificant effect, especially in subjects who are The effects appear to be short-lived and not

or those with marked liability of their asthma, ntrations of SO₂

ritating odour.

ammonia gas are at about 35 and 50 ppm

affects skin and mucous membrane in eyes, ere is no evidence that its exposure causes

		Pollutant concentration (µg/m3) for ambient air			
No.	Pollutant	Reference Limit	Health Exposure Limit Reference	Health Impac	
5	Methanol	4000 (24-hours average)	Canadian Ambient Air Quality Guideline (This guideline is made as reference due to no reference limit for Methanol in Malaysian Ambient Air Quality Standards 2013 (Interim Target 2020))	 Methanol is a skin and eye irritant. It causes irrita those requiring the use of an approved air-purifyin These materials are only slightly hazardous to heat Acute poisoning causes initial drowsiness, con experience nonspecific malaise, headache, vomit visual changes. If untreated, central nervous system depress respirations, metabolic acidosis with hypokalemia. Visual defects are described as blurred or "snipoisoning progresses to coma, metabolic acidosis The minimum lethal dose of methanol in the absert 1 g/kg body weight. The immediately dangerous dose of life or health At this moment, no studies were found on the phumans or experimental animals. 	
6	Hydrogen sulphide (H₂S)	270 (24-hours average)	Arizona Ambient Air Quality Guideline (This guideline is made as reference due to no reference limit for Hydrogen Sulphide (H ₂ S) in Malaysian Ambient Air Quality Standards 2013 (Interim Target 2020))	 Exposure to low concentrations of hydrogen sulp or throat. It may also cause difficulty in breathing f High concentrations of hydrogen sulphide (gre consciousness. The inhalation reference limit for hydrogen sulp Quality is 270ug/m³ for 24 hours exposure. 	
7	PM10	100.0 (24-hours average)	Malaysian Ambient Air Quality Standards 2013 (Interim Target 2020)	 Particulate matters and total suspended solids a irritation, with the release of mediators causing ex blood coagulability in susceptible individuals. 	
8	PM2.5	35 (24-hour average)	Malaysian Ambient Air Quality Standards 2013 (Interim Target 2020)	 This ultra-fine particulate with a mass median a (PM₁₀) may mediate some of the adverse health evidence to support this contention. The health effects for PM_{2.5} is considered worst entering the systemic circulation more easy. The influx on contact with macrophages. 	

tion, but only minor residual injury, including ng respirator.

alth and only breathing protection is needed. nfusion and ataxia. Then the patient may ting, abdominal pain, nausea, vomiting, and

ion progresses to encephalopathy, rapid

owfield" like vision. If untreated, methanol s, and finally respiratory or circulatory arrest.

nce of medical treatment is between 0.3 and

is 6000 ppm, equal to $8X10^6$ mg/m³.

ossible carcinogenic activity of methanol in

bhide may cause irritation to the eyes, nose, for some asthmatics.

eater than 500 ppm) may cause loss of

hide according to the Arizona Ambient Air

are capable of provoking respiratory system xacerbations of lung disease and increasing

erodynamic diameter less than 10 microns effects reported in which there is toxicologic

than PM₁₀ in general since it's capable of ese particles are able to enhance calcium

ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS

APPENDIX 2 HEALTH IMPACT ASSESSMENT

	Pollutant concentration (µg/m3) for ambient air			Pollutant concentration (µg/m3) for ambient air	ration (µg/m3) for ambient air		
No.	No. Pollutant	Reference Limit	Health Exposure Limit Reference		Health Impa		
				•	Oxidative stress is also to be anticipated, where recruiting inflammatory leukocytes producing a arteries, which one of the causes of morbidity particulate air pollution.		

act

which augmented by oxidants generated by atheromatous plaques form in the coronary and death associated epidemiologically with

3 IMPACTS AND MITIGATION MEASURES

This section details the public health impact assessment of the air pollutant emission from the Cumulative Refinery & Cracker Complex and Cumulative RAPID Complex during the operation phase based on the findings from the Air Dispersion Modeling Study (**Volume 2, Appendix 1**).

3.1 Existing Public Health

This described the present health status of the population residing nearby to the project's site. It will involve the secondary data on disease morbidity, particularly on communicable and non-communicable diseases that will be requested from the District Health Office of Kota Tinggi. These tasks had already been completed in the approved Overall RAPID DEIA, 2012 submitted to the DOE. However, this report will add more data up to 2015.

3.1.1 Existing Public Health Status

Health Impact Assessment (HIA) is one of the important components in Environmental Impact Assessment (EIA) in safeguarding the health of apparently exposed communities to potential pollutants arose from the proposed project.

The aim of this section of health impact assessment (HIA) was to study the current local health care system and to evaluate their capability of providing services to the local population. Next aim was to determine the present burden of diseases among the communities, particularly for people staying in the district of Kota Tinggi, Johor. It's also include communities within the zone of impact of 5km radius that similar to other existing previous health impact assessment for RAPID. The burden of diseases consists of both communicable and non-communicable diseases.

The district of Kota Tinggi is most probably will gain more job opportunities for local people, which indirectly boost up its domestic trading and district income from various taxes. Until the smallest stage of mukim, both Sungai Rengit and Pengerang will be in advantage than other mukims.

More physical developments like roads, small cities and housing area's construction will rise tremendously around this proposed project. Those positive developments normally increase per capita income of local people due to the influx of workers from neighbouring states and countries that increase market demand for goods, foods, shelter and transportation. On the other hand, health problems may become more prominent that granted for an effective prevention and tight surveillance measures.

Kota Tinggi is one of the districts in the State of Johor located in the southeast part of the Peninsular Malaysia with an estimated midyear total population of 238,130 in 2015. It is managed by a local district council manned by a district officer. The main development mukims in the district are the town of Kota Tinggi itself, and Pengerang. The district has 100% coverage of sanitary latrines, safe drinking water supply and electrical power. All townships are readily connected with available good tarred road all over the areas.

3.1.2 Health care services in Kota Tinggi

The district area is served by the Kota Tinggi Hospital since 1913. Started with 60 beds, but now it has a total of 158 beds with a complete range of medical care facilities (**Figure** 3-1). The average number of admissions per day is about 36 cases. With expert medical attention and treatment, most of the patients only stay for an average of 1.7 days. There are about nine doctors with 14 staff nurses. Its emergency unit has four ambulances partially equipped with acute treatment.

Figure 3-1: Hospital Kota Tinggi

There are three health care centres for outpatient treatment. One placed at the Outpatient Department at Hospital Kota Tinggi it, Sungai Rengit Health Centre and Bandar Penawar Health Centre. Sungai Rengit Health Centre is overseen by two medical doctors, two medical assistants, five staff nurses, six community nurses, and two drivers. The centre had received another ambulance for acute emergency transportation from RAPID Petronas as one of their corporate social responsibility (CSR). The clinic is still under renovation and will provide an 24-emergency service for acute cases. Complicated cases usually been transferred to Kota Tinggi Hospital, which is about 65 km away to the north but with good wide tarred roads.

Another health centre is at Bandar Penawar, which also going to be upgraded and expended for the incoming number of workers and communities. One rural clinic at Telok Ramunia focuses on antenatal and child health. There are a few private clinics around Sungai Rengit township that provide a general physician care.

3.1.3 Burden of Diseases

3.1.3.1 Respiratory tract diseases

Acute respiratory infection is the most common lung's problem among communities in Kota Tinggi (**Table** 3-1). Influenza virus infection was the second common respiratory diseases followed by bronchial asthma and pneumonia. These followed by pulmonary tuberculosis. All these respiratory diseases increased in the number of cases compared to the year 2014, except for influenza and pneumonia. The excessive burden might due to unhygienic conditions, overcrowded and poor ventilation of the housing areas.

3.1.3.2 Vector-borne diseases

Table 3-2 shows the number of dengue fever and leptospirosis cases last year was nearly double the number of cases in 2014. The district was not spared from filariasis and malaria, but in minimal number of cases. Still, the area was free from chikungunya, plague, typhus, and yellow fever.

Disease	Year		
Discuse	2014	2015	
Acute respiratory infection	39136	46726	
Bronchial asthma	921	1324	
Influenza	2080	2004	
Pneumonia	62	0	
Tuberculosis	158	162	

Table 3-1: The number of respiratory diseases in Kota Tinggi, 2014 and 2015

Source: The Health District of Kota Tinggi (2016)

Table 3-2: The number of vector-borne diseases in Kota Tinggi, 2014 and 2015

Disease	Year					
2.00000	2014	2015				
Chikungunya	0	0				
Dengue Fever	234	592				
Dengue Haemorrhage Fever	2	1				
Leptospirosis	10	22				
Lymphatic Filariasis	6	4				
Malaria	5	6				
Plague	0	0				
Typhus	0	0				
Yellow Fever	0	0				

Source: The Health District of Kota Tinggi (2016)

3.1.3.3 Food and Water-borne Diseases

Food poisoning is one example of food and water-borne diseases that present in this area. The trend showed a decreasing pattern in the last year compared to numerous number of cases in 2014 (**Table** 3-3). The district also has recorded a few numbers of typhoid cases in 2015. These isolated cases might be due to improper food preparation and handling. Other diseases like cholera, dysentery, and hepatitis A infection, giardiasis and helminths manifestation were absent from the district.

Table 3-3: The number of food and water-borne diseases in Kota Tinggi, 2014 and2015

Disoaso	Year						
Disease	2014	2015					
Cholera	0	0					
Dysentery	0	0					
Food Poisoning	121	80					
Giardiasis	0	0					
Helminths	0	0					
Hepatitis A	0	0					
Typhoid	0	2					

Source: The Health District of Kota Tinggi (2016)

3.1.3.4 Sexually Transmitted Infections (STIs)

Pertaining to sexual related diseases, the district has only few reported cases of all STIs (**Table** 3-4). These diseases are the proxy for blood exposure either through the genital tract bleeds or contaminated needle in the study area, which still under controlled.

However, based on the trend of those diseases, both HIV and hepatitis B were found to be consistently present until last year in 2015. This indicated the availability of exposure and poor sexual behaviour among the communities, but solely by a little group of citizenry. Other STIs like syphilis and gonorrhoea were reduced and well contained. The district has been free from Chlamydia and AIDS.

Table 3-4: The number of sexually transmitted infections in Kota Tinggi, 2014 and
2015

Disease	Year								
Disease	2014	2015							
AIDS	0	0							
Chlamydia	0	0							
Gonorrhoea	4	2							
Hepatitis B	13	14							
HIV	21	26							
Syphilis	3	2							

Source: The Health District of Kota Tinggi (2016)

3.1.3.5 Accidents and Injury

There were a significant number of injuries due to road traffic accidents among the local people staying around the Kota Tinggi areas (**Table** 3-5). There were about 5600 and 3452 accidents in Kota Tinggi, 2014 and 2015 respectively. Even though the two-year trend showed improvement in road safety in the area, it's still among the top causes of admission and death cases at Hospital Kota Tinggi.

Table 3-5: The number of road traffic accidents in Kota Tinggi, 2014 and 2015

Problem	Year						
	2014	2015					
Road traffic accident	5600	3452					

Source: The Health District of Kota Tinggi (2016)

3.1.4 Summary on Existing Public Health

In summary, the district of Kota Tinggi, where the proposed project will be built, was not free from certain common diseases such as acute respiratory infection, tuberculosis, dengue fever, leptospirosis, malaria, food poisoning, HIV and road traffic accidents were found to be present in quite a significant number of cases.

Most of the diseases seen in the area are preventable and manageable. The health authorities need to carefully monitor their surveillance system. The respiratory diseases may due to poor sanitation and bad air quality that required better ventilation and strengthening of legislation towards good air quality status and housekeeping.

With the presence of huge workforce around the area, the health authorities have to monitor it closely and proactively. They should be monitored for the presence of certain diseases like malaria and STIs. Limitation of movement and contact with surrounding communities should be able to prevent any spread of the disease. The health care system in the area was fully accepted. However, the present staffs need further training to strengthen their acute care knowledge.

In general, the existing burden of diseases of the communities near the proposed project posed certain level of health risk to both workers and the communities. Medical precaution is needed, especially for workers' health and disease prevention.

3.2 Impact from emission from the Individual Units

3.2.1 EURO 5 MOGAS Unit

a) Normal Operation Scenario

During this scenario, the EURO 5 MOGAS vent is routed to CHNT2 Unit to be treated before discharged to atmosphere. Data from the air dispersion modellinig showed that:

- All sensitive receptors have hazard index (HI) of not more than one. These indicate that all locations are predicted to have a good ambient air quality during normal release from the EURO 5 MOGAS unit (Table 3-6).
- The maximum point for PM_{10} is expected to occurred at Bukit Penggerang with concentration of 36.034 µg/m³. This give rise the HQ value of 0.4, which is not more than one. Therefore, in normal scenario, the new unit wont poses any significant health risk to all receptors.
- For PM_{2.5}, its maximum ground concentration is also predicted to happened at Bukit Penggerang with estimated incremental of 0.034 µg/m³. This give rise the HQ of less than one (0.001), which indicate the unit is expected not to createany substantial health hazard to all surrounding receptors.
- Pertaining to SO_2 emission from the new unit, the highest point is expected also at the Bukit Penggerang with concentration of 1.1 μ g/m³. The HQ is only 0.004 that indicate no significant health risk to all identified receptors.
- The highest concentration of NO2 (tier-1) is also been predicted to occur at the Bukit Penggerang with the 30.8 µg/m³. This give the HQ of 0.1, which indicates of no significant health risk will be impose during normal operation of the new EURO 5 MOGAS unit.

 Specific on CO, its maximum point is predicted to be occurred at Bukit Penggerang with concentration of 101.1 µg/m³ that gives the value of HQ of 0.01. All receptors are free from any health risk of CO emission.

In summary, the new EURO 5 MOGAS unit is found to have no significant health impact to all receptors during normal operating condition.

b) Abnormal Operation Scenario

Emission from this unit during abnormal scenario is as per normal operating condition.

c) Emergency Operating Scenario

No emergency operating scenario modelling is done for this system as the waste gasses are flared and this is expected to be temporary less than 1 hour.

3.2.2 Olefins Storage Tankages

a) Normal Operation Scenario

No air dispersion modeling was done for the Olefin Storage Tanks since there is no continuous emission.

b) Abnormal Operation Scenario

Intermittent emission from Olefin storage tanks is routed to the Cold Flare located within the Olefin Storage Tank. In this scenario, only NO_2 (tier-1) and CO are being assessed and computed as other pollutants are not relevant.

• All sensitive receptors have hazard index (HI) of not more than one. These indicate that all receptors are predicted to have a

clean and good quality of air during intermittent release from the Olefin Storage Tanks (**Table 3-7**).

- However, the maximum point for NO2 (tier-1) is predicted to occur at RAPID complex with concentration of 308.1 µg/m³. This give the hazard quotient (HQ) of 1.1, which indicates of no significant health risk will be impose if abnormal operation occured.
- Pertaining to CO, its maximum concentration is predicted to be at 1814.0 µg/m³ that gives the value of HQ of 0.1. The value means that during abnormal scenario, its predicted to have no substantial health risk.

In conclusion, for the Olefin Storage Tanks air emission have no significant health impact to all sensitive receptors and people working within RAPID complex itself during abnormal operating scenario.

c) Emergency Operating Scenario

No emergency operating scenario modelling is done for this system as the waste gasses are flared and this is expected to be temporary less than 1 hour.

PM ₁₀		PM ₁₀ PM _{2.5}		S	O ₂	NO ₂ (*	Tier 1)	С				
Location	cation (24 hours average)		(24 hours	(24 hours average)		(1 hour average)		(1 hour average)		(8 hours average)		
(Sensitive Receptors)	Conc. (µg/m³)	HQ	Conc. (µg/m³)	HQ	Conc. (µg/m³)	HQ	Conc. (µg/m³)	HQ	Conc. (µg/m³)	HQ		
Tg. Pengelih	24.0	0.24	0.0012	0.00003	5.0	0.07143	5.8	0.0232	100.0	0.01	0.3	
Pengelih Naval Base	24.0	0.24	0.0339	0.00097	6.1	0.08714	30.8	0.1232	101.1	0.01011	0.5	
Kg. Penggerang	36.0	0.36	0.0019	0.00005	5.1	0.07286	6.2	0.0248	100.1	0.01001	0.5	
Kg. Sg. Kapal	25.0	0.25	0.0068	0.00019	5.1	0.07286	6.7	0.0268	100.1	0.01001	0.4	
Taman Rengit Jaya	38.0	0.38	0.0050	0.00014	5.1	0.07286	7.0	0.028	100.1	0.01001	0.5	
Kg. Sg. Buntu	28.0	0.28	0.0039	0.00011	5.1	0.07286	6.8	0.0272	100.1	0.01001	0.4	
Kg. Bukit Buloh	31.0	0.31	0.0017	0.00004	5.1	0.07286	6.8	0.0272	100.0	0.01	0.4	
Kg. Sg. Rengit	20.0	0.2	0.0014	0.00004	0.1	0.00143	1.6	0.0064	0.0	0.000	0.2	
Kg. Bukit Gelugor	22.0	0.22	0.0015	0.00004	5.1	0.07286	6.6	0.0264	100.0	0.01	0.3	
Kg. Lepau	35.0	0.35	0.0017	0.00005	5.1	0.07286	6.9	0.0276	100.1	0.01001	0.5	
Kg. Pasir Gogok	20.0	0.20	0.0011	0.00003	0.0	0.00000	1.1	0.0044	0.0	0.00000	0.2	

Table 3-6: Predicted Concentration, Hazard Quotient and Hazard Index for the EURO 5 MOGAS Unit (Normal Operation Scenario) at Sensitive Receptor Locations

Table 3-7: Predicted Concentration, Hazard Quotient and Hazard Index for the Olefin Storage Tanks (Abnormal Operation Scenario) at Sensitive Receptor Locations

Location	NC	D ₂ (Tier 1)						
(Sonsitive Recenters)	(1 ho	our average)	(8 hou	(8 hours average)				
(Sensitive Receptors)	Conc. (µg/m³)	Hazard Quotient	Conc. (µg/m³)	Hazard Quotient				
Tg. Pengelih	14.7	0.0	99.1	0.0	0.0			
Pengelih Naval Base	133.7	0.5	714.3	0.0	0.5			
Kg. Penggerang	17.0	0.1	112.1	0.0	0.1			
Kg. Sg. Kapal	35.0	0.1	172.8	0.0	0.1			
Taman Rengit Jaya	30.4	0.1	160.9	0.0	0.1			
Kg. Sg. Buntu	26.5	0.1	132.1	0.0	0.1			
Kg. Bukit Buloh	43.6	0.2	222.2	0.0	0.2			
Kg. Sg. Rengit	16.2	0.1	111.3	0.0	0.1			
Kg. Bukit Gelugor	18.5	0.1	87.7	0.0	0.1			
Kg. Lepau	29.4	0.1	147.5	0.0	0.1			
Kg. Pasir Gogok	14.1	0.0	84.8	0.0	0.0			

3.3 Impact from Cumulative Refinery & Cracker Complex

a) Normal Operation Scenario

For this normal operation scenario, the available baseline concentrations were only for PM_{10} , SO_2 , NO_2 , and CO. Others are not detected during the baseline study. Therefore, for particular pollutants like NH_3 , methanol, and H_2S , their respective maximum incremental limits were used as a proxy for their ground concentrations.

- As for the health risk characterisation, none of the receptors have hazard index (HI) of more than one (**Table 3-8**). This means that for this refinery cracker complex, the ambient air quality is predicted to pose a low risk to health and will not cause any excess of health problems among the exposed receptors or population.
- However, in assessing for the individual pollutants, the highest point of incremental of PM_{10} is predicted to occur at Bukit Penggerang that's quite far away from those sensitive receptors. The maximum cumulative ground concentration is about 1.8 μ g/m³ with a HQ value of 0.2 that not more than one. The condition itself is safe with low health risk.
- For SO₂, the highest point is within the RAPID complex of 90.5 μ g/m³ that give rise to HQ value of 0.36, which it's health risk is not significant. All sensitive receptors are secured.
- For NO₂ (tier 3), the maximum predicted concentration is at Bukit Pelali with 479.5 µg/m³ predicted concentration. Its HQ is 1.7, which still not more than one indicating of no substantial health hazard. The hilly area is actually far away from any sensitive receptors in the study.
- For CO, it's maximum ground concentration is predicted to occur within the RAPID complex with a value of 204.8 μg/m³ that give HQ of 0.02, it is no significant health implication.

- Pertaining to NH₃, it is predicted to reach the maximum incremental limit of 0.302 µg/m³, also within RAPID complex. Its HQ is about 0.001, which significantly no excess of health hazard.
- For methanol, it is predicted to increase at the maximum limit up to 6.2 µg/m³ that found within RAPID complex. The HQ is 0.05, which is low risk of adverse health effects.
- The next pollutant is H_2S that predicted to have highest concentration of 0.907 μ g/m³ that located within RAPID complex. Its HQ is 0.003, which has no significant health danger.

b) Abnormal Operation Scenario

This scenario is based on only one emission control failure event at a time or based on the worst-case pollutant load released from a selected failure event. Once more, most of the potential pollutants are not detected as for their baseline concentration except for SO2 and NO2. For other pollutants, their maximum incremental concentrations are applied to assess their health risk. Unburned hydrocarbon (UHC) is not being assessed as it's not risky to health. Pollutants like PM_{10} and $PM_{2.5}$ are not included since there is no standard for a 1-hour exposure. And methanol is not being modelled in this scenario.

- During abnormal operation, the waste gasses are released to the atmosphere and this is expected to be temporary, less than one hour for all parameters.
- All sensitive receptors within 0 to 5 km radius from the complex are predicted to have the HI of more than one in this abnormal scenario (**Table 3-9**). It means the ambient air is polluted and not safe for all receptors. However, it's only temporarily and less for one hour.

- Among those sensitive receptors, the highest risk area in this condition is the Pengelih Naval Base with HI of 70.5 mainly due to emission of SO₂. However, for this to occur is very unlikely because of other emission control that's available to take care the load released. Its for the short time that less than one hour.
 - On the other hand, looking at individual pollutants, most of them concentrated within RAPID complex itself. The highest point for SO₂ is within RAPID complex itself, with 40582.8 μ g/m³ that give HQ of 162.33. It is a very hazardous condition that required prompt use of respirators if happened. Without any personal protective equipments, a person may develop respiratory problem and trouble in breathing after 10 minutes of exposure. Again, this is expected to be temporary that less than one hour. With good wind blow and dilution, the pollutant is no more at dangerous concentration.
- For NO₂, the highest point is also within the RAPID complex with concentration of 2073.8 µg/m³. The HQ for this point is 7.4, which very hazardous to human being. At this concentration, workers without any respirator may develop sneezing, shortness of breath and coughing after 2-hour exposure. However, from the modelling result, its occurrence is predicted only at the 0.5 percentile, which the probability to occur is only nine days in every five years of operating period.
- Again RAPID complex is predicted to have the highest concentration point for CO with 1814.0 µg/m3 (HQ of 0.1). Nevertheless, it is safe and predicted not to induce any substantial health problems.
- And for H₂S, the highest level is also predicted to be inside RAPID complex with concentration of 456.1 µg/m3 and HQ of 1.7, which is unhealthy and may cause respiratory problems among exposed person.

In conclusion, in this abnormal operating scenario, all identified sensitive receptors are exposed to high health risk mainly due to high emission of SO₂. It may trigger sudden sneezing, difficulty in breathing and chest discomfort. However, it is predicted not to claim any fatality cases since its only temporarily and less than one hour.

c) Emergency Operation Scenario

For the emergency operation scenario, most of the pollutants are not detected as for their baseline concentrations except for SO_2 and NO_2 . Since there is no standard limit for 1-hour PM_{10} and $PM_{2.5}$, both are not being assessed in this scenario. Similarly for NH_3 and methanol because they are not being modelled in this exercise.

- The modelling results showed that none of the sensitive receptors have hazard index (HI) of more than one (Table 3-10). All identified receptors are not exposed to any health risk due to the emission.
- Most of the predicted pollutants are found to be concentrated at the ocean, south of the RAPID complex site, but at lower concentrations that far below the allowable limits.
- For SO₂, its maximum incremental of 120.4 μ g/m³ gave rise to the value of 0.5 HQ. The situation is safe and no significant risk to health.
- For NO₂, its maximum incremental value of 9.3 μ g/m³ is equivalent with 0.03 HQ. The circumstance causes no substantial danger to health.
- And for CO, the maximum incremental of 50.7 µg/m³ that equal to HQ of 0.002. The condition is very safe with low risk of hazard to receptors.
- For H2S, the highest level was 1.3 µg/m3 that give HQ value of 0.02.

In general, for the emergency operations scenario, the Refinery Cracker Complex is predicted not to create any extra health adverse effects in the exposed communities surrounding the proposed project site.

Location	PI	M ₁₀	PN	N _{2.5}	S	02	NO ₂ (*	Tier 3)	C	0	Ν	H ₃	Meth	nanol	Н	₂S	
(Sensitive	(24 hours	s average)	(24 hours	average)	(1 hour a	average)	(1 hour	average)	(8 hours	average)	(24 hours	average)	(24 hours	average)	(24 hours	average)	Hazard
(Sensitive Bocontors)	Conc.	Hazard	Conc.	Hazard	Conc.	Hazard	Conc.	Hazard	Conc.	Hazard	Conc.	Hazard	Conc.	Hazard	Conc.	Hazard	Index
Receptors	(µg/m³)	Quotient	(µg/m³)	Quotient	(µg/m³)	Quotient	(µg/m³)	Quotient	(µg/m³)	Quotient	(µg/m³)	Quotient	(µg/m³)	Quotient	(µg/m³)	Quotient	
Tg. Pengelih	24.2	0.2	0.1	0.0	21.5	0.1	19.1	0.1	109.6	0.0	0.0	0.0	0.2	0.0	0.1	0.0	0.4
Pengelih Naval Base	24.4	0.2	0.3	0.0	34.8	0.1	116.4	0.4	125.9	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.8
Kg. Penggerang	36.2	0.4	0.2	0.0	22.6	0.1	25.4	0.1	108.5	0.0	0.0	0.0	0.2	0.0	0.1	0.0	0.6
Kg. Sg. Kapal	25.4	0.3	0.2	0.0	53.7	0.2	83.4	0.3	121.4	0.0	0.0	0.0	0.6	0.0	0.2	0.0	0.8
Taman Rengit Jaya	38.4	0.4	0.3	0.0	39.1	0.2	75.4	0.3	141.5	0.0	0.0	0.0	0.9	0.0	0.1	0.0	0.9
Kg. Sg. Buntu	28.4	0.3	0.2	0.0	28.9	0.1	67.3	0.2	120.6	0.0	0.0	0.0	0.4	0.0	0.1	0.0	0.6
Kg. Bukit Buloh	31.4	0.3	0.2	0.0	47	0.2	96.5	0.3	304.8	0.0	0.2	0.0	3.8	0.0	0.2	0.0	0.8
Kg. Sg. Rengit	20.3	0.2	0.2	0.0	30.4	0.1	68	0.2	11.5	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.5
Kg. Bukit Gelugor	22.2	0.2	0.1	0.0	33	0.1	68.5	0.2	109.9	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.5
Kg. Lepau	35.4	0.4	0.3	0.0	51	0.2	72.9	0.3	122.3	0.0	0.0	0.0	0.2	0.0	0.3	0.0	0.8
Kg. Pasir Gogok	20.3	0.2	0.2	0.0	20.5	0.1	31.9	0.1	10.6	0.0	0.0	0.0	0.2	0.0	0.1	0.0	0.4

Table 3-8: Predicted Concentration, Hazard Quotient and Hazard Index for Cumulative Refinery & Cracker Complex (Normal Operation Scenario) at Sensitive Receptor Locations

Location	SO ₂		N	O ₂	с	o	н		
Location	(1 hour a	average)	(1 hour average)		(1 hours	average)	(1 hour	Hazard Index	
(Sensitive Receptors)	Conc. (µg/m³)	Hazard Quotient	Conc. (µg/m³)	Hazard Quotient	Conc. (µg/m³)	Hazard Quotient	Conc. (µg/m³)	Hazard Quotient	
Tg. Pengelih	1303.9	5.2	86.6	0.3	99.1	0.0	24.5	0.1	5.6
Pengelih Naval Base	16625.7	66.5	928.3	3.3	714.3	0.0	182.3	0.7	70.5
Kg. Penggerang	1547.3	6.2	95.4	0.3	112.1	0.0	31.3	0.1	6.6
Kg. Sg. Kapal	3745.9	15.0	213.6	0.8	172.8	0.0	45.8	0.2	16.5
Taman Rengit Jaya	3441.2	13.8	192.7	0.7	160.9	0.0	50.1	0.2	14.7
Kg. Sg. Buntu	2870	11.5	162.1	0.6	132.1	0.0	39.9	0.1	12.2
Kg. Bukit Buloh	5402.5	21.6	300.3	1.1	222.2	0.0	62.8	0.2	22.9
Kg. Sg. Rengit	2051.7	8.2	118.8	0.4	111.3	0.0	29.1	0.1	8.7
Kg. Bukit Gelugor	1705.7	6.8	117.3	0.4	87.7	0.0	22.1	0.1	7.3
Kg. Lepau	3061.3	12.2	175.2	0.6	147.5	0.0	38.4	0.1	12.9
Kg. Pasir Gogok	1890.4	7.6	106.8	0.4	84.8	0.0	22.0	0.1	8.1

Table 3-9: Predicted Cumulative GLC, Hazard Quotient and Hazard Index for Cumulative Refinery & Cracker Complex (Abnormal Operation Scenario) at Sensitive Receptor Locations

	SO ₂		NO ₂		C	0	H	₂S		
Location	(1 hour a	average)	(1 hour a	iverage)	(1 hour a	average)	(1 hour a	average)	Hazard Inday	
(Sensitive Receptors)	Conc. (μg/m³)	Hazard Quotient	Conc. (μg/m³)	Hazard Quotient	Conc. (µg/m³)	Hazard Quotient	Conc. (µg/m³)	Hazard Quotient	nazaru muex	
Tg. Pengelih	96.1	0.4	12.1	0.0	38.4	0.0	1.0	0.0	0.4	
Pengelih Naval Base	104.7	0.4	12.7	0.0	42	0.0	1.1	0.0	0.4	
Kg. Penggerang	85.0	0.3	11.2	0.0	33.7	0.0	0.9	0.0	0.3	
Kg. Sg. Kapal	104.3	0.4	12.7	0.0	41.8	0.0	1.1	0.0	0.4	
Taman Rengit Jaya	97.2	0.4	12.1	0.0	38.9	0.0	1.0	0.0	0.4	
Kg. Sg. Buntu	89.7	0.4	11.6	0.0	35.7	0.0	0.9	0.0	0.4	
Kg. Bukit Buloh	100.5	0.4	12.4	0.0	40.3	0.0	1.0	0.0	0.4	
Kg. Sg. Rengit	103.3	0.4	8.0	0.0	43.5	0.0	1.1	0.0	0.4	
Kg. Bukit Gelugor	111.5	0.4	13.2	0.0	44.9	0.0	1.2	0.0	0.4	
Kg. Lepau	98.8	0.4	12.3	0.0	39.5	0.0	1.0	0.0	0.4	
Kg. Pasir Gogok	104.1	0.4	8.1	0.0	43.8	0.0	1.1	0.0	0.4	

Table 3-10: Predicted Concentration, Hazard Quotient and Hazard Index for Cumulative Refinery & Cracker Complex (Emergency Operation Scenario) at Sensitive Receptor Locations

3.4 Impact from Cumulative RAPID Complex

a) Normal Operation Scenario

The predicted concentration of identified pollutants for Cumulative RAPID Complex during this normal operation scenario and their hazard quotient and hazard index are shown in **Table 3-11**. The baseline concentrations for $PM_{2.5}$, methanol, NH_3 , and H_2S are not detected. Thus, their maximum incremental concentrations are applied to calculate their risks.

- For this normal operation scenario, none of the sensitive receptors around the proposed project area have the HI of more than one. All locations are predicted to have clean and safe ambient air without any significant potential of health effects due to exposure among the receptors.
- For PM_{10} , the highest point was at Bukit Penggerang with maximum increments of only 3.2 μ g/m³ concentration. The location is clean and has low health risk with HQ of 0.03.
- For SO₂, the highest concentration was within the RAPID complex itself, with maximum incremental of 91.0 μ g/m³ that gave the HQ value of 0.4, which is also clean with insignificant health risk.
 - For NO₂, the most concentrated point by air dispersion modelling was at Bukit Pelali with maximum incremental value of 523.0 µg/m³ that equivalent to 1.87 points of HQ. The condition is unhealthy especially among asthmatic patients and lung diseases like chronic bronchitis. Fortunately, the area is a hilly area with no regular inhabitant. Nevertheless, from the modelling, its occurrence is predicted approximately 0.5 percentile, which the probability to occur is only nine days in every five years of operating period.

- And as for CO, the highest point with maximum incremental concentration of 205.0 µg/m³ that detected within RAPID complex itself. The HQ is 0.02 only, which indicates clean air quality without any substantial health danger.
- The maximum incremental concentration of NH₃ is predicted to occur within the RAPID complex with a value of 0.3 μ g/m³ that give HQ of 0.001, which safe and no health risk.
- The high point for methanol is also within the RAPID complex (6.2 μ g/m³ = HQ of 0.05). The point is spare from any health risk.
- For H_2S , the highest level was 0.907 µg/m3 within RAPID complex that give HQ value of 0.003. Again, it's safe and no risk to health.

These bring a conclusion that during normal operation of the proposed project as a cumulative effect with other units, there won't be any extra or excess of health risks toward the identified sensitive receptors. Only a spot of high concentration of NO_2 is predicted to occur at Bukit Pelali, which is predicted to occur only nine days in five years of operation. In summation, the region is actually a hill and its not an attractive site to be seen by anybody.

b) Abnormal Operation Scenario

In this scenario, most of the potential pollutants don't have their baseline concentration except for SO_2 and NO_2 (**Table 3-12**). Unburned hydrocarbon (UHC) is not being assessed as it's not risky to health. Pollutants like PM_{10} and $PM_{2.5}$ are not included since there is no standard for a 1-hour exposure. And methanol is not being modelled in this scenario.

• During abnormal operation of Refinery Cracker Complex, the waste gasses are released to the atmosphere and this is expected to be temporary, thus the modelling shall be modelled for 1 hour averaging time for all parameters.

- All identified sensitive receptors within 5 kilometre radius from RAPID complex boundaries have HI of more than one. The highest is the Pengelih Naval Base (HI of 71.5). Fortunately, it is very unlikely because of other emission control systems in Rapid Complex that available to take care the temporarily stack release within one hour.
- The highest point for SO₂ is within RAPID complex itself, with 40582.8 μ g/m³ that give HQ of 162.33, which is a very hazardous that required the use of respirators. However, it won't cause any fatality since the value is far below than the limit set by NIOSH (262,000 μ g/m³) as the immediately dangerous to life or health (IDLH). In addition, its only temporary and less than one hour.
- For NO₂, the highest point is also within the RAPID complex with concentration of 2073.8 µg/m³. The HQ for this point is 7.4, which very hazardous to human being. At this concentration, anybody healthy without any PPEs may develop respiratory problems like shortness of breath and coughing only after 2-hour of exposure. However, from the modelling results, the occurrence is very low as predicted, to happen in nine days within five years of operation. On the other hand, the value is very low compared to the IDHL for NO2 (190,000 µg/m3).
- For CO, the highest point with maximum incremental concentration of 1814.1 μg/m³ that detected within RAPID complex itself. The HQ is 0.06, which is clean and no significant health risk.
- For H2S, the highest level was 456.1 µg/m3 within RAPID complex that give HQ value of 1.7, which is not healthy and poses significant risk to site workers' health.

In conclusion, the abnormal operation of the proposed project is predicted to pose a significant health effect to all identified sensitive receptors and workers within RAPID complex itself.

c) Emergency Operation Scenario

Once more, most of the pollutants for this modelling exercise don't have their baseline concentrations except for both SO_2 and NO_2 (**Table 3-13**). However, the maximum incremental concentrations are used to predict the health risks for other pollutants like CO, and H_2S .

There is no limit for 1-hour PM_{10} and $PM_{2.5}$. Thus, both of the parameters are not being appraised in the study. There is also no prediction for NH_3 and methanol in this scenario. During this emergency operation, the waste gasses are flared. The health impact is expected to be minimal and temporary that less than 1 hour of exposure.

- In this circumstance, none of sensitive receptors have the HI of more than one. All locations are predicted to have clean and safe air during this scenario without any potential of health risk among receptors.
- For SO₂, the highest concentration is predicted to be at the ocean, south of the RAPID complex with maximum incremental of 120.5 μ g/m³ that gave the HQ value of 0.48. The HQ indicates no excess of health risk at the location due to SO₂.
- For NO₂, the highest incremental point was at Bukit Penggerang with a value of 165.0 μ g/m³ that equivalent to value of HQ of 0.59. Again, the location has no substantial health hazard due to NO₂ exposure.
- And for CO, the highest point with maximum incremental concentration of 546.4 μ g/m³ that detected at Bukit Penggerang. The HQ is 0.02, which indicates of no present of health hazard at the location.
- For H_2S , the highest point was 1.3 μ g/m³ detected at the ocean, south of the RAPID complex that give HQ value of 0.02. The point has low health risk.

In conclusion, in this emergency operation scenario of the proposed cumulative RAPID complex project, it doesn't pose any significant health effect to all sensitive receptors.

Location	PI	W ₁₀	PN	N _{2.5}	S	O ₂	NO ₂ (*	Tier 3)	С	:0	N	H ₃	Meth	nanol	F	l₂S	
Location	(24 hours	s average)	(24 hours	s average)	(1 hour	average)	(1 hour a	(1 hour average) (8 hours		average)	(24 hours	s average)	(24 hours average)		(24 hours average)		Hazard
(Sensitive Receptors)	Conc. (µg/m³)	Hazard Quotient	Conc. (µg/m³)	Hazard Quotient	Conc. (µg/m³)	Hazard Quotient	Conc. (µg/m³)	Hazard Quotient	Conc. (µg/m³)	Hazard Quotient	Conc. (µg/m³)	Hazard Quotient	Conc. (µg/m³)	Hazard Quotient	Conc. (µg/m³)	Hazard Quotient	Index
Tg. Pengelih	24.3	0.2	0.2	0.0	22.0	0.1	23.3	0.1	109.6	0.0	0.0	0.0	0.2	0.0	0.1	0.0	0.4
Pengelih Naval Base	26.4	0.3	1.5	0.0	34.8	0.1	180.2	0.6	125.9	0.0	0.0	0.0	0.0	0.0	0.1	0.0	1.1
Kg. Penggerang	36.5	0.4	0.3	0.0	23.1	0.1	29.8	0.1	108.5	0.0	0.0	0.0	0.2	0.0	0.1	0.0	0.6
Kg. Sg. Kapal	25.5	0.3	0.4	0.0	54.6	0.2	91.3	0.3	121.4	0.0	0.0	0.0	0.6	0.0	0.2	0.0	0.8
Taman Rengit Jaya	38.5	0.4	0.4	0.0	39.7	0.2	82.1	0.3	141.5	0.0	0.0	0.0	0.9	0.0	0.1	0.0	0.9
Kg. Sg. Buntu	28.5	0.3	0.3	0.0	29.2	0.1	76.0	0.3	120.6	0.0	0.0	0.0	0.4	0.0	0.1	0.0	0.7
Kg. Bukit Buloh	31.5	0.3	0.3	0.0	47.6	0.2	105.0	0.4	304.8	0.0	0.2	0.0	3.8	0.0	0.2	0.0	0.9
Kg. Sg. Rengit	20.4	0.2	0.3	0.0	30.9	0.1	77.1	0.3	11.5	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.6
Kg. Bukit Gelugor	22.4	0.2	0.2	0.0	33.5	0.1	80.2	0.3	109.9	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.7
Kg. Lepau	35.7	0.4	0.6	0.0	51.4	0.2	77.7	0.3	122.3	0.0	0.0	0.0	0.2	0.0	0.3	0.0	0.8
Kg. Pasir Gogok	20.4	0.2	0.3	0.0	21.0	0.1	41.0	0.1	10.6	0.0	0.0	0.0	0.2	0.0	0.1	0.0	0.4

Table 3-11: Predicted Concentration, Hazard Quotient and Hazard Index for Cumulative RAPID Complex (Normal Operation Scenario) at Sensitive Receptor Locations

	sc) ₂	N	D ₂	C	0	H₂	S	
Location	(1 hour a	verage)	(1 hour a	average)	(1 hours	average)	(1 hour a	average)	Hazard Index
(Sensitive Receptors)	Conc. (µg/m³)	Hazard Quotient	Conc. (µg/m³)	Hazard Quotient	Conc. (μg/m³)	Hazard Quotient	Conc. (μg/m³)	Hazard Quotient	Hazara macx
Tg. Pengelih	1303.9	5.2	92.2	0.3	99.5	0.0	24.5	0.1	5.6
Pengelih Naval Base	16626	66.5	936.0	3.3	744.4	0.0	182.3	0.7	71.5
Kg. Penggerang	1547.3	6.2	99.9	0.4	112.1	0.0	31.3	0.1	6.7
Kg. Sg. Kapal	3745.9	15.0	213.7	0.8	174.5	0.0	45.8	0.2	16.0
Taman Rengit Jaya	3441.2	13.8	193.0	0.7	160.9	0.0	50.1	0.2	14.7
Kg. Sg. Buntu	2870	11.5	163.5	0.6	142.3	0.0	39.9	0.1	12.2
Kg. Bukit Buloh	5402.5	21.6	300.3	1.1	455.6	0.0	62.8	0.2	22.9
Kg. Sg. Rengit	2051.7	8.2	126.7	0.5	111.3	0.0	29.1	0.1	8.8
Kg. Bukit Gelugor	1705.7	6.8	126.0	0.5	93.5	0.0	22.1	0.1	7.3
Kg. Lepau	3061.3	12.2	180.8	0.6	184.9	0.0	38.4	0.1	12.9
Kg. Pasir Gogok	1890.4	7.6	112.1	0.4	107.1	0.0	22.0	0.1	8.1

Table 3-12: Predicted Concentration, Hazard Quotient and Hazard Index for Cumulative RAPID Complex (Abnormal Operation Scenario) at Sensitive Receptor Locations

H_2S СО SO₂ NO_2 Location (1 hour average) (1 hour average) (1 hour average) (1 hour avera (Sensitive Receptors) Hazard Hazard Hazard Conc. (µg/m³) Conc. (µg/m³) Conc. (µg/m³) Conc. $(\mu g/m^3)$ Quotient Quotient Quotient Tg. Pengelih 42.7 96.2 0.4 20.7 0.1 1.0 0.0 Pengelih Naval Base 546.4 104.8 0.4 170.0 0.6 0.0 1.1 Kg. Penggerang 47.3 85.1 0.3 22.0 0.1 0.0 0.9 57.7 Kg. Sg. Kapal 104.5 0.4 23.1 0.1 0.0 1.1 65.8 Taman Rengit Jaya 97.4 0.4 24.8 0.1 0.0 1.0 Kg. Sg. Buntu 0.1 52.3 89.8 0.4 21.2 0.0 0.9 53.2 Kg. Bukit Buloh 100.6 0.4 25.3 0.1 0.0 1.0 49.8 103.5 0.4 19.4 0.1 Kg. Sg. Rengit 0.0 1.1 51.3 Kg. Bukit Gelugor 111.7 0.4 26.0 0.1 0.0 1.2 82.4 Kg. Lepau 99.1 0.4 29.5 0.1 0.0 1.0 Kg. Pasir Gogok 50.1 104.2 0.4 15.8 0.1 0.0 1.1

Table 3-13: Predicted Concentration, Hazard Quotient and Hazard Index for Cumulative RAPID Complex (Emergency Operation Scenario) at Sensitive Receptor Locations

age)	Hazard Index
Quotient	
0.0	0.5
0.0	1.0
0.0	0.4
0.0	0.5
0.0	0.5
0.0	0.5
0.0	0.5
0.0	0.5
0.0	0.5
0.0	0.5
0.0	0.5

3.5 Mitigation Measures

During the construction phase

a) Potential of communicable and non-communicable diseases

From the existing health status of the communities surrounding the proposed project site, the area is found to have a significant burden of diseases like acute respiratory infection, tuberculosis, dengue fever, leptospirosis, food poisoning, sexually transmitted infections and road traffic accidents. The influx of workers (both foreign and local) may worsen the current health condition.

The proposed mitigation measures are as follows:

• Workers' health monitoring

- i. Any workers with health symptoms such as chronic cough, fever, headache, chest discomfort or eye redness should be brought to a medical attention for further investigation and treatment. Anyone with chronic cough more than two weeks and bloody sputum, should be quarantined and investigated for pulmonary tuberculosis. All contacts among his college should be screen if he found to be positive with tuberculosis. Any positive cases should be notified to the Kota Tinggi health office as required by the law.
- ii. Regularly, each worker is required to undergo medical check-up to detect any possibility of sexually transmitted infections (STIs). Anybody with symptoms like penile discharge or pain must be screened and treated for STIs accordingly.

HEALTH IMPACT ASSESSMENT

Sanitation monitoring

- Proper housekeeping and good sanitation of the project site is important to be maintained all time. Any base camp should not crowded, have a good and effective ventilation system, clean toilets, and canteen. The camp should have a good solid waste system with regular collection by the authority or appointed agency. No empty containers that have a potential to collect water should be discarded or buried. Leftover foods should be collected in a container or plastic bag for disposal with other solid wastes.
- ii. No open burning should be allowed and no open ground type of disposal for any waste. Regular inspection by the workers themselves should be scheduled accordingly to detect and destroy any potential breeding sites.

• Prevention of food poisoning

- In order to prevent any food poisoning occurrence among workers, especially those staying in the camp, all food handlers should be vaccinated with typhoid vaccine regularly, and should have clean and hygiene body conditions.
- Any canteen or cooking area should be built in an area or space that far away from toilet or waste collection sites. There should be no storage room for raw foods, especially for those temporary base camps. All cooked food should be eaten immediately and no over night foods should be taken in the early morning.

• Reduction of road traffic accident

- No workers are allowed to drive any vehicle, except for those with a valid international license. They should attend a regular briefing on safe driving and road safety with exposure to local laws and cultures.
- All vehicles provided are only for work related tasks and should be maintained regularly at selected approved workshops.

During operation phase

a) Potential of communicable diseases due to unmanage housekeeping and sanitation of the environment.

The proposed mitigation measures are as follows:

• Reduction of breeding sites

- Regular surveillance and monitoring of the ground for any potential of vector breeding sites by workers and inspectorate appointed.
- ii. All potential breeding sites should be covered from rainwater collection, or demolished.

Reduction of vector attraction factors

- All wastes, especially food based should be collected in a covered bin and disposed accordingly.
- ii. All solid wastes should be picked up and disposed accordingly by the appointed waste collector.

b) Potential of health risks due to poor air quality

From the risk characterisation, the cumulative Refinery & Cracker Complex is predicted to cause poor air quality in abnormal operating scenario. Pertaining to cumulative RAPID complex, it's found to cause air pollution during the normal and abnormal operating scenario. For emergency scenario, both Refinery & Cracker Complex and RAPID complex are predicted not to have any health impact.

The proposed health mitigation measures are as follows:

Awareness and education programs among community members.

i. To ensure that individuals, communities, and agencies are familiar with their roles and responsibilities during normal, abnormal or emergency situation. It's beneficial for those involved as first responders to feel competent and comfortable with their roles, especially for health care workers and fire and rescue department. These also include their roles in giving advices about PPE, when to stay indoor and what is a good ventilation of a house for community members.

• Continuous monitoring for air quality.

To have an installation of indoor gas monitoring for at least three important pollutants, i.e. NO₂, SO₂ and H₂S within RAPID complex. All workers should wear their respirator once the siren is heard. Health and safety officer should continue monitoring the health of workers together in ensuring a good air exchange rate and ventilation at the site.

To installed few gas detectors at the nearest sensitive communities, particularly the Pengelih Naval Base.
 With the cooperation of the Naval Base Rumah Sakit Angkatan Tentera (RSAT), the cases of respiratory illnesses should be monitored. Any incremental trend should be informed to the Kota Tinggi Health Office.

• Emergency Management Plan

 The release should not exceed more than 30 minutes, if it's occurred. The proposed plant should have an emergency system to stop the plant to continue emitting SO₂ and NO₂ into the ambient air. This should be monitored by the proposed plant Emergency Management Coordinator under supervision of a council or company board.

• Emergency Planning Committee.

i. May comprise of Plant Emergency Management Coordinator, representatives from the Municipal department, Fire and Rescue department, Health office, and police. These agencies could be called upon for planning and programs related or during an emergency to advise and assist the Committee.

4 CONCLUSION

In summary, the proposed project is basically has no significant health risk to the sensitive receptors within 5km radius from RAPID complex boundaries. Minimally, it may relate to certain communicable and noncommunicable diseases, especially due to the influx of workers and current disease burden of the communities. From the air dispersion exercise, the proposed plant is predicted to pose the acceptable

hazard index during normal, and emergency operation scenarios for all sensitive receptors. However, in the abnormal operating scenario, all sensitive receptors may exposed to minimal health risk, but its temporarily and predicted to occur in low probability that less than nine days within five years of operation.

Noise Dissipation Study

ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS

Prepared For:

PETRONAS REFINERY AND PETROCHEMICAL CORPORATION SDN. BHD.

Prepared By:

INTEGRATED ENVIROTECH SDN. BHD. (650387-K)

MARCH 2017

TABLE OF CONTENTS

1	INT	RODUCTION	. 1
	1.1	Objective	2
2	APF	PROACH AND METHODOLOGY	. 2
	2.1	Applicable Regulatory Framework	3
	2.2	Model Software	3
	2.3	Modelling Setup	4
	2.4	Modelling Scenarios	4
	2.5	Noise Sources	5
	2.6	Sensitive Receptors	. 7
3	FIN	DINGS	8
	3.1	Individual Process Units	8
	3.2	Cumulative Refinery and Cracker Complex	10
	3.3	Cumulative RAPID Complex	14
4	МІТ	IGATION MEASURES	20
	4.1	Potential Impact	20
	4.2	Mitigating Measures	20

LIST OF TABLES

Table 2.1: Summary of Equipment Types and Noise Sources for EURO 5 MOGAS Units and	
Olefins Storage Tankages	. 6
Table 2.2: Summary of Equipment Noise Emission Levels	. 7
Table 3.1: Steady State Equivalent LAeq Noise Levels from EURO 5 MOGAS Unit	. 9
Table 3.2: Steady State Equivalent LAeq Noise Levels from Olefins Storage Tankages	10
Table 3.3: Summary of Noise Levels from Refinery & Cracker Complex and Other RAPID	
Components at Sensitive Receptors - Normal Conditions	12
Table 3.4: Summary of Noise Levels from Refinery & Cracker Complex and Other RAPID	
Components at Sensitive Receptors - Abnormal Conditions	12
Table 3.5 Summary of Predicted Cumulative Noise Level from RAPID Refinery and Cracker	
Complex Noise Levels during Day Time - Normal Operating Conditions	13

Table 3.6 Summary of Predicted Cumulative Noise Level from RAPID Refinery and CrackerComplex Noise Levels during Night Time - Normal Operating Conditions13Table 3.7 Summary of Predicted Cumulative Noise Level from RAPID Refinery, Cracker Plant,Petrochemical Complex and Utilities during Day Time - Normal Operating Conditions18Table 3.8 Summary of Predicted Cumulative Noise Level from RAPID Refinery, Cracker Plant,Petrochemical Complex and Utilities during Night Time - Normal Operating Conditions18Table 3.9 Summary of Predicted Cumulative Noise Level from RAPID Refinery, Cracker Plant,Petrochemical Complex and Utilities during Night Time - Normal Operating Conditions18Table 3.9 Summary of Predicted Cumulative Noise Level from RAPID Refinery, Cracker Plant,Petrochemical Complex and Utilities during Day Time - Abnormal Operating Conditions19Table 3.10 Summary of Predicted Cumulative Noise Level from RAPID Refinery, Cracker Plant,Petrochemical Complex and Utilities during Day Time - Abnormal Operating Conditions19Table 3.10 Summary of Predicted Cumulative Noise Level from RAPID Refinery, Cracker Plant,Petrochemical Complex and Utilities during Night Time - Abnormal Operating Conditions19

SUB APPENDICES

SUB APPENDIX 4A	List Of Noise Sources For EURO 5 MOGAS Units And Olefins
	Storage Tankages
SUB APPENDIC 4B	Noise Contour Map

1

INTRODUCTION

The RAPID Refinery Cracker Complex was originally designed to produce diesel that meets the EURO 5 specifications and MOGAS (motor gasoline) that meet EURO 4 specifications. To upgrade and meet the EURO 5 MOGAS specifications, the Refinery Cracker Complex has been expanded to include additional units as listed below :

- 1. 2nd Stage Cracked Naphtha Hydrotreating (CNHT 2) Unit
- 2. Etherification Unit Tertiary-Armyl-Methyl-Ether (TAME) Unit
- 3. Isomerisation Unit
- 4. Additional Storage Tanks consisting of:
 - i. Two Tertiary-Armyl-Methyl-Ether (TAME) storage tanks
 - ii. Two Isomerate storage tanks
 - iii. One Medium Cracked Naptha (MCN) Storage Tank

In addition to the above, there shall be new Olefin storage tankages located in the current Refinery Tank Farms consisting of:

- 1. Four mounded bullets for Butadiene Storage
- 2. One Ethylene Tank
- 3. Four spheres for Propylene Storage

Details of the additional units are described in **Volume 1, Chapter 2**. This Report present findings of the Noise Study undertaken to assess impact from the EURO 5 MOGAS units and Olefin Storage Tanks located within the Refinery Cracker Complex.

1.1 Objective

The objective of the Noise Dissipation Study was to establish and assess likely noise propagated for the new EURO 5 MOGAS Units and Olefins Storage Tankages that is added to the Refinery and Cracker Complex. The study also considers the design and layout changes that take place in the Petrochemical Complex. This study included findings on cumulative impacts from the existing Refinery and Cracker Complex (in its most current plant design configuration and layouts) combined together with new EURO 5 MOGAS Units and Olefins Storage Tankages.

2 APPROACH AND METHODOLOGY

Assessment of the resulting noise levels, equivalent continuous sound pressure level (L_{Aeq}) to the environment were compared against the DOE acceptance noise limits and baseline noise levels from the proposed process units' operations. Assessments for impact to potential noise sensitive receivers were examined on the basis of process units' noise only (i.e. reconfigured Refinery and Cracker Complex together with EURO 5 MOGAS Units and Olefins Storage Tankages), and then on a cumulative basis combined with other RAPID Components and the existing noise climate.

Noise levels and contours for sound propagation to the environment were determined within the individual process unit, individual unit boundaries, at the RAPID Complex boundary and beyond the RAPID Complex boundary to residential communities of concern.

Noise levels and propagation to the environment from the process units were established from noise modelling of the respective process units making up the Refinery, Cracker Complex, Petchem Complex and Utilities plants. Assessments for impact to potential noise sensitive receivers were examined on the basis of the Refinery and Cracker Complex, and then on a cumulative basis of all other

RAPID components (Petchem Complex and Utilities) combined with the existing noise climate (baseline noise levels at the receivers).

Further details of the approach and methodology of this study is shown in **Volume 1, Chapter 3.**

2.1 Applicable Regulatory Framework

Permissible Noise Level/Limit at RAPID Boundary and Sensitive Noise Recipient at its surrounding shall be established in reference to the approved Overall RAPID DEIA, 2012 Approval Limit (from first and revised approval) and also "Planning Guidelines for Environmental Noise Limit and Control", published by Department of Environment Malaysia (2007).

A review will be made on Baseline Noise Level measured at nearest Sensitive Recipient (which will remain around the RAPID Boundary) to determine whether it meets the limits as in the condition of approval for the approved Overall RAPID DEIA, 2012.

Further details of the applicable regulatory framework is described in **Volume 1**, **Chapter 3**.

2.2 Model Software

The noise modelling was undertaken using *Cadna-A* Industrial Noise Modelling software Version 3.7.123 from *Datakustik*. Noise propagation within the process units and thereafter to the RAPID Complex boundary and beyond to noise sensitive receivers of concern was undertaken.

2.3

Modelling Setup

The technical approach of the noise dissipation study involved the following:

- Separate noise model representing the entire Refinery and Cracker Complex individual process units (existing Refinery and Cracker Complex process units together with the new EURO 5 MOGAS Units and Olefins Storage Tankages) were used to determine noise propagation of combined process units of the Refinery and Cracker Complex.
- A cumulative noise model representing all process units of the Refinery and Cracker Complex (as above) combined with other process units of the Petrochemical Complex and Utilities Plant (i.e. Other Components of the RAPID Project) to compute the cumulative noise of the entire RAPID development.

2.4 Modelling Scenarios

The scenarios that were considered for noise modelling were:

- a) Scenarios for "**Normal**" operations all process units operating simultaneously under normal process conditions.
- b) **"Abnormal"** conditions emergency discharge flaring of the Petchem common flare with process units shut down during emergency.

Normal conditions for process unit operations were assumed on the basis that the equipment are operating continuously (day and night). In situations where there are multiple equipment (equipment supplied in parallel pairs and/or multiples. i.e. with spares) only the duty unit(s) shall be operating.

Abnormal conditions are on the basis that RAPID plant-wide disruptions shall result in emergency venting at full capacity of the RAPID common flare stack with an assumed sound pressure level of 135 dBA at the base of flare stack.

Noise maps for the different the following conditions are presented below:

- Case 1: Normal operations for Refinery and Cracker Complex;
- Case 2: Normal operations for combined Refinery, Cracker Complex, Petchem Complex and Utilities (entire RAPID development); and
- Case 3: Abnormal conditions for combined Refinery, Cracker Complex, Petchem Complex and Utilities.

Noise maps are presented which showed noise levels to areas in vicinity of the RAPID Complex boundary and beyond the boundary (extended beyond 5 km range).

Atmospheric conditions assumed for the modelling were averages for temperature (28 °C) and relative humidity (83 % RH) at the Project site, with no prevailing wind.

2.5 Noise Sources

Noise sources were typically process equipment and process lines of the respective process units. The noise sources were extracted from the list of equipment from the Front End Engineering Design (FEED) of the process unit. A summary of equipment types and noise sources for each process unit is listed in **Table 2.1**. The details of noise source from EURO 5 MOGAS Units and Olefins Storage Tankages are shown in **Sub-Appendix 4A**.

Table 2.1: Summary of Equipment Types and Noise Sources for EURO 5 MOGAS Unitsand Olefins Storage Tankages

No.	Process Unit	Equipment
1	Cracked Naptha Hydrotreating Unit, Etherification Unit, Isomerization Unit	Pumps, condensers, fans, compressors, fans, coolers, heat exchangers, reactors
2	EURO 5 MOGAS Additional Tank Farm	Pumps
3	Olefins Tank Farm	Compressors & compression packages, cooling towers, coolers, pumps, filter and dosing packages, cold flare package

The Petchem flare was also considered in the noise model under additional noise scenarios for abnormal condition.

Equipment noise for the RAPID Project was specified in Project Specification-*Equipment Noise Specification.* These specifications stipulated maximum permissible noise limit for all equipment at 85 dBA (at 1 m), and for lower capacity equipment (pumps, air coolers, etc.) of lower capacity equipment to be 82 dBA (1m). In instances where information of equipment capacities was not available, the more stringent 85 dBA criteria were assumed. Noise modelling assumptions were therefore conservative for some equipment that may eventually be installed with lower power ratings.

The sound emission levels for the respective equipment types are summarised in **Table 2.2**.

|--|

Equipment	Rating	Noise Emission, SPL at 1 m
Compressors	All types	85 dBA
Fans and Blowers	All types	85 dBA
Pumps	<50 kW 50kW <p<200kw >200 kW</p<200kw 	80 dBA 82 dBA 85 dBA
Air Coolers	All types	82 dBA
Heaters, Boilers, Incinerators, Gas Treatment Packages	All types	85 dBA
Cooling Towers	All types	85 dBA
Drier Package	All types	85 dBA
All other Packages	All types	82 dBA

Source: Project Specification- Equipment Noise Specification, PETRONAS 2013.

Sound power levels with noise frequency spectrum for equipment types used in the modelling were assumed to comply with the maximum noise limit criteria (at 1 m) as specified in the Project Engineering Design.

2.6 Sensitive Receptors

The identified sensitive receptors are shown in Volume 1, Chapter 3 and Chapter 4.

3 FINDINGS

3.1 Individual Process Units

Noise levels for the proposed new process units making up the EURO 5 MOGAS Units and Olefins Storage Tankages at the RAPID Complex boundary and residential communities of interest were evaluated based on the following:

- Permissible limits for different receiving land use in accordance Schedule
 1, Planning Guidelines for Environmental Noise Limits and Control at the noise sensitive receivers.
- DOE EIA Approval Limits at the RAPID Complex boundary.
- Noise levels as compared against the existing environment using measured baseline noise levels established in October 2012.
- Noise impact severity based on the noise increase above the baseline levels (existing noise climate) as per DOE Guidelines.

a) New EURO 5 MOGAS Unit

Results of noise levels are tabulated in **Table 3.1**. Key findings are summarised as follows:

- Noise emissions are fairly confined within the process unit area at the respective cracked naptha unit, hydrotreating unit, etherification unit and isomerization unit. pumps and extruder areas and chilled water packages locations.
- The maximum steady state equivalent L_{Aeq} noise levels at the units' boundaries were typically 64 dBA to 67 dBA on the east and south boundaries, 66 dBA to 68 dBA on the north, and 60 dBA to 73 dBA on the west boundaries. At the Storage units, the noise

levels were lower at 49 dBA to 59 dBA at the respective boundaries.

- Noise emissions from these process units propagated to the RAPID boundary was predicted to be less than 37 dBA at the west and east boundaries, and less than 35 dBA at the south, and up to 45 dBA L_{Aeq} at localized locations on the north boundary.
- Noise emissions during operations stage of the process unit were predicted to be negligible to all identified sensitive receptors at the RAPID Complex boundary

Leastion	Maximum Steady State L _{Aeq}						
Location	North	West	South	East			
At Cracked Naptha Hydrotreating Unit Boundary	66 dBA	72 dBA	68 dBA	64 dBA			
At Etherification Unit Boundary	68 dBA	73 dBA	67 dBA	67 dBA			
At Isomerization Unit Boundary	66 dBA	60 dBA	67 dBA	64 dBA			
At Storage Units Boundary	59 dBA	49 dBA	59 dBA	57 dBA			
At RAPID Complex Boundary	<45 dBA	<37 dBA	<35 dBA	<37 dBA			

Table 3.1: Steady State Equivalent L_{Aeq} Noise Levels from EURO 5 MOGAS Unit

b) Olefins Storage Tankages

Results of noise levels are tabulated in **Table 3.2**. Key findings are summarised below.

 Noise emissions from the Olefin Tank Farm units' boundaries were determined to be typically 41 to 56 dBA on the north

boundary, 49 dBA to 64 dBA on the east, 45 dBA to 59 dBA on the south and 41 dBA to 48 dBA on the west boundary.

- Noise emissions from this process unit propagated to the RAPID boundary was predicted to be less than 35 dBA at the north, east and west boundaries, and less than 36 dBA at the south unit.
- This implied that the unit noise on its own has no impact to all receivers beyond the RAPID boundary.

Table 3.2: Steady State Equivalent L_{Aeq} Noise Levels from Olefins Storage Tankages

Lesstian	Maximum Steady State L _{Aeq}							
Location	North	West	South	East				
At Olefin Tank Farm Unit Boundary	56 dBA	48 dBA	59 dBA	64 dBA				
At RAPID Complex Boundary	<35 dBA	<35 dBA	<35 dBA	<35 dBA				

3.2 Cumulative Refinery and Cracker Complex

Results for noise propagation of the Refinery and Cracker Complex process units including the new EURO 5 MOGAS Units and Olefins Storage Tankages are presented in noise maps (at elevation of 4 m) for normal operating conditions (**Sub Appendix 4B**).

Noise emissions from the Refinery and Cracker Complex units on its own propagated to sensitive receptors are tabulated in **Table 3.3.** Assessment of the noise emissions perceived at sensitive receptors inclusive of the prevailing ambient noise are given in **Table 3.5 and Table 3.6.** The tabulation includes existing baseline noise levels (daytime and night time) and DOE Guidelines and EIA compliance limits for comparisons.

• Noise propagated to these receivers (normal operations with no Petchem flare) from the Refinery and Cracker Complex, inclusive of the proposed

EURO 5 MOGAS Units and Olefins Storage Tankages were below 35 dBA to all noise sensitive areas, except for Kg. Lepau with noise level of 54.7 dBA.

• The Refinery and Cracker Complex noise emissions when added to the existing baseline noise of the respective receivers had resultant noise maintained at the receivers' current ambient levels at all receivers, except Kg. Lepau that had an increase of 8.1 dBA daytime and 7.3 dBA night time.

The resultant noise of the Refinery and Cracker Complex process units when assessed against Schedule 1 DOE Noise Guideline noise limits confirmed compliance to the recommended limits for residential land use at all sensitive receptors, with the exception of Kg. Lepau. There were also other locations (Kg. Rengit and Kg. Pasir Gogok) with noise levels above the DOE Guidelines levels due to existing high ambient noise levels at these receptors and not from the Refinery and Cracker Complex.

Table 3.3: Summary of Noise Levels from Refinery & Cracker Complex and Other RAPID Components at Sensitive Receptors - Normal Conditions

		Equivalent Noise L _{eq} (dBA)				
No.	Sensitive Receptor	Refinery and Cracker Plant	Cumulative from Refinery, Cracker Complex, Petchem Complex and Utilities			
N1	Tg. Pengelih	<35	<35			
N2	Pengelih Naval Base	<35	<35			
N3	Kg. Pengerang	<35	<35			
N4	Kg. Sg. Kapal	<35	<35			
N5	Taman Rengit Jaya	<35	<35			
N6	Kg. Sg. Buntu	<35	<35			
N7	Kg. Bukit Buloh	<35	<35			
N8	Kg. Sg. Rengit	<35	<35			
N9	Kg. Bukit Gelugor	<35	<35			
N10	Kg. Lepau	54.7	54.7			
N11	Kg. Pasir Gogok	<35	<35			

Table 3.4: Summary of Noise Levels from Refinery & Cracker Complex and Other RAPID Components at Sensitive Receptors - Abnormal Conditions

		Equivalent Noise L _{eq} (dBA)					
No.	Sensitive Receptor	Cumulative from Refinery, Cracker Complex, Petchem Complex and Utilities					
N1	Tg. Pengelih	<35					
N2	Pengelih Naval Base	61.3					
N3	Kg. Pengerang	62.7					
N4	Kg. Sg. Kapal	62.7					
N5	Taman Rengit Jaya	38.1					
N6	Kg. Sg. Buntu	<35					
N7	Kg. Bukit Buloh	<35					
N8	Kg. Sg. Rengit	<35					
N9	Kg. Bukit Gelugor	<35					
N10	Kg. Lepau	74.0					
N11	Kg. Pasir Gogok	<35					

ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS

APPENDIX 4 NOISE DISSIPATION STUDY

Table 3.5 Summary of Predicted Cumulative Noise Level from RAPID Refinery and Cracker Complex Noise Levels during Day Time - Normal Operating Conditions

	Sensitive Receptors	Baseline Noise Levels, Oct 2012 (dBA)	Noise Level from Refinery and Cracker Complex (dBA)				Compliance Noise Level [#]
Location			Noise Level from Refinery & Cracker Complex L _{Aeq}	Noise level at Receptors L _{Aeq}	Noise Increment	DOE Noise Guideline Level*	(+3 dBA to the Baseline if higher than the regulated DOE limit)
N1	Tg. Pengelih	55.6	<35	55.6	0	55	58.6
N2	Pengelih Naval Base	55.6	<35	55.6	0	55	58.6
N3	Kg. Pengerang	50.5	<35	50.6	0	55	55
N4	Kg. Sg. Kapal	51.9	<35	52.0	0	55	55
N5	Taman Rengit Jaya	51.9	<35	51.9	0	55	55
N6	Kg. Sg. Buntu	49.1	<35	49.1	0	55	55
N7	Kg. Bukit Buloh	43.4	<35	43.5	0	55	55
N8	Kg. Sg. Rengit	70.7	<35	70.7	0	55	73.7
N9	Kg. Bukit Gelugor	45.2	<35	45.2	0	55	55
N10	Kg. Lepau	47.3	54.7	55.5	8.1	55	55
N11	Kg. Pasir Gogok	72.1	<35	72.1	0	55	75.1

* Schedule 1 Maximum Permissible Sound Level (LAeg) by Suburban Residential Area for Planning and New Development of the Planning Guidelines for Environmental Noise Limits and Control, DOE, 2007. Note: # The compliances noise level at the receptors is taken as baseline + 3 dBA if the current baseline is higher than the DOE Noise Guidelines Level (Schedule 3 Maximum Permissible Sound Level (LAeq) to be Maintained at the Existing Noise Climate, DOE, 2007. Table 3.6 Summary of Predicted Cumulative Noise Level from RAPID Refinery and Cracker Complex Noise Levels during Night Time - Normal Operating Conditions

Location	Sensitive Receptors	Baseline Noise Levels, Oct 2012 (dBA)	Noise Level from Refinery and Cracker Complex (dBA)				Compliances Noise Level [#]
			Noise Level from Refinery & Cracker Complex L _{Aeq}	Noise level at Receptors L _{Aeq}	Noise Increment	DOE Noise Guideline Level*	(+3 dBA to the Baseline if higher than the regulated DOE limit)
N1	Tg. Pengelih	48.1	<35	48.1	0	45	51.1
N2	Pengelih Naval Base	48.1	<35	48.1	0	45	51.1
N3	Kg. Pengerang	46.2	<35	46.2	0	45	49.2
N4	Kg. Sg. Kapal	52.3	<35	52.3	0	45	55.3
N5	Taman Rengit Jaya	51.7	<35	51.7	0	45	54.7
N6	Kg. Sg. Buntu	46.2	<35	46.2	0	45	49.2
N7	Kg. Bukit Buloh	42.7	<35	42.7	0	45	45
N8	Kg. Sg. Rengit	61.5	<35	61.5	0	45	64.5
N9	Kg. Bukit Gelugor	42.3	<35	42.3	0	45	45
N10	Kg. Lepau	48.3	54.7	55.6	7.3	45	51.3
N11	Kg. Pasir Gogok	61.9	<35	61.9	0	45	64.9

* Schedule 1 Maximum Permissible Sound Level (L_{Aeq}) by Suburban Residential Area for Planning and New Development of the Planning Guidelines for Environmental Noise Limits and Control, DOE, 2007. Note: # The compliances noise level at the receptors is taken as baseline + 3 dBA if the current baseline is higher than the DOE Noise Guidelines Level (Schedule 3 Maximum Permissible Sound Level (LAeq) to be Maintained at the Existing Noise Climate, DOE, 2007.

3.3 Cumulative RAPID Complex

Cumulative noise impact of the Refinery and Cracker Complex (inclusive of the new EURO 5 MOGAS Units and Olefins Storage Tankages) with Other RAPID Components (i.e. Petrochemical Complex, Utilities and other supporting facilities) were also examined.

Noise studies for the RAPID Petrochemical Complex were undertaken in a Detailed EIA followed up an Addendum Study based on most current plant reconfigurations and had been documented in the respective DEIA and Addendum Study Reports. The modelling undertaken herein for a cumulative RAPID Complex (i.e. Refinery and Cracker Complex (inclusive of the new EURO 5 MOGAS Units and Olefins Storage Tankages combined with Other RAPID components) provided noise propagation maps for the entire RAPID Complex.

Noise propagation maps (at elevation of 4 m) for normal and abnormal operating conditions are given in **Sub Appendix 4B**. **Table 3.3** tabulate noise levels of the cumulative RAPID Complex under normal operating conditions, and **Table 3.4** under abnormal conditions with emergency Petchem flare.

Assessment of the noise emissions perceived at sensitive receptors inclusive of the prevailing ambient noise for normal conditions are given in **Table 3.7** and **Table 3.8**; and for abnormal conditions given in **Table 3.9** and **Table 3.10**. The tabulation includes existing baseline noise levels (daytime and night time) and DOE Guidelines and EIA compliance limits for comparisons.

Observations and key findings for the cumulative noise of the RAPID Complex (Refinery, Cracker Complex, Petchem Complex, Utilities and other supporting facilities) are summarised as follows.

a) Normal Operating Conditions

- Cumulative noise propagated to these receivers (normal operations with no Petchem flare) from the Refinery, Cracker Complex (inclusive of the proposed EURO 5 MOGAS Units and Olefins Storage Tankages), Petchem Complex and Utilities were below 35 dBA to all noise sensitive areas, except for Kg. Lepau with noise level of 54.7 dBA attributable to process units of the Refinery (but not the EURO 5 MOGAS Units and Olefins Storage Tankages) at the northern boundary.
- The RAPID Complex noise emissions when added to the existing baseline noise of the respective receivers had resultant noise maintained at the receivers' current ambient levels at all receivers, except Kg. Lepau that had an increase of 8.1 dBA daytime and 7.3 dBA night time.
- The resultant noise of the Refinery and Cracker Complex process units when assessed against Schedule 1 DOE Noise Guideline noise limits confirmed compliance to the recommended limits for residential land use at all sensitive receptors, with the exception of Kg. Lepau. There were also other locations (Kg. Rengit and Kg. Pasir Gogok) with noise levels above the DOE Guidelines levels due to existing high ambient noise levels at these receptors and not from the Refinery and Cracker Complex.
- For normal operating condition, the cumulative noise level from RAPID Complex (Refinery, Cracker Plant, Petrochemical Complex and utilities) were below EIA Approval noise limits (*Pindaan Syarat Kelulusan Laporan EIA Terperinci* dated 7th January 2013) at all RAPID boundaries.

b) Abnormal Conditions

 Noise propagated under abnormal conditions mainly due to emergency flaring from the RAPID Common Flare resulted in noise levels of 74 dBA at Kg Lepau (due to proximity of this receptor to the

RAPID development), and 61 dBA to 63 dBA at Pengelih Naval Base, Kg. Pengerang and Kg. Sg Kapal. At other sensitive receptors noise levels under abnormal conditions were below 35 dBA to 40 dBA.

- The above mentioned receptors are anticipated to have resultant noise levels during these abnormal conditions to be significantly higher than the respective prevailing ambient noise levels (i.e. significant noise level increase above baseline levels) daytime and night time.
- The noise levels under abnormal conditions when assessed against EIA Approval noise limits (*Pindaan Syarat Kelulusan Laporan EIA Terperinci* dated 7th January 2013) showed that all sensitive receptors were below the EIA Approval limits, except for Pengelih Naval Base, Kg. Pengerang, Kg. Sg. Kapal, Kg. Sg Rengit and Kg. Lepau.
- In general, the operation of RAPID Petrochemical Plants and RAPID Complex has insignificant increase from the baseline level to the surroundings and at identified sensitive receptor locations;
- The projected cumulative noise level from RAPID Complex (Petrochemical Plants and other RAPID components) received by the receptors ranges from 39.1 dBA (at Tg Pengelih) to 55.2 dBA (at Kg Lepau);
- Noise level generated by the RAPID Petrochemical Plants when they are in operation is predicted to be below the required compliance noise level at the sensitive receptors locations except for Kg Lepau, which is closest to the nothern RAPID site boundary.
- The projected noise generated level generated by the Petrochemical Plant operation to Kg Lepau exceeds the compliance limit at night time by 3.0 dBA i.e. 54.3 dBA compared to the compliance limit of 51.3 dBA;
- When RAPID Complex is in full operation, the projected cumulative noise level for daytime is expected to be below the required compliance limit at the sensitive receptor locations except for noise level at Kg Lepau where the noise level is higer by 0.8 dBA from the compliance noise limit.

•

APPENDIX 4 NOISE DISSIPATION STUDY

It is to be noted that the above noise impact occurs during abnormal conditions when the RAPID Common flare is in operation which happens only during upset or emergency conditions. Under such circumstances, flaring is also typically short duration.

ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS

APPENDIX 4 NOISE DISSIPATION STUDY

Table 3.7 Summary of Predicted Cumulative Noise Level from RAPID Refinery, Cracker Plant, Petrochemical Complex and Utilities during Day Time - Normal Operating Conditions

			Noise Level from Refinery and Cracker Complex (dBA)				
Location	Sensitive Receptors	Baseline Noise Levels, Oct 2012 (dBA)	Noise Level from Refinery, Cracker Complex, Petchem Complex and Utilities L _{Aeq}	Noise level at Receptors L _{Aeq}	Noise Increment	DOE Noise Guideline Level*	Compliance Noise Level [#] (+3 dBA to the Baseline if higher than the regulated DOE limit)
N1	Tg. Pengelih	55.6	<35	55.6	0	55	58.6
N2	Pengelih Naval Base	55.6	<35	55.6	0	55	58.6
N3	Kg. Pengerang	50.5	<35	50.6	0	55	55
N4	Kg. Sg. Kapal	51.9	<35	52.0	0	55	55
N5	Taman Rengit Jaya	51.9	<35	51.9	0	55	55
N6	Kg. Sg. Buntu	49.1	<35	49.1	0	55	55
N7	Kg. Bukit Buloh	43.4	<35	43.5	0	55	55
N8	Kg. Sg. Rengit	70.7	<35	70.7	0	55	73.7
N9	Kg. Bukit Gelugor	45.2	<35	45.2	0	55	55
N10	Kg. Lepau	47.3	54.7	55.5	8.1	55	55
N11	Kg. Pasir Gogok	72.1	<35	72.1	0	55	75.1

* Schedule 1 Maximum Permissible Sound Level (L_{Aeq}) by Suburban Residential Area for Planning and New Development of the Planning Guidelines for Environmental Noise Limits and Control, DOE, 2007. # The compliances noise level at the receptors is taken as baseline + 3 dBA if the current baseline is higher than the DOE Noise Guidelines Level (Schedule 3 Maximum Permissible Sound Level (L_{Aeq}) to be Maintained at the Existing Noise Climate, DOE, 2007. Note:

Table 3.8 Summary of Predicted Cumulative Noise Level from RAPID Refinery, Cracker Plant, Petrochemical Complex and Utilities during Night Time - Normal Operating Conditions

	Sensitive Receptors	Baseline Noise Levels, Oct 2012 (dBA)	Noise Level from Refinery and Cracker Complex (dBA)				
Location			Noise Level from Refinery, Cracker Complex, Petchem Complex and Utilities L _{Aeq}	Noise level at Receptors L _{Aeq}	Noise Increment	DOE Noise Guideline Level*	Compliances Noise Level [‴] (+3 dBA to the Baseline if higher than the regulated DOE limit)
N1	Tg. Pengelih	48.1	<35	48.1	0	45	51.1
N2	Pengelih Naval Base	48.1	<35	48.1	0	45	51.1
N3	Kg. Pengerang	46.2	<35	46.2	0	45	49.2
N4	Kg. Sg. Kapal	52.3	<35	52.3	0	45	55.3
N5	Taman Rengit Jaya	51.7	<35	51.7	0	45	54.7
N6	Kg. Sg. Buntu	46.2	<35	46.2	0	45	49.2
N7	Kg. Bukit Buloh	42.7	<35	42.7	0	45	45
N8	Kg. Sg. Rengit	61.5	<35	61.5	0	45	64.5
N9	Kg. Bukit Gelugor	42.3	<35	42.3	0	45	45
N10	Kg. Lepau	48.3	54.7	55.6	7.3	45	51.3
N11	Kg. Pasir Gogok	61.9	<35	61.9	0	45	64.9

* Schedule 1 Maximum Permissible Sound Level (L_{Aeq}) by Suburban Residential Area for Planning and New Development of the Planning Guidelines for Environmental Noise Limits and Control, DOE, 2007. # The compliances noise level at the receptors is taken as baseline + 3 dBA if the current baseline is higher than the DOE Noise Guidelines Level (Schedule 3 Maximum Permissible Sound Level (L_{Aeq}) to be Maintained at the Existing Noise Climate, DOE, 2007. Note:

ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS

> **APPENDIX 4** NOISE DISSIPATION STUDY

Table 3.9 Summary of Predicted Cumulative Noise Level from RAPID Refinery, Cracker Plant, Petrochemical Complex and Utilities during Day Time - Abnormal Operating Conditions

	Sensitive Receptors	Baseline Noise Levels, Oct 2012 (dBA)	Noise Level from Refinery and Cracker Complex (dBA)				
Location			Noise Level from Refinery, Cracker Complex, Petchem Complex and Utilities L _{Aeq}	Noise level at Receptors L _{Aeq}	Noise Increment	DOE Noise Guideline Level*	Compliance Noise Level [#] (+3 dBA to the Baseline if higher than the regulated DOE limit)
N1	Tg. Pengelih	55.6	<35	55.6	0	55	58.6
N2	Pengelih Naval Base	55.6	61.3	62.3	6.7	55	58.6
N3	Kg. Pengerang	50.5	62.7	63.0	12.5	55	55
N4	Kg. Sg. Kapal	51.9	62.7	63.0	11.1	55	55
N5	Taman Rengit Jaya	51.9	38.1	52.1	0.2	55	55
N6	Kg. Sg. Buntu	49.1	<35	49.1	0	55	55
N7	Kg. Bukit Buloh	43.4	<35	43.5	0	55	55
N8	Kg. Sg. Rengit	70.7	<35	70.7	0	55	73.7
N9	Kg. Bukit Gelugor	45.2	<35	45.2	0	55	55
N10	Kg. Lepau	47.3	74.0	74.0	26.7	55	55
N11	Kg. Pasir Gogok	72.1	<35	72.1	0	55	75.1

* Schedule 1 Maximum Permissible Sound Level (L_{Aeq}) by Suburban Residential Area for Planning and New Development of the Planning Guidelines for Environmental Noise Limits and Control, DOE, 2007. # The compliances noise level at the receptors is taken as baseline + 3 dBA if the current baseline is higher than the DOE Noise Guidelines Level (Schedule 3 Maximum Permissible Sound Level (L_{Aeq}) to be Maintained at the Existing Noise Climate, DOE, 2007. Note:

Table 3.10 Summary of Predicted Cumulative Noise Level from RAPID Refinery, Cracker Plant, Petrochemical Complex and Utilities during Night Time - Abnormal Operating Conditions

			Noise Level from Refinery and Cracker Complex (dBA)				
Location	Sensitive Receptors	Baseline Noise Levels, Oct 2012 (dBA)	Noise Level from Refinery, Cracker Complex, Petchem Complex and Utilities L _{Aeq}	Noise level at Receptors L _{Aeq}	Noise Increment	DOE Noise Guideline Level*	Compliances Noise Level [#] (+3 dBA to the Baseline if higher than the regulated DOE limit)
N1	Tg. Pengelih	48.1	<35	48.1	0	45	51.1
N2	Pengelih Naval Base	48.1	61.3	62.3	13.4	45	51.1
N3	Kg. Pengerang	46.2	62.7	63.0	16.6	45	49.2
N4	Kg. Sg. Kapal	52.3	62.7	63.0	10.8	45	55.3
N5	Taman Rengit Jaya	51.7	38.1	52.1	0.2	45	54.7
N6	Kg. Sg. Buntu	46.2	<35	49.1	0	45	49.2
N7	Kg. Bukit Buloh	42.7	<35	43.5	0	45	45
N8	Kg. Sg. Rengit	61.5	<35	70.7	0	45	64.5
N9	Kg. Bukit Gelugor	42.3	<35	45.2	0	45	45
N10	Kg. Lepau	48.3	74.0	74.0	25.7	45	51.3
N11	Kg. Pasir Gogok	61.9	<35	61.9	0	45	64.9

* Schedule 1 Maximum Permissible Sound Level (L_{Aeq}) by Suburban Residential Area for Planning and New Development of the Planning Guidelines for Environmental Noise Limits and Control, DOE, 2007.# The compliances noise level at the receptors is taken as baseline + 3 dBA if Note: the current baseline is higher than the DOE Noise Guidelines Level (Schedule 3 Maximum Permissible Sound Level (LAeq) to be Maintained at the Existing Noise Climate, DOE, 2007.

4 MITIGATION MEASURES

4.1 Potential Impact

- Potential impact under normal plant operations are typically marginal noise increase to Kg, Lepau with nominal increase in the ambient noise levels not likely to result in significant nuisance to the surrounding communities.
- Under abnormal conditions, there is a temporary noise disturbance which are transient (short duration) during the RAPID Complex emergency flaring for Plant safety.

4.2 Mitigating Measures

The proposed noise mitigation measures are:

- Specification in the design that requires for use of acoustic enclosures for high noise-generating equipment. These are usually for compression package systems and turbine driven generators (if used). Other high noise equipment (chillers, etc.) could also be installed within an enclosed room / area. Major noise sources and/or equipment at these other RAPID components shall be fitted with acoustics enclosures, silencers or acoustic lagging as appropriate.
- Noise from Petchem flare during normal plant operations shall be mitigated through design and selection of the flare system that specify for use of low noise flare types and/or pressure reduction devices.

SUB-APPENDIX 4A: LIST OF NOISE SOURCES FROM EURO 5 MOGAS UNITS AND OLEFINS STORAGE TANKAGES

CRACKED NAPHTHA HYDROTREATING UNIT: 2ND STAGE HYDRODESULFURIZATION SECTION (CNHT2)

	Courses	Turne	Sound Power Level (A-WEIGHTED)									SPL @ 1m	
	Source	Туре	63	125	250	500	1000	2000	4000	8000	AP	dB(A)	
1410-R-004	2ND STAGE HDS REACTOR	REACTOR										75	
1410-E-027 A/B/C/D	2ND STAGE HDS REACTOR FEED/EFFLUENT EXCHANGER	EXCHANGER										75	
1410-E-028	2ND STAGE HDS REACTOR FEED/EFFLUENT EXCHANGER	EXCHANGER										75	
1410-E-030 A/B	2ND STAGE HDS STABILIZER FEED/BOTTOMS EXCHANGER	EXCHANGER										75	
1410-E-031	2ND STAGE HDS STABILIZER REBOILER	EXCHANGER										75	
1410-E-034	2ND STAGE HDS PRODUCT TRIM COOLER	EXCHANGER										75	
1410-E-029	2ND STAGE HDS REACTOR EFFLUENT AIR CONDENSER	FAN	85.2	86.8	86.0	88.7	88.4	87.4	82.6	75.1	95.7	85	
1410-E-032	2ND STAGE HDS STABILIZER OVERHEAD AIR CONDENSER	FAN	85.2	86.8	86.0	88.7	88.4	87.4	82.6	75.1	95.7	85	
1410-E-033	2ND STAGE HDS PRODUCT AIR COOLER	FAN	85.2	86.8	86.0	88.7	88.4	87.4	82.6	75.1	95.7	85	
1410-F-002	2ND STAGE HDS REACTOR HEATER		63.6	71.9	76.5	82.1	86.8	91.4	90.5	84.9	95.0	85	
1410-P-025 A/B	2ND STAGE HDS FEED PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85	
1410-P-026 A/B	2ND STAGE HDS WASHING WATER PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85	
1410-P-027 A/B	2ND STAGE HDS QUENCH PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85	
1410-P-028 A/B	2ND STAGE HDS STABILIZER REFLUX PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85	
1410-P-029 A/B	2ND STAGE HDS SOUR WATER PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85	
1410-P-030 A/B	2ND STAGE HDS PRODUCT PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85	
1410-P-031 A/B	2ND STAGE HDS LEAN AMINE PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85	
1410-K-003 A/B	2ND STAGE HDS RECYCLE GAS COMPRESSOR	COMPRESSOR	63.6	71.9	76.5	82.1	86.8	91.4	90.5	84.9	95.0	85	

ETHERIFICATION (TAME) UNIT

	Source					Sound F	ower Level (A-WEIGHTED)			SPL @ 1m
				125	250	500	1000	2000	4000	8000	AP	dB(A)
1440-E-001	FEED PREHEATER	EXCHANGER										75
1440-E-002	INTERSTAGE AIR COOLER	FAN	85.2	86.8	86.0	88.7	88.4	87.4	82.6	75.1	95.7	85
1440-E-003	INTERSTAGE WATER COOLER	EXCHANGER										75
1440-E-004	2ND REACTOR EFFLUENT/METHANOL COLUMN TOP EXCHANGER	EXCHANGER										75
1440-E-005	TAME FRACTIONATOR FEED/BOTTOM EXCHANGER	EXCHANGER										75
1440-E-006	TAME FRACTIONATOR REBOILER	EXCHANGER										75
1440-E-007	TAME PRODUCT AIR COOLER	FAN	85.2	86.8	86.0	88.7	88.4	87.4	82.6	75.1	95.7	85
1440-E-008	TAME PRODUCT WATER COOLER	EXCHANGER										75

APPENDIX 4 NOISE DISSIPATION STUDY

	• · · · ·					Sound P	ower Level (A-WEIGHTED)			SPL @ 1m
	Source	Туре	63	125	250	500	1000	2000	4000	8000	AP	dB(A)
1440-E-009	TAME FRACTIONATOR AIR CONDESER	FAN	85.2	86.8	86.0	88.7	88.4	87.4	82.6	75.1	95.7	85
1440-E-010	3RD REACTOR PRE-HEATER	EXCHANGER										75
1440-E-011	RAFFINATE COLUMN FEED AIR COOLER	FAN	85.2	86.8	86.0	88.7	88.4	87.4	82.6	75.1	95.7	85
1440-E-012	RAFFINATE COLUMN FEED WATER COOLER	EXCHANGER										75
1440-E-013 A/B	METHANOL COLUMN FEED / BOTTOM EXCHANGER	EXCHANGER										75
1440-E-014	RECYCLED WATER AIR COOLER	FAN	85.2	86.8	86.0	88.7	88.4	87.4	82.6	75.1	95.7	85
1440-E-015	RECYCLED WATER WATER COOLER	EXCHANGER										75
1440-E-016	METHANOL COLUMN REBOILER	EXCHANGER										75
1440-E-017	METHANOL COLUMN AIR CONDENSER	FAN	85.2	86.8	86.0	88.7	88.4	87.4	82.6	75.1	95.7	85
1440-E-018	ATMOSPHERIC FLASH STEAM CONDENSER	EXCHANGER										75
1440-E-019	POLLUTABLE FLASH STEAM CONDENSER	EXCHANGER										75
1440-P-001 A/B	LCN FEED PUMPS	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1440-P-002 A/B	TAME PRODUCT PUMPS	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1440-P-003 A/B	TAME FRACTIONATOR REFLUX PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1440-P-004 A/B	METHANOL COLUMN REFLUX PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1440-P-005 A/B	RECYCLED WATER PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1440-P-006 A/B	TAA WITHDRAWING PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1440-P-007 A/B	METHANOL MAKE-UP PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1440-P-008 A/B	METHANOL DRAIN PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1440-P-009 A/B	HC DRAIN PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1440-P-010	DEFINING PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1440-P-011 A/B	WATER EFFLUENT BOOSTER PUMPS	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1440-P-012 A/B	ATMOSPHERIC STEAM CONDENSATE PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1440-P-013 A/B	POLLUTABLE STEAM CONDENSATE PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1440-R-001	1ST REACTOR	REACTOR										75
1440-R-002	2ND REACTOR	REACTOR										75
1440-R-003	3RD REACTOR	REACTOR										75
1440-M-001	FEED/METHANOL STATIC MIXER	MOTOR	56.3	73.9	86.1	98.3	102.4	102.4	95.6	82.1	95.0	85
1440-S-001 A/B	FEED FILTERS	FILTER										75
1440-S-003 A/B	1ST REACTOR RESIN FILTER	FILTER										75
1440-S-005 A/B	2ND REACTOR RESIN FILTER	FILTER										75
1440-S-007 A/B 3RD REACTOR RESIN FILTER FILTER											75	
1440-S-008 A/B	METHANOL GUARD POT FILTER	FILTER										75
1440-S-009	RAFFINATE COALESCER PRE-FILTER	FILTER										75

INTEGRATED

APPENDIX 4 NOISE DISSIPATION STUDY

ISOMERIZATION UNIT

	_		Sound Power Level (A-WEIGHTED)									SPL @ 1m
	Source	Туре	63	125	250	500	1000	2000	4000	8000	AP	dB(A)
1450-E-001	SULFUR GUARD BED FEED/EFFLUENT EXCHANGER	EXCHANGER										75
1450-E-003	SULFUR GUARD BED AIR COOLER	FAN	85.2	86.8	86.0	88.7	88.4	87.4	82.6	75.1	95.7	85
1450-E-004	H2 PURIFICATION FEED / EFFLUENT EXCHANGER	EXCHANGER										75
1450-E-005	H2 PURIFICATION TRIM COOLER	EXCHANGER										75
1450-E-007	1ST ISOM. FEED / EFFLUENT EXCHANGER	EXCHANGER										75
1450-E-008	1ST ISOM. REACTOR FEED HEATER	EXCHANGER										75
1450-E-009	STABILIZER FEED / BOTTOM EXCHANGER	EXCHANGER										75
1450-E-010	STABILIZER AIR CONDENSER	FAN	85.2	86.8	86.0	88.7	88.4	87.4	82.6	75.1	95.7	85
1450-E-011	STABILIZER REBOILER	EXCHANGER										75
1450-E-012	ISOMERATE AIR COOLER	FAN	85.2	86.8	86.0	88.7	88.4	87.4	82.6	75.1	95.7	85
1450-E-013	ISOMERATE TRIM COOLER	EXCHANGER										75
1450-E-014	CAUSTIC RECYCLE HEATER	EXCHANGER										75
1450-E-015	WATER MAKE UP TRIM COOLER	EXCHANGER										75
1450-E-016	DRYER REGENERANT VAPORIZER	EXCHANGER										75
1450-E-017	DRYER REGENERANT AIR CONDENSER	FAN	85.2	86.8	86.0	88.7	88.4	87.4	82.6	75.1	95.7	85
1450-E-018	DRYER REGENERANT TRIM COOLER	EXCHANGER										75
1450-E-021	LIGHT HC SLOP AIR COOLER	EXCHANGER										75
1450-E-022	LIGHT HC SLOP TRIM COOLER	EXCHANGER										75
1450-E-023	ATMOSPHERIC FLASH STEAM CONDENSER	EXCHANGER										75
1450-E-024	POLLUTABLE FLASH STEAM CONDENSER	EXCHANGER										75
1450-E-025 A/B	NEUTRALISATION COOLER	EXCHANGER										75
1450-P-001 A/B	FEED PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1450-P-002 A/B	CHLORIDING AGENT INJECTION PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1450-P-003 A/B	STABILIZER REFLUX PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1450-P-004 A/B	CAUSTIC CIRCULATION PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1450-P-005 A/B	WATER CIRCULATION PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1450-P-006 A/B	CAUSTIC MAKE UP PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1450-P-007 A/B	SPENT CAUSTIC PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1450-P-008 A/B	ATMOSPHERIC STEAM CONDENSATE PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1450-P-009 A/B	POLLUTABLE STEAM CONDENSATE PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1450-P-010 A/B	LIGHT HC SLOP PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1450-P-011 A/B	FLARE KO DRUM PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1450-P-012 A/B	CAUSTIC CLOSED DRAIN PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1450-P-013 A/B	CAUSTIC NEUTRALIZATION CIRCULATION PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1450-P-014 A/B	ISOM COC LIFTING PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85

> APPENDIX 4 NOISE DISSIPATION STUDY

	Course	Tures	Sound Power Level (A-WEIGHTED)									SPL @ 1m
	Source	туре	63	125	250	500	1000	2000	4000	8000	AP	dB(A)
1450-P-015 A/B	ISOM / TAME ACC PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1450-R-001	H2 PURIFICATION REACTOR	REACTOR										75
1450-R-002 / 003	1ST AND 2ND ISOMERIZATION REACTOR	REACTOR										75
1450-M-001	FRESH CAUSTIC MIXER	MOTOR	56.3	73.9	86.1	98.3	102.4	102.4	95.6	82.1	95.0	85
1450-H-001	H2 PURIFICATION HEATER	HEATER	63.6	71.9	76.5	82.1	86.8	91.4	90.5	84.9	95.0	85
1450-H-002	DRYER REGENERANT SUPERHEATER (1)	HEATER	63.6	71.9	76.5	82.1	86.8	91.4	90.5	84.9	95.0	85
1450-A-001	REACTOR FEED HEATER DESUPERHEATER											75
1450-A-002	STABILIZER REBOILER DESUPERHEATER											75
1450-A-003	REGENERANT VAPORIZER DESUPERHEATER											75
1450-A-004	ISOM/TAME ACC SLOP OIL SKIMMER PACKAGE											75
1450-A-005	ACIDE DOSING PACKAGE	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
1450-J-001	START-UP EJECTOR											

ADDITIONAL EURO 5 MOGAS TANK FARM

	Source	Tuno	Sound Power Level (A-WEIGHTED)									
	Source	туре	63	125	250	500	1000	2000	4000	8000	ΑΡ	dB(A)
5150-P-024 A/B	TAME TRANSFER PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5150-P-025 A/B	ISOMERATE TRANSFER PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5150-P-026 A/B	MCN TRANSFER PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5150-P-140 A/B	METHANOL TRANSFER PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5150-P-007 A/B	LIGHT SLOPS DRAIN DRUM PUMP (HC)	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5150-P-008 A/B	LIGHT SLOPS DRAIN DRUM PUMP (WATER)	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5150-P-009 A/B	TAME SLOPS DRAIN DRUM PUMP (HC)	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5150-P-010 A/B	TAME SLOPS DRAIN DRUM PUMP (WATER)	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5100-A-510	TANK FARM AREA ACC SLOP OIL SKIMMER PACKAGE							75				
5100-P-515 A/B	TANK FARM AREA ACC PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5100-P-516 A/B	MCN STORAGE ACC PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5100-P-517 A/B	POTABLE WATER PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5100-P-518 A/B	IMPOUNDING BASIN ACC PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85

OLEFINS STORAGE TANKAGES

	Course	T	Sound Power Level (A-WEIGHTED)									
	Source	Туре	63	125	250	500	1000	2000	4000	8000	AP	dB(A)
5220-A-101	COOLING TOWER PACKAGE	FAN	85.2	86.8	86.0	88.7	88.4	87.4	82.6	75.1	95.7	85
5220-A-102	REFRIGERANT COMPRESSOR PACKAGE	COMPRESSOR	63.6	71.9	76.5	82.1	86.8	91.4	90.5	84.9	95.0	85
5220-A-103	IBC INHIBITOR INJECTION PACKAGE	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5220-A-105	ETHYLENE BOG COMPRESSOR PACKAGE	COMPRESSOR	63.6	71.9	76.5	82.1	86.8	91.4	90.5	84.9	95.0	85
5220-A-106	COLD FLARE PACKAGE	FLARE	77.2	81	81	87	90.7	90.7	91.4	82.5	95.0	85
5220-A-107	CHEMICAL DOSING PACKAGE	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5220-A-108	SIDE STREAM FILTER PACKAGE	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5220-E-101 A/B	BUTADIENE COOLER	EXCHANGER										75
5220-E-102	PROPYLENE COOLER	EXCHANGER										75
5220-E-103 A/B/C	2ND STAGE ETHYLENE BOG COMPRESSOR DISCHARGE COOLER	EXCHANGER										75
5220-E-104 A/B/C	3RD STAGE ETHYLENE BOG COMPRESSOR DISCHARGE COOLER	EXCHANGER										75
5220-E-105	ETHYLENE BOG CONDENSER	EXCHANGER										75
5220-E-106 A/B	REFRIGERANT COMPRESSOR DISCHARGE COOLER	EXCHANGER										75
5220-K-101 A/B/C	1ST STAGE ETHYLENE BOG COMPRESSOR	COMPRESSOR	63.6	71.9	76.5	82.1	86.8	91.4	90.5	84.9	95.0	85
5220-K-102 A/B/C	2ND STAGE ETHYLENE BOG COMPRESSOR	COMPRESSOR	63.6	71.9	76.5	82.1	86.8	91.4	90.5	84.9	95.0	85
5220-K-103 A/B/C	3RD STAGE ETHYLENE BOG COMPRESSOR	COMPRESSOR	63.6	71.9	76.5	82.1	86.8	91.4	90.5	84.9	95.0	85
5220-K-104 A/B	REFRIGERANT COMPRESSOR	COMPRESSOR	63.6	71.9	76.5	82.1	86.8	91.4	90.5	84.9	95.0	85
5220-P-101 A/B	BUTADIENE LOADING PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5220-P-102 A/B	BUTADIENE CIRCULATION / TRANSFER PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5220-P-103 A/B	ETHYLENE TRANSFER PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5220-P-104 A/B	PROPYLENE EXPORT PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5220-P-105 A/B	PROPYLENE TRANSFER PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5220-P-106 A/B	COOLING TOWER CIRCULATION PUMP	PUMP	55.4	67.7	77.7	84.4	91.1	88.9	84.4	75.5	95.0	85
5220-R-101	BUTADIENE RUNDOWN PIG LAUNCHER	PIPE										75
5220-R-102	BUTADIENE LOADING LINE PIG LAUNCHER	PIPE										75

SUB-APPENDIX 4B: NOISE CONTOUR MAP

Figure 1: Noise Contour Generated from CNHT 2 Unit

APPENDIX 4 NOISE DISSIPATION STUDY

Figure 6: Noise Contour Generated from Additional Olefins Storage Tankages

Figure 7: Noise Contour Generated from Olefins Storage Tankages

Figure 9: Noise Contours from Cumulative Refinery, Cracker Complex, Petchem Complex and Utilities– Normal Operations

Figure 10: Noise Contours from Cumulative Refinery, Cracker Complex, Petchem Complex and Utilities – Abnormal Conditions

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

TABLE OF CONTENT

1.0 I	NTR	ODUCTION	1
1.1	Obj	ectives	1
1.2	Sco	ope of Study	2
1.3	Pro	ject Background	2
1.3	8.1	Site Location	2
1.3	8.2	Layout Plan	2
1.3	3.3	Process Description	3
1.4	Me	teorological Data	3
1.4	l.1	Annual Mean Air Temperature	3
1.4	.2	Annual Mean % Humidity	3
1.4	.3	Atmospheric Pressure	3
1.4	1.4	Wind Speed	3
1.4	1.5	Atmospheric Stability Classification	4
2.0 0	QRA	Methodology	5
2.1	Def	initions	5
2.2	Haz	zard Identification	6
2.3	Fre	quency Analysis	6
2.4	Со	nsequence Analysis	6
2.5	Eve	ent Tree Analysis	7
2.6	Ris	k Summation	7
2.7	Ris	k Mitigation Measures	7
2.8	Ris	k Criteria	7
3.0 A	Asse	ssment and Findings	8
3.1	EU	RO MOGAS and Olefin Storage Tank	8
3.1	.1	Hazard Identification and Scenario Selection	8
3.1	.2	Occupational Health Hazards	8
3.1	.3	Hazardous Substances	8
3.1	.4	Representative Release Scenario	9
3.1	.5	Ignition Probabilities	13
3.1	.6	Event Tree Analysis	14
3.1	.7	Consequence Analysis	21
3.1	.8	Models Used	21

QUANTITATIVE RISK ASSESSMENT

3.1.9 Tabulation of Consequence and Frequency of All Possible Accident Scenarios 25

3	3.1.10 Risk Summation	25
3	3.1.11 Salient Findings of the EURO MOGAS and Olefin Storage Tank QRA Study	26
3.2	2 Cumulative Assessment – Refinery Cracker Complex	29
3.3	Cumulative Assessment – Refinery Cracker Complex and Petrochemical	
Со	mplex	29
4.0	Recommendations	31
5.0	References	33

LIST OF TABLE

Table 1-1: Changi Meteorological Data	. 4
Table 1-2: Pasquill-Turner Atmospheric Stability Classification	. 4
Table 3-1: Characterization of Hazardous Material	. 9
Table 3-2: Equipment Failure Rates	11
Table 3-3: Generic Ignition Probabilities	13
Table 3-4: Immediate and Delayed Ignition Probability Distributions	14
Table 3-5: Probability of Explosion Given Gas Cloud Ignition	14
Table 3-6: Hazard Zones Criteria 2	21
Table 3-7: Individual Risk (IR) Contour Findings Summary for EURO 5 MOGAS Units and	
Olefins Storage Tankages	27

LIST OF FIGURES

Figure 3-1: Minor, Small, Medium, Large and Catastrophic Release of Flammable Liquid < 2	2
bar 1	5
Figure 3-2: Minor, Small, Medium and Large Release of Flammable Liquid ≥ 2 bar	6
Figure 3-3: Catastrophic Release of Flammable Liquid ≥ 2 bar 1	7
Figure 3-4: Minor, Small, Medium, Large and Catastrophic Release of Flammable Gas 1	8
Figure 3-5: Minor, Small, Medium and Large Release of Liquefied Gas from Pressurized	
Storage 1	9
Figure 3-6: Catastrophic Release of Liquefied Gas from Pressurized Storage 2	20

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

LIST OF SUB-APPENDICES

 Sub-Appendix 3B: Consequence Modelling Result Sub-Appendix 3C: Individual Risk (IR) Contour for MOGAS Project Sub-Appendix 3D: Event Frequency for MOGAS Project Sub-Appendix 3E: Worst Case Scenario (WCS) and Worst Case Credible Scen (WCCS) for EURO MOGAS and Olefin Storage Tank Project Sub-Appendix 3F: Worst Case Scenario (WCS) and Worst Case Credible Scen (WCCS) for Petrochemical Complex Sub-Appendix 3G: Worst Case Scenario (WCS) and Worst Case Credible Scen 	Sub-Appendix 3A:	Events Identified
 Sub-Appendix 3C: Individual Risk (IR) Contour for MOGAS Project Sub-Appendix 3D: Event Frequency for MOGAS Project Sub-Appendix 3E: Worst Case Scenario (WCS) and Worst Case Credible Scen (WCCS) for EURO MOGAS and Olefin Storage Tank Project Sub-Appendix 3F: Worst Case Scenario (WCS) and Worst Case Credible Scen (WCCS) for Petrochemical Complex Sub-Appendix 3G: Worst Case Scenario (WCS) and Worst Case Credible Scen 	Sub-Appendix 3B:	Consequence Modelling Result
 Sub-Appendix 3D: Event Frequency for MOGAS Project Sub-Appendix 3E: Worst Case Scenario (WCS) and Worst Case Credible Scen (WCCS) for EURO MOGAS and Olefin Storage Tank Project Sub-Appendix 3F: Worst Case Scenario (WCS) and Worst Case Credible Scen (WCCS) for Petrochemical Complex Sub-Appendix 3G: Worst Case Scenario (WCS) and Worst Case Credible Scen 	Sub-Appendix 3C:	Individual Risk (IR) Contour for MOGAS Project
Sub-Appendix 3E:Worst Case Scenario (WCS) and Worst Case Credible Scen (WCCS) for EURO MOGAS and Olefin Storage Tank ProjectSub-Appendix 3F:Worst Case Scenario (WCS) and Worst Case Credible Scen (WCCS) for Petrochemical ComplexSub-Appendix 3G:Worst Case Scenario (WCS) and Worst Case Credible Scen	Sub-Appendix 3D:	Event Frequency for MOGAS Project
 (WCCS) for EURO MOGAS and Olefin Storage Tank Project Sub-Appendix 3F: Worst Case Scenario (WCS) and Worst Case Credible Scen (WCCS) for Petrochemical Complex Sub-Appendix 3G: Worst Case Scenario (WCS) and Worst Case Credible Scen 	Sub-Appendix 3E:	Worst Case Scenario (WCS) and Worst Case Credible Scenario
Sub-Appendix 3F: Worst Case Scenario (WCS) and Worst Case Credible Scen (WCCS) for Petrochemical Complex Sub-Appendix 3G: Worst Case Scenario (WCS) and Worst Case Credible Scen		(WCCS) for EURO MOGAS and Olefin Storage Tank Project
(WCCS) for Petrochemical Complex Sub-Appendix 3G: Worst Case Scenario (WCS) and Worst Case Credible Scen	Sub-Appendix 3F:	Worst Case Scenario (WCS) and Worst Case Credible Scenario
Sub-Appendix 3G: Worst Case Scenario (WCS) and Worst Case Credible Scen		(WCCS) for Petrochemical Complex
	Sub-Appendix 3G:	Worst Case Scenario (WCS) and Worst Case Credible Scenario
(WCCS) for Refinery Cracker Complex		(WCCS) for Refinery Cracker Complex

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

1.0 INTRODUCTION

The units within Refinery & Cracker Complex as in DEIA RAPID 2012 are maintained. The RAPID Refinery Cracker Complex was originally designed to produce diesel that meet the EURO 5 specifications and MOGAS (motor gasoline) that meet EURO 4 specifications. To upgrade and meet the EURO 5 MOGAS specifications, Refinery Cracker Complex has been expanded to include additional units as listed below:

- 1. 2nd Stage Cracked Naphta Hydrotreating (CNHT 2) Unit
- 2. Etherification Unit Tertiary-Armyl-Methyl-Ether (TAME) Unit
- 3. Isomerization Unit
- 4. Additional Storage Tanks which consist of:
 - i. Two Tertiary-Armyl-Methyl-Ether (TAME) storage tanks
 - ii. Two Isomerate storage tanks
 - iii. One Medium Cracked Naptha (MCN) Storage Tank

Besides that, there will be new olefin storage tankages located in the current refinery tank farms which consists of:

- 1. Four mounded bullets for Butadiene Storage
- 2. One Ethylene Tank
- 3. Four sphere for Propylene Storage

Details of the additional units are described in **Volume 1, Chapter 2**. This additional information report conducted studies to assess the impacts from these new process units and tank farms in the Refinery and Cracker Complex.

1.1 Objectives

The objectives of the QRA study are to identify and quantify the probability and consequences of the possible accidents that may escalate from the

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

proposed MOGAS units and its associated tank farm to the surrounding offsite areas; to calculate the level of risk; and to suggest measures to reduce the level of risk if higher than the allowable level in compliance with DOE's risk criteria stipulated in the Environmental Impact Assessment Guidelines for Risk Assessment, December 2004, EG 1/04.

1.2 Scope of Study

The scope of work for this study comprises of the following:

- Hazard Identification Qualitative review of possible accidents that may occur (based on previous accident experience or professional judgement where necessary) for the proposed unit;
- Determination of failure scenarios;
- Determination of probability of occurrence for each failure scenario;
- Determination of consequences hazard distances of each identified hazard scenario;
- Combination of failure frequencies and all consequences in order to determine the individual risk levels posed by the operation of the proposed facility; and
- Comparison of the risk results against DOE risk criteria.

1.3 Project Background

1.3.1 Site Location

The project location are described in Volume 1, Chapter 1 and 2.

1.3.2 Layout Plan

The layout plan of EURO 5 MOGAS Units and Olefins Storage Tankages are described in **Volume 1, Chapter 1 and 2**.

1.3.3 Process Description

The details of process description for the EURO 5 MOGAS Units and Olefins Storage Tankages are shown in **Volume 1, Chapter 2**.

1.4 Meteorological Data

The following sections present the meteorological data used for the consequence analysis (modeling) of the Quantitative Risk Assessment.

1.4.1 Annual Mean Air Temperature

The annual mean air temperature was assumed as 33°C in the consequence modeling.

1.4.2 Annual Mean % Humidity

The annual mean percentage humidity was assumed as 85%.

1.4.3 Atmospheric Pressure

The atmospheric pressure for Pengerang area was assumed at sea level.

1.4.4 Wind Speed

As per DOE risk criteria, the following meteorological conditions have been referenced for conducting consequence analysis. Wind speed affects radiation distances hence different wind speeds have been identified for consequence modeling purposes. Based on the Changi wind direction data (from year 1999 to 2012) obtained from the Changi Meteorological Station, the following wind data were applied in the QRA model.

> APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Table 1-1: Changi Meteorological Data

Prevailing Wind Direction and Mean speed (m/s) (Station time) Station : Changi Airport

Year: 1999 TO 2012

YEAR	್ರ	AN	F	EB	M	AR	A	PR	M	AY	3	UN	3	UL	A	UG	S	EP	0	СТ	N	ov	D	EC
	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed
1999	NNE	1.7	NNE	2.5	N	0.9	s	0.9	SSW	1.2	s	1.5	s	1.9	s	1.7	s	1.6	W	0.9	w	0.7	NNE	1.7
2000	NNE	1.8	NNE	1.6	NNE	1.3	ENE	1.0	s	1.1	s	3.1	s	2.1	s	2.1	S	1.9	W	1.4	NNE	1.5	N	1.4
2001	.⊂N⊂	1.6	N.	2.2	NNE	1.4	្ល	1.0	s	1.6	SSW	1.6	s	2.2	s	1.9	s	1.9	w	1.3	3N	1.6	N	1.9
2002	NNE	3.1	NNE	3.3	NNE	2.7	NNE	1.7	s	2.2	s	2	s	2.9	s	3.0	s	2.2	ESE	1.6	NW	1.2	NNE	1.3
2003	N	2.5	NNE	2.7	NNE	1.9	NE	1.1	s	1.7	s	2.5	s	2.7	s	2.5	S	1.8	S	1.7	3N	1.0	'N	2.1
2004	NNE	2.8	SN2	3.3	N.	1.8	°€°	1.7	s	1.1	s	2.4	s	1.7	s	3.1	SE	2.1	s	1.5	NNE	1.3	NNE	2.1
2005	NNE	2.7	NNE	2.7	NNE	2.4	NNE	1.6	s	1.5	s	1.6	s	1.4	s	2.0	s	1.8	s	1.2	w	1.0	N	1.6
2006	N	2.0	NNE	27	NNE	2.2	NNE	.9	s	1.1	s	1.5	s	2.7	SSE	27	SE	2.0	Е	1.4	NNE	1.0	NNE	1.8
2007	N	2.0	NNE	2.4	NNE	1.2	NNE	1.1	s	1.4	s	1.3	s	1.5	s	1.8	s	1.9	s	1.3	NNE	1.0	NNE	1.3
2008	NNE	1.8	NNE	2,1	NNE	1.5	Ε	1.2	s	1.6	s	1.7	s	2.0	s	2.0	s	1.6	s	0.9	w	1.0	N	1.7
2009	NNE	2.8	NNE	2.1	NNE	2.0	w	2.0	s	1.8	s	1.7	s	1.9	s	2.0	s	1.8	s	1.7	N	2.5	NNE	3.3
2010	NNE	2.9	NNE	3.6	NE	2.8	N	2.1	NW	2.1	s	2.0	SSW	2.0	s	2.3	SSW	2.1	SSW	1.9	NNW	1.9	N	1.9
2011	NNE	2.9	NNE	3.2	N	2	NNE	2.4	s	1.9	s	2.3	s	3.1	SSE	2.8	SSE	2.6	NW	2	N	1.8	N	2.3
2012	N	2.5	NE	2.7	N	1.9	VAR	1.8	SSW	2	s	2.5	s	2.6	SSE	3.1	SSW	2.3	NNW	1.8	NNW	1.6	N	1.8

1.4.5 Atmospheric Stability Classification

Generally, the prevailing wind speeds are within the range of 1 m/s and 3 m/s. The corresponding atmospheric stability class for the most prevailing wind speeds is defined as A, B and C in the Pasquill-Turner Atmospheric Stability Classification scheme, which is shown in **Table 1-2**. The atmospheric stability class F is used for the 1 m/s wind speed for the the consequence modeling to address the worst case scenario.

Table 1-2: Pasquill-Turner Atmo	spheric Stability Classification
Atmocharia Sta	hility Catagorias

Autospheric Stability Categories							
Surface		Day	Night				
Wind Speed	Incor	ning Solar Rad	Thinly				
(elevation of 10 meters) (m/s)	Strong	Moderate	Slight	Overcast or > ½ Cloud Cover	< ½ Cloud Cover		
< 2	A	A – B	В		_		
2 – 3	A – B	В	С	E	F		
3 – 5	В	B – C	С	D	Е		
5 – 6	C	C – D	D	D	D		
> 6	C	D	D	D	E		

2.0 QRA METHODOLOGY

Further details of methodology of Quantitative Risk Assessment of this study is shown in **Volume 1, Chapter 3**.

2.1 Definitions

The risk assessment of the project has been conducted in accordance with the elements described in the following sections. The main stages of the QRA study are as follows:

- Stage 1 Hazard Identification: Identification of initiating release events and major hazards that require further evaluation;
- Stage 2 Frequency Analysis: Determination of the frequency of initiating events and the frequency of hazardous event outcomes;
- Stage 3 Consequence Analysis: Determination of the consequences of hazardous events;
- Stage 4 Event Tree Analysis: Representation of how the initiating event may develop and the resulting likelihood of the hazardous outcome;
- Stage 5 Risk Summation: Calculation of individual risk level and Evaluation as well as comparison against the risk criteria established for the study; and
- **Stage 6** Risk Mitigation: Recommendation of risk mitigation measures, as required.

The methodology adopted for the study is further discussed in the following sections.

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

2.2 Hazard Identification

The first step in the QRA involves identifying physical situations (failure modes or initiating events) that may lead to a major accident with the potential for personnel injury or fatality, such as fire, explosion or the release of a dangerous substance. A representative set of discrete initiating events was short listed after a full review of the process and hazardous substances present onsite. The consequences of these scenarios were further evaluated and their risk was quantified in the study.

2.3 Frequency Analysis

Frequency analysis involves estimating the likelihood of each of the representative release events highlighted in the hazard identification exercise. Frequency analysis involves the following steps:

- Quantification of the frequency of initiating events (such as vessel rupture, leakage, etc.) based on historical data; and
- Quantification of the frequency of various hazardous outcomes (such as fire, explosion) through Event Tree Analysis, which is used to describe and analyse how, an initiating event can lead to various outcomes, depending upon the nature and type of the release.

2.4 Consequence Analysis

This stage of the QRA involves the determination of the impact of each of the identified hazardous outcomes on the surrounding population. **Section 3.3** of this report summarises the assessment of release consequences. The hazardous outcomes that were evaluated in this study were Pool Fire, Jet Fire, Flash Fire, Explosion and Boiling Liquid Expanding Vapour Explosion (BLEVE).

The Software package Phast developed by DNV GL has been used for the consequence analysis modeling.

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

2.5 Event Tree Analysis

Event tree analysis involves taking each initiating event through a defined sequence of events to determine the likelihood that an associated hazardous outcome will occur. Such event trees will take into account the necessary conditions for the hazardous outcome to occur, such as ignition. By assigning probabilities to each branch of the event tree, the final frequency of each outcome can then be established. The frequency of occurrence and probabilities of the initiating events develops to that outcome. The consequences associated with each of the hazardous outcomes can then be evaluated.

2.6 Risk Summation

Risk summation involves combining the frequency of a given event outcome with its associated consequences to determine the individual risk levels associated with the facility. For the purpose of this study, risks evaluated are reported in terms of Individual Risk (IR). Individual risk may be defined as the frequency of fatality per individual per year due to the realisation of specified hazards.

2.7 Risk Mitigation Measures

Based on the risk assessment results, risk mitigation measures will be identified, as required, to reduce the risks to levels that are As Low As Reasonably Practicable (ALARP).

2.8 Risk Criteria

This section presents the risk tolerability criteria used in this study as stated in the Risk Assessment Guidelines from DOE.

• The 1 x 10⁻⁵ fatalities/ person per year individual risk contour should not extend beyond industrial developments; and

The 1 x 10^{-6} fatalities/ person per year individual risk contour should not encompass involuntary recipients of industrial risks such as residential areas, schools, hospitals and places of continuous occupancy.

3.0 ASSESSMENT AND FINDINGS

3.1 EURO MOGAS and Olefin Storage Tank

3.1.1 Hazard Identification and Scenario Selection

The identification of possible major accident hazard in the EURO 5 MOGAS Units and Olefins Storage Tankages is based on the physical and chemical properties (i.e. flash point, boiling point, heat of combustion, and toxicity data) of substances stored and handled in this plant. Other than that, the design parameter of the vessels which store the hazardous substance has also been considered as one of the factor in deciding the possible scenario of major accident hazard.

3.1.2 Occupational Health Hazards

The impact of other hazards, such as occupational hazards which are limited to personnel working within the EURO 5 MOGAS and olefin storage tank units and external hazards (earthquake, air plane crash etc.) have not been reported as these hazards are not within the scope of this QRA.

3.1.3 Hazardous Substances

The hazardous substances that have been assessed in this QRA for the MOGAS EURO 5 units and olefin tanks are as summarized in **Table 3-1**. The materials are chosen based on high mass percentage in each unit (equipment) and its physical and chemical properties (explosive, flammability and toxicity).

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

ould be noted that maximum quantities/ inventories and v

It should be noted that maximum quantities/ inventories and worst case operating/ processing conditions are used in the QRA to ensure conservatism.

Unit	Hazardous Material	Characterization	
	Naphtha	Fire, Explosion	
	Hydrogen	Fire, Explosion	
	Methyl Diethanolamine (MDEA)	Fire	
EURO 5 MOGAS	Methanol	Fire, Explosion	
	Tertiary-Amyl-Methyl-Ether	Fire	
	(TAME)		
	Hydrocarbon	Fire	
	Isomerate	Fire	
	LPG	Fire, Explosion	
	Ethylene	Fire, Explosion	
Olefin Tank Farm	Propylene	Fire, Explosion	
	Butadiene	Fire, Explosion	

Table 3-1: Characterization of Hazardous Material

3.1.4 Representative Release Scenario

Leaks can range in size from a pinhole leak to a catastrophic failure. In general smaller leaks have higher accident likelihood but lower consequence distances. On the other hand larger releases have lower accident likelihood but longer consequence distance. The representative scenarios considered in this study are [1]:

Pressure Vessels;

- Minor leak (5mm);
- Small leak (15mm);
- Medium leak (50mm);
- Large leak (100mm); and
- Catastrophic failure.

Compressor;

- Minor leak (5mm);
- Small leak (15mm);
- Medium leak (50mm);
- Large leak (100mm); and
- Catastrophic failure.

Pressurized Storage;

- Minor leak (5mm);
- Small leak (15mm);
- Medium leak (50mm);
- Large leak (100mm); and
- Catastrophic failure.

Pipeline;

- Minor leak (5mm);
- Small leak (15mm);
- Medium leak (50mm);
- Large leak (100mm); and
- Catastrophic failure

The events identified for further analysis in this study has been divided into isolatable section (which represent sections of the process that have various hold up inventory, pressure and temperature) as tabulated in **Sub-Appendix 3A**.

3.1.4.1 Release Frequencies for Equipment in the Plant

Generic failure rate data for equipment item have been taken from Offshore Hydrocarbon Release Database [1]. **Table 3-2** summarizes the generic equipment failure data used in this study.

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Equipment num Takino duc 3.71 x 10 ⁴ per vessel per year Pressure vessel* (> 3 ft) Minor 3.71 x 10 ⁴ per vessel per year Large 2.87 x 10 ⁵ per vessel per year Catastrophic 1.43 x 10 ⁵ per vessel per year Catastrophic 1.43 x 10 ⁵ per vessel per year Catastrophic 1.43 x 10 ⁵ per vessel per year Catastrophic 2.34 x 10 ⁵ per vessel per year Catastrophic 2.34 x 10 ⁴ per vessel per year Large 2.34 x 10 ⁴ per vessel per year Catastrophic 2.34 x 10 ⁴ per vessel per year Large 2.34 x 10 ⁴ per vessel per year Catastrophic 2.32 x 10 ⁴ per vessel per year Large 1.50 x 10 ³ per vessel per year Catastrophic 3.29 x 10 ⁵ per vessel per year Minor 2.02 x 10 ³ per pump per year Catastrophic 3.29 x 10 ⁵ per pump per year Catastrophic 2.48 x 10 ⁴ per vessel per year Minor 2.02 x 10 ⁵ per pump per year Catastrophic 1.26 x 10 ⁵ per pump per year Catastrophic 1.26 x 10 ⁵ per pump per year Large 2.23 x	Equipment Item	Failure Size	Failure Frequency	
$ \begin{array}{c} \mbox{Ninor} & 3.71 \times 10^{5} \mbox{pervessel per year} \\ \mbox{Small} & 4.32 \times 10^{4} \mbox{pervessel per year} \\ \mbox{Minor} & 2.54 \times 10^{4} \mbox{pervessel per year} \\ \mbox{Large} & 2.87 \times 10^{5} \mbox{pervessel per year} \\ \mbox{Large} & 2.87 \times 10^{5} \mbox{pervessel per year} \\ \mbox{Large} & 2.87 \times 10^{5} \mbox{pervessel per year} \\ \mbox{Minor} & 3.79 \times 10^{2} \mbox{pervessel per year} \\ \mbox{Minor} & 3.79 \times 10^{2} \mbox{pervessel per year} \\ \mbox{Minor} & 3.79 \times 10^{2} \mbox{pervessel per year} \\ \mbox{Minor} & 3.79 \times 10^{2} \mbox{pervessel per year} \\ \mbox{Minor} & 3.79 \times 10^{2} \mbox{pervessel per year} \\ \mbox{Minor} & 3.79 \times 10^{2} \mbox{pervessel per year} \\ \mbox{Minor} & 1.50 \times 10^{3} \mbox{pervessel per year} \\ \mbox{Large} & 2.34 \times 10^{4} \mbox{pervessel per year} \\ \mbox{Large} & 2.34 \times 10^{4} \mbox{pervessel per year} \\ \mbox{Large} & 2.34 \times 10^{4} \mbox{pervessel per year} \\ \mbox{Large} & 6.13 \times 10^{5} \mbox{pervessel per year} \\ \mbox{Large} & 6.13 \times 10^{5} \mbox{pervessel per year} \\ \mbox{Large} & 6.13 \times 10^{5} \mbox{pervessel per year} \\ \mbox{Large} & 1.26 \times 10^{5} \mbox{per pump per year} \\ \mbox{Large} & 1.26 \times 10^{5} \mbox{per pump per year} \\ \mbox{Large} & 1.26 \times 10^{5} \mbox{per pump per year} \\ \mbox{Large} & 1.26 \times 10^{5} \mbox{per pump per year} \\ \mbox{Large} & 1.26 \times 10^{5} \mbox{per pump per year} \\ \mbox{Large} & 2.23 \times 10^{5} \mbox{per heat exchanger per year} \\ \mbox{Large} & 2.23 \times 10^{5} \mbox{per heat exchanger per year} \\ \mbox{Large} & 2.23 \times 10^{5} \mbox{per heat exchanger per year} \\ \mbox{Large} & 2.23 \times 10^{5} \mbox{per heat exchanger per year} \\ \mbox{Large} & 2.25 \times 10^{5} \mbox{per m per year} \\ \mbox{Large} & 2.25 \times 10^{5} \mbox{per m per year} \\ \mbox{Large} & 2.25 \times 10^{5} \mbox{per m per year} \\ \mbox{Large} & 2.25 \times 10^{5} \mbox{per m per year} \\ \mbox{Large} & 2.25 \times 10^{5} \mbox{per m per year} \\ \mbox{Large} & 2.25 \times 10^{5} \mbox{per m per year} \\ \mbox{Large} & 2.25 \times 10^{5} \mbox{per m per year} \\ \mbox{Large} & 2.25 \times 10^{5} per m$	Equipment item	Minor	3.71×10^{-4} per vessel per vesr	
Pressure vessel* (> 3 ft) 3/1/ai 42.4 1/0 per vessel per year Medium 2.54 x 10 ⁵ per vessel per year Large 2.87 x 10 ⁵ per vessel per year Compressor Reciprocating (> 3 ft) Minor 3.79 x 10 ² per vessel per year Medium 5.25 x 10 ⁴ per vessel per year Small 1.09 x 10 ² per vessel per year Medium 5.25 x 10 ⁴ per vessel per year Medium 2.23 x 10 ⁴ per vessel per year Medium 1.50 x 10 ³ per vessel per year Minor 1.50 x 10 ³ per vessel per year Medium 1.56 x 10 ⁴ per vessel per year Small 1.222 x 10 ⁴ per vessel per year Medium 1.56 x 10 ⁴ per vessel per year Centrifugal Pump (> 3 ft) Large 6.13 x 10 ⁵ per vessel per year Minor 2.02 x 10 ⁵ per pump per year Catastrophic 3.29 x 10 ⁵ per pump per year Minor 2.49 x 10 ⁵ per pump per year Large 1.20 x 10 ⁵ per pump per year Minor 2.49 x 10 ⁵ per heat exchanger per year Minor 2.49 x 10 ⁵ per mper year Minor 2.49 x 10 ⁵ p		Small	4.22×10^{-4} per vessel per ves	
(> 3 ft) Interview 2.34 x 10 ⁻ per vessel per year Catastrophic 1.43 x 10 ⁵ per vessel per year Compressor Reciprocating (> 3 ft) Minor 3.79 x 10 ² per vessel per year Minor 3.79 x 10 ² per vessel per year Minor 2.37 x 10 ⁴ per vessel per year Medium 5.25 x 10 ⁴ per vessel per year Catastrophic 2.37 x 10 ⁴ per vessel per year Catastrophic 2.37 x 10 ⁴ per vessel per year Catastrophic 2.37 x 10 ⁴ per vessel per year Minor 1.50 x 10 ³ per vessel per year Minor 1.50 x 10 ³ per vessel per year Minor 1.50 x 10 ⁵ per vessel per year Minor 2.02 x 10 ⁴ per vessel per year Catastrophic 3.29 x 10 ⁵ per vessel per year Catastrophic 3.29 x 10 ⁵ per pump per year Catastrophic 1.26 x 10 ⁵ per pump per year Catastrophic 1.26 x 10 ⁵ per pump per year Catastrophic 1.26 x 10 ⁵ per heat exchanger per year Minor 2.49 x 10 ⁵ per heat exchanger per year Medium 7.91 x 10 ⁵ per heat exchanger per year Minor	Pressure vessel*	Modium	4.52×10^{-4} per vessel per ves	
$\begin{array}{c} \label{eq:constraints} \begin{tabular}{ c c c c c } \hline Large & 2.57 \times 10^{-5} \mbox{ per vessel per year} \\ \hline Catastrophic & 1.43 \times 10^{5} \mbox{ per vessel per year} \\ \hline Catastrophic & 3.79 \times 10^{-2} \mbox{ per vessel per year} \\ \hline Small & 1.09 \times 10^{-2} \mbox{ per vessel per year} \\ \hline Small & 1.09 \times 10^{-2} \mbox{ per vessel per year} \\ \hline Large & 2.34 \times 10^{-4} \mbox{ per vessel per year} \\ \hline Catastrophic & 2.37 \times 10^{-4} \mbox{ per vessel per year} \\ \hline Catastrophic & 2.37 \times 10^{-4} \mbox{ per vessel per year} \\ \hline Catastrophic & 2.37 \times 10^{-4} \mbox{ per vessel per year} \\ \hline Catastrophic & 2.37 \times 10^{-4} \mbox{ per vessel per year} \\ \hline Catastrophic & 2.37 \times 10^{-4} \mbox{ per vessel per year} \\ \hline Catastrophic & 3.29 \times 10^{-5} \mbox{ per vessel per year} \\ \hline Minor & 1.50 \times 10^{-5} \mbox{ per vessel per year} \\ \hline Centrifugal Pump \\ (> 3 \mbox{ ft}) & Large & 6.13 \times 10^{-5} \mbox{ per pump per year} \\ \hline Centrifugal Pump \\ (> 3 \mbox{ ft}) & Large & 1.20 \times 10^{-5} \mbox{ per pump per year} \\ \hline Minor & 2.49 \times 10^{-5} \mbox{ per pump per year} \\ \hline Medium & 2.79 \times 10^{-5} \mbox{ per pump per year} \\ \hline Large & 1.20 \times 10^{-5} \mbox{ per pump per year} \\ \hline Large & 1.20 \times 10^{-5} \mbox{ per pump per year} \\ \hline Minor & 2.49 \times 10^{-5} \mbox{ per pump per year} \\ \hline Minor & 2.49 \times 10^{-5} \mbox{ per heat exchanger per year} \\ \hline Minor & 6.18 \times 10^{-5} \mbox{ per heat exchanger per year} \\ \hline Large & 2.23 \times 10^{-5} \mbox{ per heat exchanger per year} \\ \hline Catastrophic & 3.29 \times 10^{-5} \mbox{ per m per year} \\ \hline Catastrophic & 3.29 \times 10^{-5} \mbox{ per m per year} \\ \hline Minor & 6.18 \times 10^{-5} \mbox{ per m per year} \\ \hline Minor & 2.39 \times 10^{-5} \mbox{ per m per year} \\ \hline Catastrophic & - \\ \hline Minor & 2.39 \times 10^{-5} \mbox{ per m per year} \\ \hline Large & - \\ \hline Catastrophic & - \\ \hline Minor & 2.39 \times 10^{-5} \mbox{ per m per year} \\ \hline Medium & 2.49 \times 10^{-5} \mbox{ per m per year} \\ \hline Large & - \\ \hline Catastrophic & - \\ \hline Minor & 2.51 \times 10^{-5} \mbox{ per m per year} \\ \hline Minor & 2.51 \times 10^{-5} \mbox{ per m per year} \\ \hline Minor & 2.51 \times 10^{-5}$	(> 3 ft)		2.34×10^{-5} per vessel per ves	
Catastrophic 1.43 x 10 ⁻ per vessel per vesar Minor 3.79 x 10 ⁻² per vessel per year Small 1.09 x 10 ⁻² per vessel per year Medium 5.25 x 10 ⁻⁴ per vessel per year Minor 2.37 x 10 ⁻⁴ per vessel per year Minor 1.50 x 10 ⁻³ per vessel per year Catastrophic 2.37 x 10 ⁻⁴ per vessel per year Minor 1.50 x 10 ⁻³ per vessel per year Minor 1.50 x 10 ⁻³ per vessel per year Minor 1.50 x 10 ⁻⁴ per vessel per year Minor 1.50 x 10 ⁻⁴ per vessel per year Minor 1.50 x 10 ⁻⁴ per vessel per year Minor 2.02 x 10 ⁻⁵ per vessel per year Centrifugal Pump Small 5.81 x 10 ⁻⁶ per pump per year Minor 2.02 x 10 ⁻⁵ per pump per year Medium 2.79 x 10 ⁻⁵ per pump per year Large 1.20 x 10 ⁻⁵ per pump per year Large 1.20 x 10 ⁻⁵ per pump per year Large 1.20 x 10 ⁻⁵ per pump per year Kadium 2.49 x 10 ⁻⁵ per heat exchanger per year Large 2.23 x 10 ⁻⁵ per heat exchanger per year Minor		Large	2.87×10^{-5} per vessel per ves	
Compressor Reciprocating (> 3 ft) Imited Small 3.79×10^{-2} per vessel per year Small 1.09×10^{-2} per vessel per year Large 2.34×10^{-4} per vessel per year Catastrophic 2.37×10^{-4} per vessel per year Catastrophic 2.37×10^{-4} per vessel per year Catastrophic 2.37×10^{-4} per vessel per year Small 2.22×10^{-6} per vessel per year Medium 1.50×10^{-5} per vessel per year Medium 1.50×10^{-5} per vessel per year Large 6.13×10^{-6} per vessel per year Catastrophic 3.29×10^{-5} per vessel per year Catastrophic 3.29×10^{-5} per vessel per year Minor 2.02×10^{-5} per vessel per year Catastrophic 3.29×10^{-5} per vessel per year Minor 2.02×10^{-5} per pump per year Catastrophic 1.26×10^{-5} per pump per year Large 1.20×10^{-5} per pump per year Medium 7.91×10^{-5} per heat exchanger per year Medium 7.91×10^{-5} per heat exchanger per year Medium 7.91×10^{-5} per heat exchanger per year		Catastrophic	1.43×10^{-2} per vessel per ves	
Compressor Reciprocating (> 3 ft) Small 1.09 × 10 ⁻ per Vessel per year Medium 5.25 × 10 ⁴ per vessel per year Large 2.34 × 10 ⁴ per vessel per year Catastrophic 2.37 × 10 ⁴ per vessel per year Minor 1.50 × 10 ³ per vessel per year Kitter Small 2.22 × 10 ⁴ per vessel per year Medium 1.56 × 10 ⁴ per vessel per year Medium 1.56 × 10 ⁴ per vessel per year Medium 1.56 × 10 ⁴ per vessel per year Large 6.13 × 10 ⁵ per vessel per year Catastrophic 3.29 × 10 ⁵ per vessel per year Minor 2.02 × 10 ³ per pump per year Centrifugal Pump (> 3 ft) Small 5.81 × 10 ⁴ per pump per year Large 1.20 × 10 ⁵ per pump per year Large 1.20 × 10 ⁵ per pump per year Large 1.20 × 10 ⁵ per pump per year Medium 2.79 × 10 ⁵ per pump per year Large 1.20 × 10 ⁵ per pump per year Large 2.20 × 10 ⁵ per pump per year Minor 2.49 × 10 ⁵ per heat exchanger per year Medium 7.91 × 10 ⁵ per met year		IVIINOF	3.79×10^{-2} per vessel per year	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Compressor Reciprocating	Small	1.09×10^{-1} per vessel per year	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(> 3 ft)	Medium	5.25 x 10 ⁻ per vessel per year	
$\begin{array}{r} \mbox{Catastrophic} & 2.37 \times 10^{\circ} \mbox{per vessel per year} \\ \hline \mbox{Minor} & 1.50 \times 10^{\circ} \mbox{per vessel per year} \\ \hline \mbox{Small} & 2.22 \times 10^{\circ} \mbox{per vessel per year} \\ \hline \mbox{Medium} & 1.56 \times 10^{\circ} \mbox{per vessel per year} \\ \hline \mbox{Large} & 6.13 \times 10^{\circ} \mbox{per vessel per year} \\ \hline \mbox{Large} & 6.13 \times 10^{\circ} \mbox{per vessel per year} \\ \hline \mbox{Centrifugal Pump} \\ (> 3 \mbox{ft}) & \hline \mbox{Minor} & 2.02 \times 10^{\circ} \mbox{per pump per year} \\ \hline \mbox{Centrifugal Pump} \\ (> 3 \mbox{ft}) & \hline \mbox{Medium} & 2.79 \times 10^{\circ} \mbox{per pump per year} \\ \hline \mbox{Large} & 1.20 \times 10^{\circ} \mbox{per pump per year} \\ \hline \mbox{Large} & 1.20 \times 10^{\circ} \mbox{per pump per year} \\ \hline \mbox{Large} & 1.20 \times 10^{\circ} \mbox{per pump per year} \\ \hline \mbox{Large} & 1.20 \times 10^{\circ} \mbox{per pump per year} \\ \hline \mbox{Large} & 1.20 \times 10^{\circ} \mbox{per pump per year} \\ \hline \mbox{Large} & 1.20 \times 10^{\circ} \mbox{per heat exchanger per year} \\ \hline \mbox{Large} & 2.23 \times 10^{\circ} \mbox{per heat exchanger per year} \\ \hline \mbox{Medium} & 7.91 \times 10^{\circ} \mbox{per heat exchanger per year} \\ \hline \mbox{Large} & 2.23 \times 10^{\circ} \mbox{per heat exchanger per year} \\ \hline \mbox{Large} & 2.23 \times 10^{\circ} \mbox{per m per year} \\ \hline \mbox{Large} & 2.50 \times 10^{\circ} \mbox{per m per year} \\ \hline \mbox{Large} & - \\ \hline \mbox{Catastrophic} & 3.29 \times 10^{\circ} \mbox{per m per year} \\ \hline \mbox{Large} & - \\ \hline \mbox{Catastrophic} & - \\ \hline \mbox{Minor} & 2.39 \times 10^{\circ} \mbox{per m per year} \\ \hline \mbox{Large} & - \\ \hline \mbox{Catastrophic} & - \\ \hline \mbox{Minor} & 2.39 \times 10^{\circ} \mbox{per m per year} \\ \hline \mbox{Large} & - \\ \hline \mbox{Catastrophic} & - \\ \hline \mbox{Minor} & 2.39 \times 10^{\circ} \mbox{per m per year} \\ \hline \mbox{Large} & - \\ \hline \mbox{Catastrophic} & - \\ \hline \mbox{Minor} & 2.39 \times 10^{\circ} \mbox{per m per year} \\ \hline \mbox{Large} & - \\ \hline \mbox{Catastrophic} & - \\ \hline \mbox{Minor} & 2.39 \times 10^{\circ} \mbox{per m per year} \\ \hline \mbox{Large} & - \\ \hline \mbox{Catastrophic} & - \\ \hline \mbox{Minor} & 2.51 \times 10^{\circ} \mbox{per m per year} \\ \hline \mbox{Large} & - \\ \hline \mbox{Medium} & 2.49 \times 10^{\circ} \mbox{per m per year} \\ \hline \mbox$		Large	2.34 x 10 ⁻ per vessel per year	
		Catastrophic	2.37 x 10 ⁻⁴ per vessel per year	
Filter (> 3 ft)Small 2.22×10^{-9} per vessel per yearMedium 1.56×10^4 per vessel per yearLarge 6.13×10^5 per vessel per yearCatastrophic 3.29×10^5 per vessel per yearCentrifugal Pump (> 3 ft)Small 5.81×10^4 per pump per yearSmall 5.81×10^4 per pump per yearLarge 1.20×10^5 per pump per yearCatastrophic 1.26×10^5 per pump per yearLarge 1.20×10^5 per pump per yearLarge 1.20×10^5 per pump per yearCatastrophic 1.26×10^5 per pump per yearLarge 1.20×10^5 per pump per yearCatastrophic 1.26×10^5 per pump per yearHeat Exchanger (> 3 ft) 6.62×10^4 per heat exchanger per yearMedium 7.91×10^5 per heat exchanger per yearLarge 2.23×10^5 per met yearMedium 7.91×10^5 per met yearCatastrophic 3.29×10^5 per met yearPipeline* (< = 3")		Minor	1.50 x 10 ⁻³ per vessel per year	
Medium 1.56×10^4 per vessel per year(> 3 ft)Large 6.13×10^5 per vessel per yearCentrifugal Pump (> 3 ft) 3.29×10^5 per pump per yearSmall 5.81×10^4 per pump per yearMedium 2.79×10^5 per pump per yearLarge 1.20×10^5 per pump per yearLarge 1.20×10^5 per pump per yearLarge 1.26×10^5 per pump per yearCatastrophic 1.26×10^5 per pump per yearHeat Exchanger (> 3 ft) 6.62×10^4 per heat exchanger per yearMedium 7.91×10^5 per heat exchanger per yearMedium 7.91×10^5 per near exchanger per yearLarge 2.23×10^5 per heat exchanger per yearMedium 7.91×10^5 per mer yearLarge 2.23×10^5 per mer yearLarge 3.29×10^5 per mer yearMinor 6.18×10^5 per mer yearLarge $-$ Catastrophic $-$ Large $-$ Vinor 2.39×10^5 per mer yearMinor 2.39×10^5 per mer yearMinor 2.39×10^5 per mer yearMinor 2.49×10^6 per mer yearLarge $-$ Catastrophic $-$ Catastrophic $-$ Large 9.80×10^7 per mer yearMedium 2.49×10^6 per mer yearMinor 2.51×10^5 per mer yearMedium 2.51×10^5 per mer yearMinor 2.51×10^5 per mer yearMinor 2.51×10^5 per mer year	Filter	Small	2.22 x 10 ⁻⁴ per vessel per year	
$\begin{array}{c c} Large & 6.13 \times 10^5 \text{ per vessel per year} \\ \hline Large & 6.13 \times 10^5 \text{ per vessel per year} \\ \hline Catastrophic & 3.29 \times 10^5 \text{ per vessel per year} \\ \hline Minor & 2.02 \times 10^3 \text{ per pump per year} \\ \hline Small & 5.81 \times 10^4 \text{ per pump per year} \\ \hline Small & 5.81 \times 10^5 \text{ per pump per year} \\ \hline Large & 1.20 \times 10^5 \text{ per pump per year} \\ \hline Large & 1.20 \times 10^5 \text{ per pump per year} \\ \hline Large & 1.20 \times 10^5 \text{ per pump per year} \\ \hline Large & 1.20 \times 10^5 \text{ per pump per year} \\ \hline Large & 1.20 \times 10^5 \text{ per pump per year} \\ \hline Large & 1.20 \times 10^5 \text{ per pump per year} \\ \hline Large & 1.20 \times 10^5 \text{ per heat exchanger per year} \\ \hline Minor & 2.49 \times 10^3 \text{ per heat exchanger per year} \\ \hline Medium & 7.91 \times 10^5 \text{ per heat exchanger per year} \\ \hline Large & 2.23 \times 10^5 \text{ per heat exchanger per year} \\ \hline Large & 2.23 \times 10^5 \text{ per heat exchanger per year} \\ \hline Large & 2.23 \times 10^5 \text{ per heat exchanger per year} \\ \hline Large & 2.23 \times 10^5 \text{ per m per year} \\ \hline Large & - \\ \hline Catastrophic & 3.29 \times 10^5 \text{ per m per year} \\ \hline Medium & 4.41 \times 10^6 \text{ per m per year} \\ \hline Medium & 4.41 \times 10^6 \text{ per m per year} \\ \hline Large & - \\ \hline Catastrophic & - \\ \hline Minor & 2.39 \times 10^5 \text{ per m per year} \\ \hline Medium & 2.49 \times 10^5 \text{ per m per year} \\ \hline Large & 9.80 \times 10^7 \text{ per m per year} \\ \hline Large & 9.80 \times 10^7 \text{ per m per year} \\ \hline Large & 9.80 \times 10^7 \text{ per m per year} \\ \hline Large & 9.80 \times 10^7 \text{ per m per year} \\ \hline Large & 9.80 \times 10^7 \text{ per m per year} \\ \hline Large & 9.80 \times 10^7 \text{ per m per year} \\ \hline Large & 9.80 \times 10^7 \text{ per m per year} \\ \hline Large & 9.80 \times 10^7 \text{ per m per year} \\ \hline Large & 9.80 \times 10^7 \text{ per m per year} \\ \hline Large & 9.80 \times 10^7 \text{ per m per year} \\ \hline Large & 9.80 \times 10^7 \text{ per m per year} \\ \hline Large & 9.80 \times 10^7 \text{ per m per year} \\ \hline Large & 9.80 \times 10^7 \text{ per m per year} \\ \hline Large & 9.80 \times 10^7 \text{ per m per year} \\ \hline Large & 9.80 \times 10^7 \text{ per m per year} \\ \hline Large & 9.80 \times 10^7 \text{ per m per year} \\ \hline Large & 9.80 \times 10^7 \text{ per m per year} \\ \hline Large & 9.80 \times 10^7 \text{ per m per year} \\ \hline Large & 0.70 \times 10^5 \text{ per m per year} \\ \hline L$	(> 3 ft)	Medium	1.56 x 10 ⁻⁴ per vessel per year	
Catastrophic 3.29×10^5 per vessel per yearMinor 2.02×10^3 per pump per yearSmall 5.81×10^4 per pump per yearMedium 2.79×10^5 per pump per yearLarge 1.20×10^5 per pump per yearCatastrophic 1.26×10^5 per pump per yearCatastrophic 1.26×10^5 per pump per yearMinor 2.49×10^3 per heat exchanger per yearMedium 7.91×10^5 per heat exchanger per yearMinor 6.18×10^5 per heat exchanger per yearCatastrophic 3.29×10^5 per heat exchanger per yearMinor 6.18×10^5 per m per yearMinor 6.18×10^5 per m per yearMedium 4.41×10^6 per m per yearMinor 2.39×10^5 per m per yearMinor 2.39×10^5 per m per yearMedium 4.41×10^6 per m per yearMedium 2.49×10^5 per m per yearMinor 2.39×10^5 per m per yearMinor <td colsp<="" td=""><td></td><td>Large</td><td>6.13 x 10⁻⁵ per vessel per year</td></td>	<td></td> <td>Large</td> <td>6.13 x 10⁻⁵ per vessel per year</td>		Large	6.13 x 10 ⁻⁵ per vessel per year
Centrifugal Pump (> 3 ft)Minor 2.02×10^{-3} per pump per yearSmall 5.81×10^{-4} per pump per yearMedium 2.79×10^{-5} per pump per yearLarge 1.20×10^{-5} per pump per yearCatastrophic 1.26×10^{-5} per pump per yearCatastrophic 1.26×10^{-5} per pump per yearMedium 2.49×10^{-3} per heat exchanger per yearMinor 2.49×10^{-3} per heat exchanger per yearMedium 7.91×10^{-5} per heat exchanger per yearMedium 7.91×10^{-5} per heat exchanger per yearLarge 2.23×10^{-5} per heat exchanger per yearLarge 2.23×10^{-5} per neat exchanger per yearCatastrophic 3.29×10^{-5} per m per yearPipeline* (< = 3")		Catastrophic	3.29 x 10 ⁻⁵ per vessel per year	
$\begin{array}{c} \mbox{Centrifugal Pump} (> 3 \mbox{ ft}) & \ \begin{tabular}{ c c c c c } \hline Small & 5.81 \times 10^{-4} \mbox{ per pump per year} \\ \hline Medium & 2.79 \times 10^{-5} \mbox{ per pump per year} \\ \hline Large & 1.20 \times 10^{-5} \mbox{ per pump per year} \\ \hline Large & 1.20 \times 10^{-5} \mbox{ per pump per year} \\ \hline Catastrophic & 1.26 \times 10^{-5} \mbox{ per pump per year} \\ \hline Catastrophic & 1.26 \times 10^{-5} \mbox{ per heat exchanger per year} \\ \hline Medium & 2.49 \times 10^{-3} \mbox{ per heat exchanger per year} \\ \hline Medium & 7.91 \times 10^{-5} \mbox{ per heat exchanger per year} \\ \hline Medium & 7.91 \times 10^{-5} \mbox{ per heat exchanger per year} \\ \hline Medium & 7.91 \times 10^{-5} \mbox{ per heat exchanger per year} \\ \hline Large & 2.23 \times 10^{-5} \mbox{ per heat exchanger per year} \\ \hline Catastrophic & 3.29 \times 10^{-5} \mbox{ per m per year} \\ \hline Minor & 6.18 \times 10^{-5} \mbox{ per m per year} \\ \hline Medium & 4.41 \times 10^{-6} \mbox{ per m per year} \\ \hline Large & - \\ \hline Catastrophic & - \\ \hline Minor & 2.39 \times 10^{-5} \mbox{ per m per year} \\ \hline Large & - \\ \hline Catastrophic & - \\ \hline Minor & 2.49 \times 10^{-6} \mbox{ per m per year} \\ \hline Medium & 2.49 \times 10^{-6} \mbox{ per m per year} \\ \hline Medium & 2.49 \times 10^{-6} \mbox{ per m per year} \\ \hline Large & 9.80 \times 10^{-7} \mbox{ per m per year} \\ \hline Large & 9.80 \times 10^{-7} \mbox{ per m per year} \\ \hline Large & 5.26 \times 10^{-7} \mbox{ per m per year} \\ \hline Minor & 2.51 \times 10^{-5} \mbox{ per m per year} \\ \hline Minor & 2.51 \times 10^{-5} \mbox{ per m per year} \\ \hline Minor & 2.51 \times 10^{-5} \mbox{ per m per year} \\ \hline Minor & 2.51 \times 10^{-5} \mbox{ per m per year} \\ \hline Minor & 2.51 \times 10^{-5} \mbox{ per m per year} \\ \hline Minor & 2.51 \times 10^{-5} \mbox{ per m per year} \\ \hline Minor & 2.51 \times 10^{-5} \mbox{ per m per year} \\ \hline Minor & 2.51 \times 10^{-5} \mbox{ per m per year} \\ \hline Minor & 2.51 \times 10^{-5} \mbox{ per m per year} \\ \hline Minor & 2.51 \times 10^{-5} \mbox{ per m per year} \\ \hline Minor & 2.51 \times 10^{-5} \mbox{ per m per year} \\ \hline Minor & 2.51 \times 10^{-5} \mbox{ per m per year} \\ \hline Minor & 2.51 \times 10^{-5} \mbox{ per m per year} \\ \hline Minor & 2.51 \times 10^{-5} \mbox{ per m per year} \\ \hline Minor & 2.51 \times 10^{-5$		Minor	2.02×10^{-3} per pump per year	
$\begin{array}{c} \mbox{Wedium} & 2.79 \times 10^5 \mbox{ per pump per year} \\ \mbox{Large} & 1.20 \times 10^5 \mbox{ per pump per year} \\ \mbox{Catastrophic} & 1.26 \times 10^5 \mbox{ per pump per year} \\ \mbox{Catastrophic} & 1.26 \times 10^3 \mbox{ per heat exchanger per year} \\ \mbox{Minor} & 2.49 \times 10^3 \mbox{ per heat exchanger per year} \\ \mbox{Minor} & 2.49 \times 10^3 \mbox{ per heat exchanger per year} \\ \mbox{Medium} & 7.91 \times 10^5 \mbox{ per heat exchanger per year} \\ \mbox{Large} & 2.23 \times 10^5 \mbox{ per heat exchanger per year} \\ \mbox{Catastrophic} & 3.29 \times 10^5 \mbox{ per heat exchanger per year} \\ \mbox{Catastrophic} & 3.29 \times 10^5 \mbox{ per m per year} \\ \mbox{Catastrophic} & 3.29 \times 10^5 \mbox{ per m per year} \\ \mbox{Minor} & 6.18 \times 10^5 \mbox{ per m per year} \\ \mbox{Catastrophic} & - \\ \mbox{Minor} & 2.39 \times 10^5 \mbox{ per m per year} \\ \mbox{Medium} & 2.49 \times 10^6 \mbox{ per m per year} \\ \mbox{Medium} & 2.49 \times 10^6 \mbox{ per m per year} \\ \mbox{Large} & 9.80 \times 10^7 \mbox{ per m per year} \\ \mbox{Large} & 9.80 \times 10^7 \mbox{ per m per year} \\ \mbox{Large} & 5.26 \times 10^7 \mbox{ per m per year} \\ \mbox{Minor} & 2.51 \times 10^5 \mbox{ per m per year} \\ \mbox{Minor} & 2.51 \times 10^5 \mbox{ per m per year} \\ \mbox{Minor} & 2.51 \times 10^5 \mbox{ per m per year} \\ \mbox{Minor} & 2.51 \times 10^5 \mbox{ per m per year} \\ \mbox{Minor} & 2.51 \times 10^5 \mbox{ per m per year} \\ \mbox{Minor} & 2.51 \times 10^5 \mbox{ per m per year} \\ \mbox{Minor} & 2.51 \times 10^5 \mbox{ per m per year} \\ \mbox{Minor} & 2.51 \times 10^5 \mbox{ per m per year} \\ \mbox{Minor} & 2.51 \times 10^5 \mbox{ per m per year} \\ \mbox{Minor} & 2.51 \times 10^5 \mbox{ per m per year} \\ \mbox{Minor} & 2.51 \times 10^5 \mbox{ per m per year} \\ \mbox{Minor} & 2.51 \times 10^5 \mbox{ per m per year} \\ \mbox{Minor} & 2.51 \times 10^5 \mbox{ per m per year} \\ \mbox{Minor} & 2.51 \times 10^5 \mbox{ per m per year} \\ \mbox{Minor} & 2.51 \times 10^5 \mbox{ per m per year} \\ \mbox{Minor} & 2.51 \times 10^5 per m p$	Centrifugal Pump	Small	5.81 x 10 ⁻⁴ per pump per year	
$\begin{array}{c} \mbox{(> 5 n)} & \mbox{Large} & 1.20 \times 10^5 \mbox{ per pump per year} \\ \hline \mbox{Catastrophic} & 1.26 \times 10^5 \mbox{ per pump per year} \\ \hline \mbox{Minor} & 2.49 \times 10^3 \mbox{ per heat exchanger per year} \\ \hline \mbox{Minor} & 2.49 \times 10^3 \mbox{ per heat exchanger per year} \\ \hline \mbox{Small} & 6.62 \times 10^4 \mbox{ per heat exchanger per year} \\ \hline \mbox{Medium} & 7.91 \times 10^5 \mbox{ per heat exchanger per year} \\ \hline \mbox{Large} & 2.23 \times 10^5 \mbox{ per heat exchanger per year} \\ \hline \mbox{Large} & 2.23 \times 10^5 \mbox{ per heat exchanger per year} \\ \hline \mbox{Catastrophic} & 3.29 \times 10^5 \mbox{ per mer year} \\ \hline \mbox{Catastrophic} & 3.29 \times 10^5 \mbox{ per m per year} \\ \hline \mbox{Medium} & 4.41 \times 10^6 \mbox{ per m per year} \\ \hline \mbox{Large} & - \\ \hline \mbox{Catastrophic} & - \\ \hline \mbox{Catastrophic} & - \\ \hline \mbox{Catastrophic} & - \\ \hline \mbox{Medium} & 2.49 \times 10^5 \mbox{ per m per year} \\ \hline \mbox{Large} & - \\ \hline \mbox{Catastrophic} & - \\ \hline \mbox{Medium} & 2.49 \times 10^5 \mbox{ per m per year} \\ \hline \mbox{Medium} & 2.49 \times 10^6 \mbox{ per m per year} \\ \hline \mbox{Large} & 9.80 \times 10^7 \mbox{ per m per year} \\ \hline \mbox{Large} & 9.80 \times 10^7 \mbox{ per m per year} \\ \hline \mbox{Large} & 5.26 \times 10^7 \mbox{ per m per year} \\ \hline \mbox{Large} & 5.26 \times 10^7 \mbox{ per m per year} \\ \hline \mbox{Large} & 5.26 \times 10^7 \mbox{ per m per year} \\ \hline \mbox{Large} & 5.26 \times 10^7 \mbox{ per m per year} \\ \hline \mbox{Large} & 5.26 \times 10^7 \mbox{ per m per year} \\ \hline \mbox{Large} & 5.26 \times 10^7 \mbox{ per m per year} \\ \hline \mbox{Large} & 5.26 \times 10^7 \mbox{ per m per year} \\ \hline \mbox{Large} & 5.26 \times 10^7 \mbox{ per m per year} \\ \hline \mbox{Large} & 5.26 \times 10^7 \mbox{ per m per year} \\ \hline \mbox{Large} & 5.26 \times 10^7 \mbox{ per m per year} \\ \hline \mbox{Large} & 5.26 \times 10^7 \mbox{ per m per year} \\ \hline \mbox{Large} & 5.26 \times 10^7 \mbox{ per m per year} \\ \hline \mbox{Large} & 5.26 \times 10^7 \mbox{ per m per year} \\ \hline \mbox{Large} & 5.26 \times 10^7 \mbox{ per m per year} \\ \hline \mbox{Large} & 5.26 \times 10^7 \mbox{ per m per year} \\ \hline \mbox{Large} & 5.26 \times 10^7 \mbox{ per m per year} \\ \hline \mbox{Large} & 5.26 \times 10^7 \mbox$		Medium	2.79 x 10 ⁻⁵ per pump per year	
Catastrophic 1.26×10^{-5} per pump per yearMinor 2.49×10^{-3} per heat exchanger per yearSmall 6.62×10^{-4} per heat exchanger per yearMedium 7.91×10^{-5} per heat exchanger per yearLarge 2.23×10^{-5} per heat exchanger per yearCatastrophic 3.29×10^{-5} per heat exchanger per yearCatastrophic 3.29×10^{-5} per neat exchanger per yearCatastrophic 3.29×10^{-5} per m per yearMinor 6.18×10^{-5} per m per yearMinor 6.18×10^{-5} per m per yearCatastrophicSmall 2.50×10^{-5} per m per yearMedium 4.41×10^{-6} per m per yearLargeCatastrophicCatastrophicMinor2.39 $\times 10^{-5}$ per m per yearMedium2.49 $\times 10^{-5}$ per m per yearMedium2.49 $\times 10^{-5}$ per m per yearCatastrophicCatastrophicCatastrophicScal $\times 10^{-5}$ per m per yearCatastrophicScal $\times 10^{-5}$ per m per ye	(> 5 h)	Large	1.20 x 10 ⁻⁵ per pump per year	
Heat Exchanger (> 3 ft)Minor 2.49×10^{-3} per heat exchanger per yearSmall 6.62×10^{-4} per heat exchanger per yearLarge 2.23×10^{-5} per heat exchanger per yearLarge 2.23×10^{-5} per heat exchanger per yearCatastrophic 3.29×10^{-5} per heat exchanger per yearCatastrophic 3.29×10^{-5} per met yearSmall 2.50×10^{-5} per m per yearMinor 6.18×10^{-5} per m per yearMedium 4.41×10^{-6} per m per yearLarge-Catastrophic-Large-Catastrophic-Minor 2.39×10^{-5} per m per yearMedium 2.49×10^{-6} per m per yearMedium 2.49×10^{-6} per m per yearLarge 9.80×10^{-7} per m per yearLarge 9.80×10^{-7} per m per yearCatastrophic 5.26×10^{-7} per m per yearLarge 9.80×10^{-7} per m per yearMinor 2.51×10^{-5} per m per year		Catastrophic	1.26 x 10 ⁻⁵ per pump per year	
Heat Exchanger (> 3 ft)Small 6.62×10^4 per heat exchanger per yearMedium 7.91×10^5 per heat exchanger per yearLarge 2.23×10^5 per heat exchanger per yearCatastrophic 3.29×10^5 per heat exchanger per yearPipeline* (< = 3")		Minor	2.49 x 10 ⁻³ per heat exchanger per year	
Medium 7.91×10^5 per heat exchanger per year(> 3 ft)Large 2.23×10^5 per heat exchanger per yearCatastrophic 3.29×10^5 per heat exchanger per yearCatastrophic 3.29×10^5 per heat exchanger per yearPipeline* (< = 3")	Heat Evaluation	Small	6.62 x 10 ⁻⁴ per heat exchanger per year	
Large 2.23×10^{-5} per heat exchanger per yearCatastrophic 3.29×10^{-5} per heat exchanger per yearCatastrophic 3.29×10^{-5} per m per yearPipeline* (< = 3")		Medium	7.91 x 10 ⁻⁵ per heat exchanger per year	
Catastrophic 3.29×10^{-5} per heat exchanger per yearPipeline* (< = 3")	(> 5 h)	Large	2.23 x 10 ⁻⁵ per heat exchanger per year	
Pipeline* (< = 3")Minor 6.18×10^5 per m per yearSmall 2.50×10^5 per m per yearMedium 4.41×10^6 per m per yearLarge-Catastrophic-Catastrophic-Minor 2.39×10^5 per m per yearSmall 3.55×10^6 per m per yearMedium 2.49×10^6 per m per yearLarge 9.80×10^7 per m per yearCatastrophic 5.26×10^7 per m per yearMinor 2.51×10^5 per m per yearMinor 2.51×10^6 per m per yearMinor 2.51×10^5 per m per yearMadium 3.73×10^6 per m per year		Catastrophic	3.29 x 10 ⁻⁵ per heat exchanger per year	
Pipeline* (< = 3")Small 2.50×10^{-5} per m per yearMedium 4.41×10^{-6} per m per yearLarge - Catastrophic-Catastrophic (3" < = D < 11")		Minor	6.18 x 10 ⁻⁵ per m per year	
Pipeline $(< = 3")$ Medium $4.41 \times 10^{-6} \text{ per m per year}$ Large Catastrophic-Catastrophic (3" < = D < 11")	Din eline*	Small	2.50 x 10 ⁻⁵ per m per year	
$\begin{array}{c c} Large & - \\ \hline Catastrophic & - \\ \hline Catastrophic & - \\ \hline Minor & 2.39 \times 10^5 \text{ per m per year} \\ \hline Minor & 2.39 \times 10^6 \text{ per m per year} \\ \hline Small & 3.55 \times 10^6 \text{ per m per year} \\ \hline Medium & 2.49 \times 10^6 \text{ per m per year} \\ \hline Large & 9.80 \times 10^7 \text{ per m per year} \\ \hline Catastrophic & 5.26 \times 10^7 \text{ per m per year} \\ \hline Minor & 2.51 \times 10^5 \text{ per m per year} \\ \hline Small & 3.73 \times 10^6 \text{ per m per year} \\ \hline Small & 3.73 \times 10^6 \text{ per m per year} \\ \hline \end{array}$		Medium	4.41 x 10 ⁻⁶ per m per year	
Catastrophic-Pipeline* $(3" <= D < 11")$ Minor 2.39×10^{-5} per m per yearMedium 3.55×10^{-6} per m per yearMedium 2.49×10^{-6} per m per yearLarge 9.80×10^{-7} per m per yearCatastrophic 5.26×10^{-7} per m per yearMinor 2.51×10^{-5} per m per yearMinor 2.51×10^{-5} per m per yearMinor 2.51×10^{-5} per m per yearMinor 2.61×10^{-6} per m per year	(< - 3)	Large	-	
Pipeline* $(3" <= D < 11")$ Minor 2.39×10^{-5} per m per yearSmall 3.55×10^{-6} per m per yearMedium 2.49×10^{-6} per m per yearLarge 9.80×10^{-7} per m per yearCatastrophic 5.26×10^{-7} per m per yearMinor 2.51×10^{-5} per m per yearSmall 3.73×10^{-6} per m per year		Catastrophic	-	
Pipeline* $(3" <= D < 11")$ Small 3.55×10^{-6} per m per yearMedium 2.49×10^{-6} per m per yearLarge 9.80×10^{-7} per m per yearCatastrophic 5.26×10^{-7} per m per yearMinor 2.51×10^{-5} per m per yearSmall 3.73×10^{-6} per m per year		Minor	2.39 x 10 ⁻⁵ per m per year	
Pipeline*Medium 2.49×10^{-6} per m per year(3" < = D < 11")		Small	3.55 x 10 ⁻⁶ per m per year	
$(3^{n} < = D < 11^{n})$ Large 9.80 x 10 ⁻⁷ per m per year Catastrophic 5.26 x 10 ⁻⁷ per m per year Minor 2.51 x 10 ⁻⁵ per m per year Small 3.73 x 10 ⁻⁶ per m per year		Medium	2.49×10^{-6} per m per year	
Catastrophic 5.26 x 10 ⁻⁷ per m per year Minor 2.51 x 10 ⁻⁵ per m per year Small 3.73 x 10 ⁻⁶ per m per year	$(3^{\circ} < = D < 11^{\circ})$	Large	9.80×10^{-7} per m per year	
Minor 2.51 x 10 ⁻⁵ per m per year Small 3.73 x 10 ⁻⁶ per m per year		Catastrophic	5.26×10^{-7} per m per year	
Pipeline* Small 3.73 x 10 ⁻⁶ per m per year		Minor	2.51×10^{-5} per m per year	
Pipeline*		Small	3.73×10^{-6} per m per year	
IVIEDIUM 2.61 X 10° per m per vear	Pipeline*	Medium	2.61×10^{-6} per m per year	
$(> = 11^{"})$ Large 1.03 x 10 ⁻⁶ per m per vear	(> = 11″)	Large	1.03 x 10 ⁻⁶ per m per vear	
Catastrophic 5.52 x 10 ⁻⁷ per m per year		Catastrophic	5.52 x 10 ⁻⁷ per m per year	

Table 3-2: Equipment Failure Rates

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Equipment Item	Failure Size	Failure Frequency
	Minor	2.85 x 10 ⁻⁴ per valve per year
A studted \/alve	Small	1.15 x 10 ⁻⁴ per valve per year
	Medium	2.03 x 10 ⁻⁵ per valve per year
(< = 3)	Large	-
	Catastrophic	-
	Minor	3.29 x 10 ⁻⁴ per valve per year
Actuated Valvo	Small	4.89 x 10 ⁻⁵ per valve per year
(3" < = D < 11")	Medium	3.43 x 10 ⁻⁵ per valve per year
(3 < - D < 11)	Large	1.35 x 10 ⁻⁵ per valve per year
	Catastrophic	7.24 x 10 ⁻⁶ per valve per year
	Minor	4.39 x 10 ⁻⁴ per valve per year
Actuated Valvo	Small	6.52 x 10⁻⁵ per valve per year
$(> = 11^{\circ})$	Medium	4.57 x 10 ⁻⁵ per valve per year
(2 - 11)	Large	1.80 x 10 ⁻⁵ per valve per year
	Catastrophic	9.65 x 10 ⁻⁶ per valve per year
	Minor	2.51 x 10 ⁻⁴ per valve per year
Manual Valve	Small	3.73 x 10 ⁻⁵ per valve per year
$(> = 11^{\circ})$	Medium	2.62 x 10 ⁻⁵ per valve per year
(= = = =)	Large	1.03 x 10 ⁻⁵ per valve per year
	Catastrophic	5.53 x 10 ⁻⁶ per valve per year
	Minor	2.65 x 10 ⁻⁵ per joint per year
Flance Joint	Small	1.07 x 10 ⁻⁵ per joint per year
$(< = 3^{\circ})$	Medium	1.89 x 10⁻ੰ per joint per year
(* 0)	Large	-
	Catastrophic	-
	Minor	4.55 x 10^{-5} per joint per year
Flance Joint	Small	6.77 x 10 ⁻⁶ per joint per year
(3" < = D < 11")	Medium	4.75 x 10 ⁻⁶ per joint per year
$(0 1 = \mathbf{D} 1 1)$	Large	1.87 x 10⁻ੰ per joint per year
	Catastrophic	1.00 x 10 ⁻⁶ per joint per year
	Minor	9.73×10^{-5} per joint per year
Flange Joint	Small	1.45 x 10 ⁻⁵ per joint per year
(> = 11")	Medium	1.01 x 10 ⁻⁵ per joint per year
(z = 11)	Large	3.99 x 10 ⁻⁶ per joint per year
	Catastrophic	2.14 x 10 ⁻⁶ per joint per year

Note: * - the ignition probabilities have been multiplied by the safety factor 0.1

It should be noted that the equipment listed above are not subject to any lifting operations once installed at the plant. Hence the possibility of failures due to lifting operations is deemed not credible.

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

This generic failure data were derived from statistical analysis of historical accident data from the chemical industry as a whole and take no account of the current safety engineering standards which are generally higher than the historical average. Furthermore, no account was taken of clients' engineering design standards nor safety management systems. The data can be considered as conservative for the purposes of assessment.

3.1.5 Ignition Probabilities

The probability of ignition depends on the availability of a flammable mixture, the flammable mixture reaching an ignition source, and the type of ignition source (energy, etc). The possible ignition sources on the facility include:

- Hot work;
- Faults in electrical equipment;
- Faults in rotating equipment;
- Ignition caused by combustion engines/ hot surfaces;
- Automatic ignition in the event of a fracture/ rupture;
- Static electricity; and
- Lighting.

According to Cox, Lees and Ang [2] (also contained in Frank P. Lee's Loss Prevention in the Process Industries), generic ignition probabilities are given as below:

Scenario	Probabilities of Ignition for Release Rate Categories					
	0.1 to 1.0 kg/s	1.0 to 50 kg/s	> 50 kg/s			
Gas Leak	0.01	0.07	0.3			
Oil/ Condensate Leak	0.01	0.03	0.08			

Table 3-3: Generic Ignition Probabilities

Depending on the time of ignition after release, the ignition can be "immediate ignition" or "delayed ignition". The following assumptions have been made for distribution of overall ignition probability into immediate and delayed ignition:

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Table 3-4: Immediate and Delayed Ignition Probability Distributions

Release Rate (kg/s)	Immediate Ignition	Delayed Ignition
0.1 to 1.0	0.1	0.9
1.0 to 50	0.5	0.5
> 50	0.6	0.4

The probability of explosion depends on factors such as location of leak source, gas concentrations (presence of vapour clouds), location and energy of ignition sources, area geometry, and ventilation of the area and equipment congestion. Cox, Lees and Ang [2] provides probabilities for explosion used in the assessment in lieu of the detailed information required for estimation.

Table 3-5: Probability of Explosion Given Gas Cloud Ignition

Release Rate (kg/s)	Probability of Explosion (Given Ignition)
0.1 to 1.0	0.04
1.0 to 50	0.12
> 50	0.3

3.1.6 Event Tree Analysis

The event frequencies can be obtained by applying the ignition probabilities above to event tree as shown in the figures below.

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

		Immediate Ignition Yes	Pool Fire
	Ignition Yes		_
Release Occurs	-	Immediate Ignition No	_Pool Fire
			_Unignited Release
	lgnition <i>No</i>		
Finne 2.2. Octootoorkie Dalaas			
Figure 3-3: Catastrophic Release	or Frammable Liqu	iu 2 2 Vai	

3.1.7 Consequence Analysis

3.1.7.1 Hazard Zones

The following hazard zones have been analyzed via consequence modeling. The criteria for each hazard zone are as follows:

Hazard	Criteria
	37.5 kW/m ² – This radiation level may result in up to
	100% fatalities in the total population exposed and cause
	significant damage to process equipment
	12 kW/m ² – This radiation level may result in up to 50%
Thermal (Fire)	fatalities in the total population exposed and cause
	damage to process equipment
	4 kW/m ² – This radiation level may result in up to 3%
	fatalities in the total population exposed, but below which
	no injuries or damage would be expected
Explosion (Overpressure)	1.013 bar, 0.9 bar, 0.17 bar

Table 3-6: Hazard Zones Criteria

3.1.8 Models Used

Software package Phast developed by DNV GL has been used for the calculation of consequence effects for all events.

Consequence analysis was carried out for identified outcome events, including release rates, characterising flames and thermal radiation ranges, estimate dispersion distances and vapour cloud explosion overpressures.

Events

Fire and explosion events have been considered for further evaluation. Jet fire scenarios (due to immediate ignition) have been modelled (deemed to give greater consequence distance regardless of the total mass released), as a pressurised release may be ignited and hence the consequence of a fire

event in this particular scenario is deemed more likely to take place within the confined area of the plant.

The consequence modelling is performed on a conservative basis to ensure risk is not underestimated. For example, the maximum inventories of hazardous substances in vessels, are used together with worst case process conditions, and releases are modelled based on initial maximum (rather than average) release rates; no account taken of site drainage/ emergency spill containment systems to limit the spread of liquid releases etc, using published computer models that are inherently conservative.

Pool Fire

Pool fires are a result from the ignition of flammable liquid spills. Upon spillage, the liquid draws energy from the ground and surrounding air, to form a flammable vapour/ air layer close to the liquid surface. The thickness of this vapour/ air layer is dependent on the flash point of the spill liquid.

If the spill releases insufficient fuel to fill the bund area or the spill is unbunded, the pool will spread with gravitational forces pushing down on it and forcing it outwards at the edges. Spreading will stop when equilibrium is reached between the gravitational forces, frictional forces and surface tension forces acting on the spreading liquid (the latter two forces resisting pool spread). The pool thickness and hence surface area are therefore dependent on the point at which this equilibrium is reached. For pools that fill the bund or containment area, the pool surface area is fixed, with the depth of liquid varying according to the volume of liquid spilled.

Upon ignition, it is the vapour layer above the liquid pool that burn, generating heat that in turn causes further evaporation of liquid (i.e. the fire becomes self-generating). Since burning only occurs at the surface of the pool, the radiant heat effect of a pool fire is dependent on the volume of fuel spilt, the size of the bund/ containment area and the burning rate of the fuel. Hazards arising from pool fires are primarily due to thermal radiation.

Jet Fire

In the event of a continuous pressurized release of either gas or liquid or twophase fluid, a jet of fluid will form. A jet or spray fire is a turbulent diffusion flame resulting from the combustion of a fuel continuously released with some significant momentum in a particular direction or directions. Jet fires can arise from releases of gaseous, flashing liquid (two phase) and pure liquid inventories.

The primary concern for jet fires is that of engulfment and high thermal radiation flux. Normally jet fires should be distinguished as being either horizontal or vertical jets. Horizontal jets have the possibility of impacting upon other structures and being deflected. This process gives rise to a loss of momentum and substantial entrainment which enhances the formation of a flammable cloud and hence the potential for an unconfined explosion.

The properties of jet fires depend on the fuel composition, release conditions, release rate, release geometry, direction and ambient wind conditions. Low velocity two-phase releases of condensate material can produce 'lazy', wind affected buoyant, sooty and highly radiative flames similar to pool fires.

Flash Fire

Following a vapour, a gas cloud (which is heavier than air) will form, initially located around the release point. If this cloud is not ignited immediately, it will move with the wind and be diluted as a result of air entrainment.

The principal hazard arising from a cloud of dispersing flammable material is its subsequent (delayed) ignition, resulting in a flash fire or vapour cloud explosion. Large scale experiments on the dispersion and ignition of flammable gas clouds show that ignition is unlikely when the average concentration is below the Lower Flammability Limit (LFL).

Therefore, the following critical hazard distances were calculated to determine the hazardous extent of the clouds:

- Maximum distance to the LFL and ½ LFL of the cloud;
- Maximum crosswind LFL and ½ LFL distance of the cloud; and
- Maximum upwind LFL and ½ LFL distance of the cloud.

It is considered that there is no probability for escape within the flammable limits of a flash fire. Therefore, a fatality probability of 100% of persons present within the flammable cloud (as defined by the distances above) is assumed for flash fires.

Explosion

Explosion occurs when a sufficient amount of flammable material in gas or vapour phase within the explosive limit (LEL, UEL) is ignited. Ignition of vapour cloud with flammable mass less than the threshold value may result in a flash fire and subsequently jet fire for continuous source. The most damaging effects of an explosion come from its blast overpressure. An explosion is the sudden release of tremendous energy. The intensity of explosion depends on the rate of energy release.

Boiling Liquid Expanding Vapour Explosion (BLEVE) and Fireball

A BLEVE (Boiling Liquid Expanding Vapor Explosion) is a sudden release of a large mass of pressurized superheated liquid to the atmosphere. The primary cause is usually an external flame impinging on the shell of a vessel above the liquid level, weakening the container and leading to the sudden shell rupture. BLEVE may occur due to any mechanism that results in a sudden failure of container.

3.1.9 Tabulation of Consequence and Frequency of All Possible Accident Scenarios

This section presents the results of the consequence modelling performed for the failure cases identified in the hazard identification. All consequence results can be found in **Sub-Appendix 3B**, while the frequency results can be found in **Sub-Appendix 3C**.

3.1.10 Risk Summation

The results of risk summation are presented in terms of Individual Risk which, in the context of the DOE Risk Guidelines, is defined as the risk of fatality to a person in the vicinity of a hazard. This includes the nature of the fatality to the individual, the likelihood of the fatality occurring, and the period of time over which the fatality might occur. The individual is assumed to be unprotected and to be present during the total time of exposure (i.e. 24 hours a day, every day of the year). The individual risk value, R_{i} at a particular distance, *i*, due to the occurrence of a particular event outcome, *j*, is calculated by the following equation:

$$R_i = \sum f_{eo,j} P_{fat,i,j} P_{weather,j}$$

where:

 $f_{eo,j}$ is the frequency of event outcome *j* obtained from event tree analysis and historical data;

 $P_{fat,i,j}$ is the probability of fatality at distance *i* produced by event outcome *j* from consequence analysis; and

 $P_{weather,j}$ is the probability of the weather conditions required to produce the event outcome at *j* (from meteorological data, 1 for weather independent event outcomes).

The individual risk (IR) profile for the site under study is calculated with the Consultant's in-house spreadsheet based on the above equation. It is

represented as a function of distance from the source of potential risk upon the surrounding environment. Risk summation involves combining the frequency of a given event outcome j with its associated consequences to determine the individual risk levels associated with the site.

3.1.11 Salient Findings of the EURO MOGAS and Olefin Storage Tank QRA Study

The extent of all consequences assessed is limited within the industrial development surrounding the proposed RAPID facilities, which is in compliance with DOE's risk acceptance criteria.

- That the following hazard zones/ IR contour for credible scenarios are within RAPID boundary;
 - 37.5 kW/m² heat radiation hazard zone; and
 - The 1.013 bar overpressure contour.
- > IR Contours:
 - The 1 x 10⁻⁵ per year and the 1 x 10⁻⁶ per year IR contours extends beyond the RAPID Complex development boundary, encroaching the neighboring development on the southern side of the RAPID Complex.

The above results are in compliance of the requirements stipulated by the DOE risk criteria as no sensitive receptors (schools, residential areas) are affected.

> APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

 Table 3-7: Individual Risk (IR) Contour Findings Summary for EURO 5 MOGAS Units and Olefins Storage Tankages

IR Contours	Max Distance	Confirmation	
	to Contour (m)		
1 × 10⁻⁵ per year	703.10	The contour extends beyond RAPID's site boundary, encroaching the neighboring development on the southern side of the RAPID Complex. However it does not encompass involuntary recipients of industrial risks to sensitive receptors i.e. schools and residential areas.	
1 × 10 ⁻⁶ per year	955.70	The contour extends beyond RAPID's site boundary, encroaching the neighboring development on the southern side of the RAPID Complex. However it does not encompass involuntary recipients of industrial risks to sensitive receptors i.e. schools and residential areas.	

The Individual Risk Contour for the EURO 5 MOGAS Units and Olefins Storage Tankages is attached in **Sub-Appendix 3D**.

It should be noted that the risks have been assessed on a conservative basis, both in terms of consequences(e.g. use of the maximum inventories of hazardous substances in vessels, worst case process conditions, releases are modelled based on initial maximum (rather than average) release rates, no account taken of site drainage/ emergency spill containment systems to limit the spread of liquid releases etc. using published computer models that are inherently conservative), and frequency – i.e. no account has been taken of plant safety systems (e.g. isolation valves, detectors), operator intervention to prevent or minimise releases and no credit has been taken to account for the site Safety Management System.

A worst case scenario (WCS) is the scenario which entails the farthest consequence distance amongst all the scenarios irrespective of the frequency while a worst case credible scenario (WCCS) is a credible scenario (with event frequencies > 1×10^{-6} per year) with furthest consequence distance.

Below explains the WCS and WCCS for each event from the QRA study for the Euro 5 MOGAS Plant and its associated tank farm and Olefin Storage Tank Farm:

- The WCS and WCCS of fire event is a jet fire scenario resulting from the ignited release of Ethylene (at a rate of 2222.85 kg/s) due to a catastrophic release from the HP Ethylene BOG Liquid Receiver (5220-V-102) at -114 °C and 47 barg pressure. This results in the 37.5 kW/m² heat radiation hazard zone (that corresponds to a radiation intensity sufficient to cause up to 100% fatalities and damage process equipment) of up to 614.87 m. The 4 kW/m² heat radiation hazard zone (that typically corresponds to a radiation intensity to cause up to 3% fatalities and below which no injuries or damage would be expected) extends a maximum of 877.30 m confined within the proposed RAPID project boundary. Refer to **Figure E1** at **Sub-Appendix 3E** for the WCS and WCCS contour of fire event.
- The WCS and WCCS of explosion event originate from the Boiling Liquid Expanding Vapour Explosion (BLEVE) due to a catastrophic release of Propylene from the Propylene Storage Vessel (5220-V-104) which operates at 40 °C and 15.5 barg pressure. This result in the 1.013 bar explosion overpressure hazard zone (where extensive damage and fatalities are to be expected) extends up to 79.95 m which is confined to the RAPID site boundary.Refer to **Figure E2** at **Sub-Appendix 3E** for the WCS and WCCS contour of explosion event.
- The WCS and WCCS of fireball event originate from the Boiling Liquid Expanding Vapour Explosion (BLEVE) due to a catastrophic release of Propylene from the Propylene Storage Vessel (5220-V-104) which operates at 40 °C and 15.5 barg pressure. This result in 100% fatality distance of up to 124.88 m and 3% fatality distance of up to 685.75 m,

which remains within the RAPID site. Refer to **Figure E3** at **Sub-Appendix 3E** for the WCS and WCCS contour of fireball event.

3.2 Cumulative Assessment – Refinery Cracker Complex

The cumulative assessment of the entire Refinery Cracker Complex (inclusive of the latest addition of the EURO MOGAS and Olefin Storage Tanks) demonstrates that the individual risk contours for the complex are not in line with DOE's risk acceptance criteria. This is mainly due to the catastrophic failure events within the refinery units which result in offsite consequences and subsequently unacceptable risk towards the surrounding present population.

The contributing events that results in the unacceptable risk are:

- 1. Flash Fire event due to catastrophic failures of equipment in 2 Trains of Residue Fluid Catalytic Cracking Unit.
- 2. Fire events related to catastrophic failure of Intermediate LPG storage vessels of the Refinery Storage Tank Farm.

The cumulative individual risk contour for the Refinery Cracker Complex is provided in Appendix 3D. The worst case scenario consequence contours are provided in **Sub-Appendix 3G**. Recommendation for the residual risk is discussed in **Section 4.0**.

3.3 Cumulative Assessment – Refinery Cracker Complex and Petrochemical Complex

The cumulative assessment of the entire RAPID Complex (inclusive of the Refinery Cracker Complex and Petrochemical Complex) demonstrates that the individual risk contours for the complex are not in line with DOE's risk acceptance criteria. The main risk contributor towards the non-compliance are the catastrophic failure events within the refinery units which result in offsite

consequences and subsequently unacceptable risk towards the surrounding present population.

Risk from the Petrochemical Complex is deemed not to be the contributing factor in resulting non-compliance of DOE's risk acceptance criteria.

The cumulative individual risk contour for the entire RAPID Complex is provided in Appendix 3D. The worst case scenario consequence contours are provided in **Sub-Appendix 3F**.

4.0 RECOMMENDATIONS

Taking into consideration that the contributing events towards the project's non-compliance in meeting DOE's risk acceptance criteria are due to catastrophic failures, the operators of the refinery shall implement the "Predictive Maintenance" programme to eliminate catastrophic equipment failures.

• The Predictive Maintenance philosophy consists of scheduling maintenance activities only if and when mechanical or operational conditions warrant-by periodically monitoring the machinery for excessive vibration, temperature and/or lubrication degradation, or by observing any other unhealthy trends that occur over time. When the condition gets to a predetermined unacceptable level, the equipment is shut down to repair or replace damaged components so as to prevent a more costly failure from occurring.

Advantages of this approach are that it works very well if personnel have adequate knowledge, skills, and time to perform the predictive maintenance work, and that it allows equipment repairs to be scheduled in an orderly fashion. It also provides some lead-time to purchase materials for the necessary repairs, reducing the need for a high parts inventory. Since maintenance work is only performed when it is needed, there is likely to be an increase in production capacity. The predictive maintenance programme shall form part of PETRONAS's Process Safety Management Framework.

Other recommendations for the project proponent are as follows:

• Development of a formal framework for managing health, occupational safety, environment and process safety matters. Emphasis should be given to Process safety management as an analytical tool focused on preventing releases of any substance defined as a "highly hazardous chemicals". It is a set of inter-related approaches to manage hazards

associated with the process industries and is intended to reduce the frequency and severity of incidents resulting from releases of chemicals and other energy sources.

- Design changes during the subsequent engineering phases post EIA should be analysed to determine the severity of the potential hazards (via safety studies) due to the proposed changes. The revised risk levels shall be in line with the governing risk criteria adopted by DOE.
- Development of an Emergency Response Plan is essential to manage emergencies within the proposed RAPID boundary. This is in line with the approval conditions obtained during the approval of the RAPID DEIA in 2012 (Approval Conditions 61 and 62).

This plan shall address the following key elements:

- Alerting Notifying the offsite population that are affected or exposed to risk greater than 1E-06 fatality per year. An effective alarm and warning system for all levels of emergency shall be established and regularly tested.
- Evacuation Evacuation of the potentially exposed public
- Sheltering Provision of shelter for the evacuated public population

The role, duties and responsibility of the person(s) initiating the off-site warning system should be defined. The plan should identify the means by which the facility operator will warn (and keep informed) people likely to be affected by the emergency. This should cover the activation of the warning system to alert people to take protective action. The key step is to determine when there is a threat to the community.

The evacuation of people outside the facility and the control of public roads, pedestrians and vehicles is the responsibility of the Police.

Procedures should be established for liaison with the Police and Fire Services and for the provision of information that will assist in making decisions regarding public protection issues.

The plan should identify the facility's strategy for protecting people during an emergency. It should address the provision of advice to people on-site and off-site as to the appropriate action to be taken when there is a threat to their health and safety. This function is responsible for ensuring that this information is communicated and acted upon during an emergency, prior to the arrival of the emergency services.

Protective actions may include stand-by alerts, partial evacuations, full evacuation, or the use of shelters and havens. The actions taken will depend on the nature, scale and the likely duration of the emergency. Appropriate methods of protection may be determined by reference to the levels of emergency and the control zones for various emergencies.

• The proposed facility is deemed to be a Major Hazard Installation, in compliance to the CIMAH Regulations 1996, a safety report and emergency response plan shall be prepared and submitted to the Department of Occupational Safety and Health's Major Hazard Division 3 months prior to commissioning.

5.0 REFERENCES

- Offshore Hydrocarbon Release Data, HSE OSD, 2011, from HSE online database, <u>https://www.hse.gov.uk/hcr3/</u>.
- [2] Cox, Lee & Ang, *Classification of Hazardous Location*, 1990.
- [3] Operations & Maintenance Best Practices, A Guide to Achieving Operational Efficiency, US Department of Energy, August 2010.

APPENDIX 3

QUANTITATIVE RISK ASSESSMENT

SUB-APPENDIX 3A: EVENTS IDENTIFIED FOR EURO 5 MOGAS UNITS AND **OLEFINS STORAGE TANKAGES**

ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Table 3A-1: Events Identified

No.	Isolatable Sub-section ID	Description	Potential Outcome (s)
1	IS01_NAPH_SSHDSFSD_L	Release of Naphtha due to leak/catastrophic failure of Second Stage HDS Feed Surge Drum (1410-V- 025). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
2	IS02_NAPH_SSHDSR_V	Release of Naphtha due to leak/catastrophic failure of Second Stage HDS Reactor (1410-R-004). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion
3	IS03_NAPH_SSHDSSDBP_L	Release of Naphtha due to leak/catastrophic failure of Second Stage HDS Separator Drum Bottom Part (1410-V-026). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
4	IS04_H2_SSHDSSDUP_V	Release of Hydrogen due to leak/catastrophic failure of Second Stage HDS Separator Drum Upper Part (1410-V-026). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion
5	IS05_H2_SSHDSAAKOD_V	Release of Hydrogen due to leak/catastrophic failure of Second Stage HDS Amine Absorber K.O. Drum (1410-V-027). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion
6	IS06_MDEA_SSHDSLASD_L	Release of MDEA due to leak/catastrophic failure of Second Stage HDS Lean Amine Surge Drum (1410-V-030). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
7	IS07_MDEA_SSHDSAABP_L	Release of MDEA due to leak/catastrophic failure of Second Stage HDS Amine Absorber Bottom Part (1410-C-005). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
8	IS08_H2_SSHDSAAUP_V	Release of Hydrogen due to leak/catastrophic failure of Second Stage HDS Amine Absorber Upper Part (1410-C-005). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion
9	IS09_H2_SSHDSRGCKOD_V	Release of Hydrogen due to leak/catastrophic failure of Second Stage HDS Recycle Gas Compressors K.O. Drum (1410-V-028). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and	Jet Fire, Flash Fire and Explosion

APPENDIX 3 QUANTIT

TATIVE	RISK ASSESSMENT

No.	Isolatable Sub-section ID	Description	Potential Outcome (s)
		Explosion.	
10	IS10_NAPH_SSHDSS_V	Release of Naphtha due to leak/catastrophic failure of Second Stage HDS Stabilizer (1410-C-006). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion
11	IS11_H2_SSHDSSRD_V	Release of Hydrogen due to leak/catastrophic failure of Second Stage HDS Stabilizer Reflux Drum (1410-V-029). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion
12	IS12_NAPH_LCNFSD_L	Release of Naphtha due to leak/catastrophic failure of LCN Feed Surge Drum (1440-V-001). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
13	IS13_MEOH_FR_L	Release of Methanol due to leak/catastrophic failure of First Reactor (1440-R-001). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
14	IS14_MEOH_SR_L	Release of Methanol due to leak/catastrophic failure of Second Reactor (1440-R-002). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
15	IS15_TAME_TFBP_L	Release of TAME due to leak/catastrophic failure of TAME Fractionator Bottom Part (1440-C-001). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
16	IS16_MEOH_TFUP_V	Release of Methanol due to leak/catastrophic failure of TAME Fractionator Upper Part (1440-C-001). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion
17	IS17_MEOH_TFRDBP_L	Release of Methanol due to leak/catastrophic failure of TAME Fractionator Reflux Drum Bottom Part (1440-V-002). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
18	IS18_NAPH_TFRDUP_V	Release of Naphtha due to leak/catastrophic failure of TAME Fractionator Reflux Drum Upper Part (1440-V-002). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion

No.

19

20

21

22

ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS

QUA

APPENDIA 3	
ANTITATIVE RISK ASSESSMENT	

Isolatable Sub-section ID	Description	Potential Outcome (s)
IS19_MEOH_TR_L	Release of Methanol due to leak/catastrophic failure of Third Reactor (1440-R-003). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
IS20_NAPH_RWCBP_L	Release of Naphtha due to leak/catastrophic failure of Raffinate Washing Column Bottom Part (1440-C- 002). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
IS21_MEOH_RWCUP_V	Release of Methanol due to leak/catastrophic failure of Raffinate Washing Column Upper Part (1440-C- 002). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion
IS22_MEOH_MCFD_L	Release of Methanol due to leak/catastrophic failure of Methanol Column Feed Drum (1440-V-004). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
IS23_MEOH_RC_L	Release of Methanol due to leak/catastrophic failure of Raffinate Coalescer (1440-V-003). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
	Release of Methanol due to leak/catastrophic failure	Jet Fire.

nd 23 IS23_ME е Jet Fire, e of Methanol due to leak/catastrophic failure of Methanol Column (1440-C-003). An immediate Flash Fire 24 IS24_MEOH_MC_V outcome will result in Jet Fire while delayed and outcome will result in Flash Fire and Explosion. Explosion Release of Methanol due to leak/catastrophic failure of Methanol Column Reflux Drum (1440-V-005). An Jet Fire and 25 IS25_MEOH_MCRD_L immediate outcome will result in Jet Fire while Pool Fire delayed outcome will result in Pool Fire. Release of Methanol due to leak/catastrophic failure of Methanol Guard Pot (1440-V-007 A/B). An Jet Fire and 26 IS26_MEOH_MGP_L immediate outcome will result in Jet Fire while Pool Fire delayed outcome will result in Pool Fire. Release of Methanol due to leak/catastrophic failure of Methanol Make-Up Surge Drum (1440-V-006). Jet Fire and 27 IS27_MEOH_MMUSD_L An immediate outcome will result in Jet Fire while Pool Fire delayed outcome will result in Pool Fire.

No.

28

29

30

31

ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS

Potential

Isolatable Sub-section ID	Description	Outcome (s)
IS28_MEOH_MDD_V	Release of Methanol due to leak/catastrophic failure of Methanol Drains Drum (1440-V-008). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion
IS29_HC_HCDD_L	Release of Hydrocarbon due to leak/catastrophic failure of HC Drains Drum (1440-V-009). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
IS30_NAPH_SGB_L	Release of Naphtha due to leak/catastrophic failure of Sulphur Guard Bed (1450-V-001). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
IS31_NAPH_FSD_L	Release of Naphtha due to leak/catastrophic failure of Feed Surge Drum (1450-V-002). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
IS32 NAPH ED I	Release of Naphtha due to leak/catastrophic failure of Feed Dryers (1450-V-003 A/B). An immediate	Jet Fire and

32	IS32_NAPH_FD_L	of Feed Dryers (1450-V-003 A/B). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
33	IS33_H2_H2PR_V	Release of Hydrogen due to leak/catastrophic failure of H2 Purification Reactor (1450-R-001). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion
34	IS34_H2_HD_V	Release of Hydrogen due to leak/catastrophic failure of Hydrogen Dryers (1450-V-004 A/B). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion
35	IS35_ISOM_CGB_L	Release of Isomer due to leak/catastrophic failure of Chloride Guard Bed (1450-V-006). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
36	IS36_H2_FIR_V	Release of Hydrogen due to leak/catastrophic failure of First Isomerization Reactor (1450-R-002). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion

Potential

NO.	Isolatable Sub-section ID	Description	Outcome (s)
37	IS37_NAPH_SIRBP_L	Release of Naphtha due to leak/catastrophic failure of Second Isomerization Reactor Bottom Part (1450-R-003). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
38	IS38_H2_SIRUP_V	Release of Hydrogen due to leak/catastrophic failure of Second Isomerization Reactor Upper Part (1450-R-003). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion
39	IS39_LPG_S_V	Release of LPG due to leak/catastrophic failure of Stabilizer (1450-C-001). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion
40	IS40_ISOM_SRDBP_L	Release of Isomer due to leak/catastrophic failure of Stabilizer Reflux Drum Bottom Part (1450-V-007). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
41	IS41_LPG_SRDUP_V	Release of LPG due to leak/catastrophic failure of Stabilizer Reflux Drum Upper Part (1450-V-007). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion
42	IS42_ISOM_DRD_L	Release of Isomer due to leak/catastrophic failure of Dryers Regeneration Degasser (1450-V-008). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
43	IS43_H2_CS_V	Release of Hydrogen due to leak/catastrophic failure of Caustic Scrubber (1450-C-002). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion
44	IS44_TAME_TST_L	Release of TAME due to leak/catastrophic failure of TAME Storage Tanks (5150-V-004 A/B). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
45	IS45_ISOM_IST_L	Release of Isomer due to leak/catastrophic failure of Isomerate Storage Tanks (5150-V-005 A/B). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire

No.

46

47

48

49

50

51

52

53

54

Isolatable Sub-section ID

ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS

Potential

Outcome

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Description

		(s)
IS46_NAPH_MST_L	Release of Naphtha due to leak/catastrophic failure of MCN Storage Tank (5150-T-011C). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
IS47_TAME_PIPESTPU_L	Release of TAME due to leak/catastrophic failure of pipeline from TAME storage tanks to process unit. An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
IS48_TAME_PIPEPUST_L	Release of TAME due to leak/catastrophic failure of pipeline from process unit to TAME storage tanks. An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
IS49_ISOM_PIPEPUST_L	Release of Isomer due to leak/catastrophic failure of pipeline from process unit to Isomerate storage tanks. An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
IS50_NAPH_PIPESTPU_L	Release of Naphtha due to leak/catastrophic failure of pipeline from MCN storage tanks to process unit. An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
IS51_NAPH_PIPEPUST_L	Release of Naphtha due to leak/catastrophic failure of pipeline from process unit to MCN storage tanks. An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
IS52_NAPH_PIPEPUMHST_L	Release of Naphtha due to leak/catastrophic failure of pipeline from process unit (CHNT2) to MCN + HCN storage tank. An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
IS53_ETHY_EST_L	Release of Ethylene due to leak/catastrophic failure of Ethylene Storage Tank (5220-T-101). For minor, small, medium and large release, an immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire, Flash Fire and Explosion. For catastrophic release, an immediate outcome will result in BLEVE while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Pool Fire, Flash Fire, Explosion, BLEVE
IS54_ETHY_BOGC_V	Release of Ethylene due to leak/catastrophic failure of BOG Compressor (5220-A-105). An immediate outcome will result in Jet Fire while delayed	Jet Fire, Flash Fire and

outcome will result in Flash Fire and Explosion.

Explosion

No.	Isolatable Sub-section ID	Description	Potential Outcome (s)
55	IS55_ETHY_HPEBOGLR_V	Release of Ethylene due to leak/catastrophic failure of HP Ethylene BOG Liquid Receiver (5220-V-102). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion
56	IS56_ETHY_LPEBOGLR_L	Release of Ethylene due to leak/catastrophic failure of LP Ethylene BOG Liquid Receiver (5220-V-103). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
57	IS57_PROPY_PSV_L	Release of Propylene due to leak/catastrophic failure of Propylene Storage Vessels (5220-V-104 A/B/C/D). For minor, small, medium and large release, an immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire, Flash Fire and Explosion. For catastrophic release, an immediate outcome will result in BLEVE while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Pool Fire, Flash Fire, Explosion, BLEVE
58	IS58_BUTD_BSV_L	Release of Butadiene due to leak/catastrophic failure of Butadiene Storage Vessels (5220-V-101 A/B/C/D). For minor, small, medium and large release, an immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire, Flash Fire and Explosion. For catastrophic release, an immediate outcome will result in BLEVE while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Pool Fire, Flash Fire, Explosion, BLEVE
59	IS59_ETHY_CFKOD_L	Release of Ethylene due to leak/catastrophic failure of Cold Flare Knock Out Drum (5220-V-109). An immediate and delayed outcome will result in Pool Fire.	Pool Fire
60	IS60_ETHY_PIPEU2100U5220_L	Release of Ethylene due to leak/catastrophic failure of pipeline U-2100 to/from U-5220. An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
61	IS61_ETHY_PIPEU5220PDT2_L	Release of Ethylene due to leak/catastrophic failure of pipeline U-5220 to/from PDT2 BL. An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
62	IS62_ETHY_PIPEU5220BLU_V	Release of Ethylene due to leak/catastrophic failure of pipeline U-5220 BL to users. An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion

No.	Isolatable Sub-section ID	Description	Potential Outcome (s)
63	IS63_PROPY_PIPEU5210U5220_V	Release of Propylene due to leak/catastrophic failure of pipeline U-5210 BL to/from U-5220 BL. An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion
64	IS64_PROPY_PIPEU5220J_V	Release of Propylene due to leak/catastrophic failure of pipeline U-5220 BL to/from jetty. An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion
65	IS65_PROPY_PIPEMURP_V	Release of Propylene due to leak/catastrophic failure of pipeline make-up to refrigerant package (within U-5220, downstream of 5220-E-102). An immediate outcome will result in Jet Fire while delayed outcome will result in Flash Fire and Explosion.	Jet Fire, Flash Fire and Explosion
66	IS66_BUTD_PIPEU5210U5220_L	Release of Butadiene due to leak/catastrophic failure of pipeline U-5210 BL to/from U-5220 BL. An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
67	IS67_BUTD_PIPEU5220JLI_L	Release of Butadiene due to leak/catastrophic failure of pipeline U-5220 BL to/from jetty (loading/import). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire
68	IS68_BUTD_PIPEU5220JCLI_L	Release of Butadiene due to leak/catastrophic failure of pipeline U-5220 BL to/from jetty (circulation/loading/import). An immediate outcome will result in Jet Fire while delayed outcome will result in Pool Fire.	Jet Fire and Pool Fire

APPENDIX 3

QUANTITATIVE RISK ASSESSMENT

SUB-APPENDIX 3B: CONSEQUENCE MODELLING RESULT FOR EURO 5 MOGAS UNITS AND OLEFINS STORAGE TANKAGES

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Pool Fire Events Due to Minor Releases

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D	
Rei.	Scenarios	Probability		Downwind Distance (m)		
	IS01_NAPH_SSHDSFSD_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable	
1	IS01_NAPH_SSHDSFSD_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable	
	IS01_NAPH_SSHDSFSD_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable	
	IS03_NAPH_SSHDSSDBP_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable	
3	IS03_NAPH_SSHDSSDBP_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable	
	IS03_NAPH_SSHDSSDBP_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable	
	IS06_MDEA_SSHDSLASD_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable	
6	IS06_MDEA_SSHDSLASD_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable	
	IS06_MDEA_SSHDSLASD_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable	
	IS07_MDEA_SSHDSAABP_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable	
7	IS07_MDEA_SSHDSAABP_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable	
	IS07_MDEA_SSHDSAABP_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable	
	IS12_NAPH_LCNFSD_L_PF_0_1	1.00	11.01	13.02	14.32	
12	IS12_NAPH_LCNFSD_L_PF_0_0.5	0.50	18.94	21.96	17.64	
	IS12_NAPH_LCNFSD_L_PF_0_0.03	0.03	32.35	29.80	20.40	
	IS13_MEOH_FR_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable	
13	IS13_MEOH_FR_L_PF_0_0.5	0.50	20.94	23.42	24.36	
	IS13_MEOH_FR_L_PF_0_0.03	0.03	30.02	30.62	30.63	
	IS14_MEOH_SR_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable	
14	IS14_MEOH_SR_L_PF_0_0.5	0.50	19.79	22.15	23.03	
	IS14_MEOH_SR_L_PF_0_0.03	0.03	28.53	29.14	29.13	
	IS15_TAME_TFBP_L_PF_0_1	1.00	12.50	14.96	0.00	
15	IS15_TAME_TFBP_L_PF_0_0.5	0.50	18.63	19.79	0.00	
	IS15_TAME_TFBP_L_PF_0_0.03	0.03	27.13	23.98	0.00	
17	IS17_MEOH_TFRDBP_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable	

Ref	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.	ocenarios	Probability	Downwind Distance (m)		
	IS17_MEOH_TFRDBP_L_PF_0_0.5	0.50	12.27	13.81	14.34
	IS17_MEOH_TFRDBP_L_PF_0_0.03	0.03	19.62	20.06	20.00
	IS19_MEOH_TR_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
19	IS19_MEOH_TR_L_PF_0_0.5	0.50	20.86	23.33	24.27
	IS19_MEOH_TR_L_PF_0_0.03	0.03	29.92	30.52	30.53
	IS20_NAPH_RWCBP_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
20	IS20_NAPH_RWCBP_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS20_NAPH_RWCBP_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS22_MEOH_MCFD_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
22	IS22_MEOH_MCFD_L_PF_0_0.5	0.50	15.09	Not reachable	Not reachable
	IS22_MEOH_MCFD_L_PF_0_0.03	0.03	21.33	Not reachable	Not reachable
	IS23_MEOH_RC_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
23	IS23_MEOH_RC_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS23_MEOH_RC_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS25_MEOH_MCRD_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
25	IS25_MEOH_MCRD_L_PF_0_0.5	0.50	12.61	14.07	14.60
	IS25_MEOH_MCRD_L_PF_0_0.03	0.03	19.64	20.13	20.08
	IS26_MEOH_MGP_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
26	IS26_MEOH_MGP_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS26_MEOH_MGP_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS27_MEOH_MMUSD_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
27	IS27_MEOH_MMUSD_L_PF_0_0.5	0.50	12.18	13.75	14.28
	IS27_MEOH_MMUSD_L_PF_0_0.03	0.03	19.47	19.92	19.87
	IS29_HC_HCDD_L_PF_0_1	1.00	7.06	7.61	8.01
29	IS29_HC_HCDD_L_PF_0_0.5	0.50	14.70	18.94	20.67
	IS29_HC_HCDD_L_PF_0_0.03	0.03	26.59	28.98	30.01

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Rei.	Scenarios	Probability	Downwind Distance (m)		
	IS30_NAPH_SGB_L_PF_0_1	1.00	14.18	16.82	17.90
30	IS30_NAPH_SGB_L_PF_0_0.5	0.50	21.30	23.23	18.74
	IS30_NAPH_SGB_L_PF_0_0.03	0.03	31.67	28.81	19.58
	IS31_NAPH_FSD_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
31	IS31_NAPH_FSD_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS31_NAPH_FSD_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS32_NAPH_FD_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
32	IS32_NAPH_FD_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS32_NAPH_FD_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS35_ISOM_CGB_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
35	IS35_ISOM_CGB_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS35_ISOM_CGB_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS37_NAPH_SIRBP_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
37	IS37_NAPH_SIRBP_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS37_NAPH_SIRBP_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS40_ISOM_SRDBP_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
40	IS40_ISOM_SRDBP_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS40_ISOM_SRDBP_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS42_ISOM_DRD_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
42	IS42_ISOM_DRD_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS42_ISOM_DRD_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS44_TAME_TST_L_PF_0_1	1.00	10.25	10.85	11.73
44	IS44_TAME_TST_L_PF_0_0.5	0.50	18.03	23.08	24.99
	IS44_TAME_TST_L_PF_0_0.03	0.03	32.81	34.79	34.88
45	IS45_ISOM_IST_L_PF_0_1	1.00	10.25	10.85	11.73
45	IS45_ISOM_IST_L_PF_0_0.5	0.50	18.03	23.08	24.99

Rof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.	Scenarios	Probability		Downwind Distance (m)	
	IS45_ISOM_IST_L_PF_0_0.03	0.03	32.81	34.79	34.88
	IS46_NAPH_MST_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
46	IS46_NAPH_MST_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS46_NAPH_MST_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS47_TAME_PIPESTPU_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
47	IS47_TAME_PIPESTPU_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS47_TAME_PIPESTPU_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS48_TAME_PIPEPUST_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
48	IS48_TAME_PIPEPUST_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS48_TAME_PIPEPUST_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS49_ISOM_PIPEPUST_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
49	IS49_ISOM_PIPEPUST_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS49_ISOM_PIPEPUST_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS50_NAPH_PIPESTPU_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
50	IS50_NAPH_PIPESTPU_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS50_NAPH_PIPESTPU_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS51_NAPH_PIPEPUST_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
51	IS51_NAPH_PIPEPUST_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS51_NAPH_PIPEPUST_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS52_NAPH_PIPEPUMHST_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
52	IS52_NAPH_PIPEPUMHST_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS52_NAPH_PIPEPUMHST_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS53_ETHY_EST_L_PF_0_1	1.00	2.64	3.02	3.22
53	IS53_ETHY_EST_L_PF_0_0.5	0.50	2.64	3.57	4.07
	IS53_ETHY_EST_L_PF_0_0.03	0.03	4.08	5.01	5.33
56	IS56_ETHY_LPEBOGLR_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
itei.	Scenarios	Probability	Downwind Distance (m)		
	IS56_ETHY_LPEBOGLR_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS56_ETHY_LPEBOGLR_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS57_PROPY_PSV_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
57	IS57_PROPY_PSV_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS57_PROPY_PSV_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS58_BUTD_BSV_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
58	IS58_BUTD_BSV_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS58_BUTD_BSV_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS59_ETHY_CFKOD_L_PF_0_1	1.00	3.09	3.33	3.53
59	IS59_ETHY_CFKOD_L_PF_0_0.5	0.50	3.66	4.26	4.95
	IS59_ETHY_CFKOD_L_PF_0_0.03	0.03	5.69	5.83	6.27
	IS60_ETHY_PIPEU2100U5220_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
60	IS60_ETHY_PIPEU2100U5220_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS60_ETHY_PIPEU2100U5220_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS61_ETHY_PIPEU5220PDT2_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
61	IS61_ETHY_PIPEU5220PDT2_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS61_ETHY_PIPEU5220PDT2_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS66_BUTD_PIPEU5210U5220_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
66	IS66_BUTD_PIPEU5210U5220_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS66_BUTD_PIPEU5210U5220_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS67_BUTD_PIPEU5220JLI_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
67	IS67_BUTD_PIPEU5220JLI_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS67_BUTD_PIPEU5220JLI_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS68_BUTD_PIPEU5220JCLI_L_PF_0_1	1.00	Not reachable	Not reachable	Not reachable
68	IS68_BUTD_PIPEU5220JCLI_L_PF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS68_BUTD_PIPEU5220JCLI_L_PF_0_0.03	0.03	Not reachable	Not reachable	Not reachable

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Pool Fire Events Due to Small Releases

Rof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
itel.	Scenarios	Probability	Downwind Distance (m)		
	IS01_NAPH_SSHDSFSD_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
1	IS01_NAPH_SSHDSFSD_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS01_NAPH_SSHDSFSD_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS03_NAPH_SSHDSSDBP_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
3	IS03_NAPH_SSHDSSDBP_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS03_NAPH_SSHDSSDBP_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS06_MDEA_SSHDSLASD_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
6	IS06_MDEA_SSHDSLASD_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS06_MDEA_SSHDSLASD_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS07_MDEA_SSHDSAABP_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
7	IS07_MDEA_SSHDSAABP_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS07_MDEA_SSHDSAABP_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS12_NAPH_LCNFSD_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
12	IS12_NAPH_LCNFSD_L_PF_S_0.5	0.50	25.59	28.22	30.75
	IS12_NAPH_LCNFSD_L_PF_S_0.03	0.03	50.19	58.73	60.55
	IS13_MEOH_FR_L_PF_S_1	1.00	41.55	41.53	41.14
13	IS13_MEOH_FR_L_PF_S_0.5	0.50	53.05	57.83	58.89
	IS13_MEOH_FR_L_PF_S_0.03	0.03	76.78	77.35	76.39
	IS14_MEOH_SR_L_PF_S_1	1.00	39.35	39.25	38.87
14	IS14_MEOH_SR_L_PF_S_0.5	0.50	50.25	54.81	55.86
	IS14_MEOH_SR_L_PF_S_0.03	0.03	73.01	73.51	72.61
	IS15_TAME_TFBP_L_PF_S_1	1.00	23.45	23.90	24.27
15	IS15_TAME_TFBP_L_PF_S_0.5	0.50	28.88	35.48	39.74
	IS15_TAME_TFBP_L_PF_S_0.03	0.03	48.31	53.16	52.32

Rof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.	ocenanos	Probability	Downwind Distance (m)		
	IS17_MEOH_TFRDBP_L_PF_S_1	1.00	24.89	24.10	23.61
17	IS17_MEOH_TFRDBP_L_PF_S_0.5	0.50	33.43	36.82	37.70
	IS17_MEOH_TFRDBP_L_PF_S_0.03	0.03	52.36	52.33	51.65
	IS19_MEOH_TR_L_PF_S_1	1.00	41.41	41.38	40.98
19	IS19_MEOH_TR_L_PF_S_0.5	0.50	52.87	57.62	58.68
	IS19_MEOH_TR_L_PF_S_0.03	0.03	76.54	77.10	76.14
	IS20_NAPH_RWCBP_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
20	IS20_NAPH_RWCBP_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS20_NAPH_RWCBP_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS22_MEOH_MCFD_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
22	IS22_MEOH_MCFD_L_PF_S_0.5	0.50	33.62	37.03	37.55
	IS22_MEOH_MCFD_L_PF_S_0.03	0.03	47.87	47.66	46.24
	IS23_MEOH_RC_L_PF_S_1	1.00	37.29	Not reachable	Not reachable
23	IS23_MEOH_RC_L_PF_S_0.5	0.50	45.94	43.78	36.98
	IS23_MEOH_RC_L_PF_S_0.03	0.03	65.03	54.66	42.98
	IS25_MEOH_MCRD_L_PF_S_1	1.00	22.52	Not reachable	Not reachable
25	IS25_MEOH_MCRD_L_PF_S_0.5	0.50	28.84	32.31	33.46
	IS25_MEOH_MCRD_L_PF_S_0.03	0.03	44.09	44.87	44.84
	IS26_MEOH_MGP_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
26	IS26_MEOH_MGP_L_PF_S_0.5	0.50	31.25	Not reachable	Not reachable
	IS26_MEOH_MGP_L_PF_S_0.03	0.03	38.46	Not reachable	Not reachable
	IS27_MEOH_MMUSD_L_PF_S_1	1.00	24.72	23.95	23.47
27	IS27_MEOH_MMUSD_L_PF_S_0.5	0.50	33.17	36.55	37.41
	IS27_MEOH_MMUSD_L_PF_S_0.03	0.03	51.93	51.90	51.22
20	IS29_HC_HCDD_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
20	IS29_HC_HCDD_L_PF_S_0.5	0.50	17.37	20.03	21.53

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D	
Nei.	ocenarios	Probability		Downwind Distance (m)		
	IS29_HC_HCDD_L_PF_S_0.03	0.03	39.08	46.93	49.85	
	IS30_NAPH_SGB_L_PF_S_1	1.00	24.36	25.75	26.43	
30	IS30_NAPH_SGB_L_PF_S_0.5	0.50	30.94	37.82	41.87	
	IS30_NAPH_SGB_L_PF_S_0.03	0.03	48.75	54.15	54.55	
	IS31_NAPH_FSD_L_PF_S_1	1.00	22.55	Not reachable	Not reachable	
31	IS31_NAPH_FSD_L_PF_S_0.5	0.50	28.49	Not reachable	Not reachable	
	IS31_NAPH_FSD_L_PF_S_0.03	0.03	47.27	Not reachable	Not reachable	
	IS32_NAPH_FD_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable	
32	IS32_NAPH_FD_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable	
	IS32_NAPH_FD_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable	
	IS35_ISOM_CGB_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable	
35	IS35_ISOM_CGB_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable	
	IS35_ISOM_CGB_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable	
	IS37_NAPH_SIRBP_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable	
37	IS37_NAPH_SIRBP_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable	
	IS37_NAPH_SIRBP_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable	
	IS40_ISOM_SRDBP_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable	
40	IS40_ISOM_SRDBP_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable	
	IS40_ISOM_SRDBP_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable	
	IS42_ISOM_DRD_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable	
42	IS42_ISOM_DRD_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable	
	IS42_ISOM_DRD_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable	
	IS44_TAME_TST_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable	
44	IS44_TAME_TST_L_PF_S_0.5	0.50	23.32	25.19	26.54	
	IS44_TAME_TST_L_PF_S_0.03	0.03	48.10	57.41	60.74	
45	IS45_ISOM_IST_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable	

Rof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.	ocenarios	Probability	Downwind Distance (m)		
	IS45_ISOM_IST_L_PF_S_0.5	0.50	23.32	25.19	26.54
	IS45_ISOM_IST_L_PF_S_0.03	0.03	48.10	57.41	60.74
	IS46_NAPH_MST_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
46	IS46_NAPH_MST_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS46_NAPH_MST_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS47_TAME_PIPESTPU_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
47	IS47_TAME_PIPESTPU_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS47_TAME_PIPESTPU_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS48_TAME_PIPEPUST_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
48	IS48_TAME_PIPEPUST_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS48_TAME_PIPEPUST_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS49_ISOM_PIPEPUST_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
49	IS49_ISOM_PIPEPUST_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS49_ISOM_PIPEPUST_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS50_NAPH_PIPESTPU_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
50	IS50_NAPH_PIPESTPU_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS50_NAPH_PIPESTPU_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS51_NAPH_PIPEPUST_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
51	IS51_NAPH_PIPEPUST_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS51_NAPH_PIPEPUST_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS52_NAPH_PIPEPUMHST_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
52	IS52_NAPH_PIPEPUMHST_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS52_NAPH_PIPEPUMHST_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS53_ETHY_EST_L_PF_S_1	1.00	4.00	4.25	4.51
53	IS53_ETHY_EST_L_PF_S_0.5	0.50	7.97	8.66	9.01
	IS53_ETHY_EST_L_PF_S_0.03	0.03	12.95	12.30	12.28

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
itel.	Scenarios	Probability		Downwind Distance (m)	
	IS56_ETHY_LPEBOGLR_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
56	IS56_ETHY_LPEBOGLR_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
Ref. 56 57 58 59 60 61 66 67	IS56_ETHY_LPEBOGLR_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS57_PROPY_PSV_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
57	IS57_PROPY_PSV_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS57_PROPY_PSV_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS58_BUTD_BSV_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
58	IS58_BUTD_BSV_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS58_BUTD_BSV_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS59_ETHY_CFKOD_L_PF_S_1	1.00	4.97	5.44	5.72
59	IS59_ETHY_CFKOD_L_PF_S_0.5	0.50	9.49	10.54	10.87
	IS59_ETHY_CFKOD_L_PF_S_0.03	0.03	15.16	14.96	14.90
	IS60_ETHY_PIPEU2100U5220_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
60	IS60_ETHY_PIPEU2100U5220_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS60_ETHY_PIPEU2100U5220_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS61_ETHY_PIPEU5220PDT2_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
56 57 58 59 60 61 66 67 68	IS61_ETHY_PIPEU5220PDT2_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS61_ETHY_PIPEU5220PDT2_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS66_BUTD_PIPEU5210U5220_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
66	IS66_BUTD_PIPEU5210U5220_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS66_BUTD_PIPEU5210U5220_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS67_BUTD_PIPEU5220JLI_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
67	IS67_BUTD_PIPEU5220JLI_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
Ref. I 56 I 1 I 57 I 57 I 57 I 58 I 1 I 58 I 1 I 59 I 60 I 61 I 66 I 67 I 68 I	IS67_BUTD_PIPEU5220JLI_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
68	IS68_BUTD_PIPEU5220JCLI_L_PF_S_1	1.00	Not reachable	Not reachable	Not reachable
00	IS68_BUTD_PIPEU5220JCLI_L_PF_S_0.5	0.50	Not reachable	Not reachable	Not reachable

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Ref.	Scenarios	Fatality	Weather Condition 1F	Weather Condition 1F Weather Condition 3C Weather Condition 5		
		Probability		Downwind Distance (m)		
	IS68_BUTD_PIPEU5220JCLI_L_PF_S_0.03	0.03	Not reachable	Not reachable	Not reachable	

Pool Fire Events Due to Medium Releases

Pof	Sconarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Rel.	Scenarios	Probability		Downwind Distance (m)	
	IS01_NAPH_SSHDSFSD_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
1	IS01_NAPH_SSHDSFSD_L_PF_M_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS01_NAPH_SSHDSFSD_L_PF_M_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS03_NAPH_SSHDSSDBP_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
3	IS03_NAPH_SSHDSSDBP_L_PF_M_0.5	0.50	75.10	64.72	0.00
	IS03_NAPH_SSHDSSDBP_L_PF_M_0.03	0.03	113.75	96.56	0.00
	IS06_MDEA_SSHDSLASD_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
6	IS06_MDEA_SSHDSLASD_L_PF_M_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS06_MDEA_SSHDSLASD_L_PF_M_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS07_MDEA_SSHDSAABP_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
7	IS07_MDEA_SSHDSAABP_L_PF_M_0.5	0.50	Not reachable	Not reachable	Not reachable
Ref. 1 3 6 7 12 13 14	IS07_MDEA_SSHDSAABP_L_PF_M_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS12_NAPH_LCNFSD_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
12	IS12_NAPH_LCNFSD_L_PF_M_0.5	0.50	61.90	60.12	59.27
	IS12_NAPH_LCNFSD_L_PF_M_0.03	0.03	106.64	123.65	132.47
	IS13_MEOH_FR_L_PF_M_1	1.00	102.91	103.03	101.91
13	IS13_MEOH_FR_L_PF_M_0.5	0.50	136.76	146.44	149.12
	IS13_MEOH_FR_L_PF_M_0.03	0.03	196.07	198.65	197.20
	IS14_MEOH_SR_L_PF_M_1	1.00	100.35	100.11	98.85
14	IS14_MEOH_SR_L_PF_M_0.5	0.50	133.89	143.08	145.52
	IS14_MEOH_SR_L_PF_M_0.03	0.03	192.69	194.73	193.02

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.	Scenarios	Probability		Downwind Distance (m)	
	IS15_TAME_TFBP_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
15	IS15_TAME_TFBP_L_PF_M_0.5	0.50	58.53	57.52	56.96
	IS15_TAME_TFBP_L_PF_M_0.03	0.03	93.71	106.31	111.12
	IS17_MEOH_TFRDBP_L_PF_M_1	1.00	54.03	53.02	52.34
17	IS17_MEOH_TFRDBP_L_PF_M_0.5	0.50	75.54	82.13	84.42
	IS17_MEOH_TFRDBP_L_PF_M_0.03	0.03	115.31	116.75	116.47
	IS19_MEOH_TR_L_PF_M_1	1.00	102.74	102.83	101.70
19	IS19_MEOH_TR_L_PF_M_0.5	0.50	136.58	146.22	148.88
	IS19_MEOH_TR_L_PF_M_0.03	0.03	195.87	198.39	196.92
	IS20_NAPH_RWCBP_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
20	IS20_NAPH_RWCBP_L_PF_M_0.5	0.50	75.21	70.22	68.97
	IS20_NAPH_RWCBP_L_PF_M_0.03	0.03	118.11	120.98	123.60
	IS22_MEOH_MCFD_L_PF_M_1	1.00	40.89	44.20	44.82
22	IS22_MEOH_MCFD_L_PF_M_0.5	0.50	48.64	56.23	58.52
Ref. 15 15 17 17 19 20 20 22 23 23 25 26 27	IS22_MEOH_MCFD_L_PF_M_0.03	0.03	66.26	70.96	72.11
Ref. IS1 15 IS1 15 IS1 17 IS1 17 IS1 17 IS1 19 IS1 19 IS2 20 IS2 22 IS2 23 IS2 25 IS2 26 IS2 26 IS2 27 IS2 27 IS2	IS23_MEOH_RC_L_PF_M_1	1.00	65.84	70.41	71.10
23	IS23_MEOH_RC_L_PF_M_0.5	0.50	82.93	93.53	96.71
	IS23_MEOH_RC_L_PF_M_0.03	0.03	115.66	121.00	122.10
	IS25_MEOH_MCRD_L_PF_M_1	1.00	30.34	30.59	30.59
25	IS25_MEOH_MCRD_L_PF_M_0.5	0.50	37.94	42.65	44.39
	IS25_MEOH_MCRD_L_PF_M_0.03	0.03	55.32	57.41	58.08
	IS26_MEOH_MGP_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
26	IS26_MEOH_MGP_L_PF_M_0.5	0.50	55.44	66.51	69.66
	IS26_MEOH_MGP_L_PF_M_0.03	0.03	67.39	75.99	78.27
27	IS27_MEOH_MMUSD_L_PF_M_1	1.00	33.21	33.11	33.01
21	IS27_MEOH_MMUSD_L_PF_M_0.5	0.50	44.38	49.73	51.77

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.	ocenarios	Probability		Downwind Distance (m)	
	IS27_MEOH_MMUSD_L_PF_M_0.03	0.03	67.60	69.64	70.27
	IS29_HC_HCDD_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
29	IS29_HC_HCDD_L_PF_M_0.5	0.50	45.40	44.35	44.42
	IS29_HC_HCDD_L_PF_M_0.03	0.03	85.82	101.71	110.13
	IS30_NAPH_SGB_L_PF_M_1	1.00	Not reachable	Not reachable	42.55
30	IS30_NAPH_SGB_L_PF_M_0.5	0.50	43.23	50.43	53.44
	IS30_NAPH_SGB_L_PF_M_0.03	0.03	63.82	74.25	77.16
	IS31_NAPH_FSD_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
Ref. 29 30 31 32 35 37 40 42 44	IS31_NAPH_FSD_L_PF_M_0.5	0.50	55.48	56.05	56.38
	IS31_NAPH_FSD_L_PF_M_0.03	0.03	90.29	104.67	111.37
	IS32_NAPH_FD_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
32	IS32_NAPH_FD_L_PF_M_0.5	0.50	Not reachable	Not reachable	Not reachable
Ref. 29 30 31 32 35 37 40 42 44	IS32_NAPH_FD_L_PF_M_0.03	0.03	Not reachable	Not reachable	Not reachable
32 35	IS35_ISOM_CGB_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
35	IS35_ISOM_CGB_L_PF_M_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS35_ISOM_CGB_L_PF_M_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS37_NAPH_SIRBP_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
37	IS37_NAPH_SIRBP_L_PF_M_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS37_NAPH_SIRBP_L_PF_M_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS40_ISOM_SRDBP_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
40	IS40_ISOM_SRDBP_L_PF_M_0.5	0.50	Not reachable	Not reachable	Not reachable
29 30 31 32 35 37 40 42 44	IS40_ISOM_SRDBP_L_PF_M_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS42_ISOM_DRD_L_PF_M_1	1.00	Not reachable	54.09	Not reachable
42	IS42_ISOM_DRD_L_PF_M_0.5	0.50	54.10	65.28	Not reachable
	IS42_ISOM_DRD_L_PF_M_0.03	0.03	79.08	83.96	Not reachable
44	IS44_TAME_TST_L_PF_M_1	1.00	37.15	42.90	44.08

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.	ocenarios	Probability		Downwind Distance (m)	
	IS44_TAME_TST_L_PF_M_0.5	0.50	43.91	55.54	59.43
	IS44_TAME_TST_L_PF_M_0.03	0.03	61.41	69.91	71.36
	IS45_ISOM_IST_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
45	IS45_ISOM_IST_L_PF_M_0.5	0.50	44.69	43.81	43.83
	IS45_ISOM_IST_L_PF_M_0.03	0.03	80.56	96.47	105.05
	IS46_NAPH_MST_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
46	IS46_NAPH_MST_L_PF_M_0.5	0.50	90.66	76.67	72.73
	IS46_NAPH_MST_L_PF_M_0.03	0.03	142.40	131.12	127.95
	IS47_TAME_PIPESTPU_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
47	IS47_TAME_PIPESTPU_L_PF_M_0.5	0.50	51.21	54.13	55.24
47	IS47_TAME_PIPESTPU_L_PF_M_0.03	0.03	80.13	93.60	99.34
	IS48_TAME_PIPEPUST_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
48	IS48_TAME_PIPEPUST_L_PF_M_0.5	0.50	70.15	68.25	67.40
	IS48_TAME_PIPEPUST_L_PF_M_0.03	0.03	113.01	124.36	130.13
	IS49_ISOM_PIPEPUST_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
49	IS49_ISOM_PIPEPUST_L_PF_M_0.5	0.50	79.40	74.89	72.90
	IS49_ISOM_PIPEPUST_L_PF_M_0.03	0.03	128.62	137.90	143.03
	IS50_NAPH_PIPESTPU_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
50	IS50_NAPH_PIPESTPU_L_PF_M_0.5	0.50	71.36	67.11	66.33
	IS50_NAPH_PIPESTPU_L_PF_M_0.03	0.03	110.10	111.15	112.57
	IS51_NAPH_PIPEPUST_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
51	IS51_NAPH_PIPEPUST_L_PF_M_0.5	0.50	77.28	73.42	71.66
	IS51_NAPH_PIPEPUST_L_PF_M_0.03	0.03	125.08	134.94	140.25
	IS52_NAPH_PIPEPUMHST_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
52	IS52_NAPH_PIPEPUMHST_L_PF_M_0.5	0.50	78.07	71.24	69.46
	IS52_NAPH_PIPEPUMHST_L_PF_M_0.03	0.03	122.16	121.47	122.57

Rof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.	ocenanos	Probability		Downwind Distance (m)	
	IS53_ETHY_EST_L_PF_M_1	1.00	13.88	17.31	18.71
53	IS53_ETHY_EST_L_PF_M_0.5	0.50	27.07	29.70	29.67
	IS53_ETHY_EST_L_PF_M_0.03	0.03	44.86	45.39	44.03
	IS56_ETHY_LPEBOGLR_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
56	IS56_ETHY_LPEBOGLR_L_PF_M_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS56_ETHY_LPEBOGLR_L_PF_M_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS57_PROPY_PSV_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
57	IS57_PROPY_PSV_L_PF_M_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS57_PROPY_PSV_L_PF_M_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS58_BUTD_BSV_L_PF_M_1	1.00	62.31	47.01	31.49
58	IS58_BUTD_BSV_L_PF_M_0.5	0.50	99.25	63.89	38.65
00	IS58_BUTD_BSV_L_PF_M_0.03	0.03	152.65	86.14	44.75
	IS59_ETHY_CFKOD_L_PF_M_1	1.00	17.19	21.53	23.36
59	IS59_ETHY_CFKOD_L_PF_M_0.5	0.50	32.50	35.41	35.48
	IS59_ETHY_CFKOD_L_PF_M_0.03	0.03	53.43	54.05	52.62
	IS60_ETHY_PIPEU2100U5220_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
60	IS60_ETHY_PIPEU2100U5220_L_PF_M_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS60_ETHY_PIPEU2100U5220_L_PF_M_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS61_ETHY_PIPEU5220PDT2_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
61	IS61_ETHY_PIPEU5220PDT2_L_PF_M_0.5	0.50	Not reachable	Not reachable	Not reachable
53 53 56 57 58 59 60 61 66 67	IS61_ETHY_PIPEU5220PDT2_L_PF_M_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS66_BUTD_PIPEU5210U5220_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
66	IS66_BUTD_PIPEU5210U5220_L_PF_M_0.5	0.50	Not reachable	Not reachable	Not reachable
56 57 58 59 60 61 66	IS66_BUTD_PIPEU5210U5220_L_PF_M_0.03	0.03	Not reachable	Not reachable	Not reachable
67	IS67_BUTD_PIPEU5220JLI_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
07	IS67_BUTD_PIPEU5220JLI_L_PF_M_0.5	0.50	Not reachable	Not reachable	Not reachable

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Ref.	Scenarios Fata Proba	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
		Probability	Downwind Distance (m)		
	IS67_BUTD_PIPEU5220JLI_L_PF_M_0.03	0.03	Not reachable	Not reachable	Not reachable
68	IS68_BUTD_PIPEU5220JCLI_L_PF_M_1	1.00	Not reachable	Not reachable	Not reachable
	IS68_BUTD_PIPEU5220JCLI_L_PF_M_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS68_BUTD_PIPEU5220JCLI_L_PF_M_0.03	0.03	Not reachable	Not reachable	Not reachable

Pool Fire Events Due to Large Releases

Pof	Scenarios Fatality	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Rei.	Scenarios	Probability		Downwind Distance (m)	
1	IS01_NAPH_SSHDSFSD_L_PF_L_1	1.00	Not reachable	Not reachable	76.97
	IS01_NAPH_SSHDSFSD_L_PF_L_0.5	0.50	73.03	84.27	92.02
	IS01_NAPH_SSHDSFSD_L_PF_L_0.03	0.03	97.36	109.85	106.19
	IS03_NAPH_SSHDSSDBP_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
3	IS03_NAPH_SSHDSSDBP_L_PF_L_0.5	0.50	111.39	114.19	115.43
3 6	IS03_NAPH_SSHDSSDBP_L_PF_L_0.03	0.03	165.99	188.02	201.95
	IS06_MDEA_SSHDSLASD_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
6	IS06_MDEA_SSHDSLASD_L_PF_L_0.5	0.50	Not reachable	Not reachable	Not reachable
1 3 6 7 12	IS06_MDEA_SSHDSLASD_L_PF_L_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS07_MDEA_SSHDSAABP_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
7	IS07_MDEA_SSHDSAABP_L_PF_L_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS07_MDEA_SSHDSAABP_L_PF_L_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS12_NAPH_LCNFSD_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
12	IS12_NAPH_LCNFSD_L_PF_L_0.5	0.50	75.09	75.52	75.75
	IS12_NAPH_LCNFSD_L_PF_L_0.03	0.03	125.38	148.57	161.97
	IS13_MEOH_FR_L_PF_L_1	1.00	125.30	127.60	127.54
13	IS13_MEOH_FR_L_PF_L_0.5	0.50	163.80	177.18	182.04
Ref. 1 3 6 7 12 13	IS13_MEOH_FR_L_PF_L_0.03	0.03	230.47	237.14	238.03

Rof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.	Scenarios	Probability		Downwind Distance (m)	
	IS14_MEOH_SR_L_PF_L_1	1.00	122.63	124.61	124.43
14	IS14_MEOH_SR_L_PF_L_0.5	0.50	161.04	174.05	178.73
	IS14_MEOH_SR_L_PF_L_0.03	0.03	227.55	233.83	234.52
	IS15_TAME_TFBP_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
15	IS15_TAME_TFBP_L_PF_L_0.5	0.50	91.01	90.94	90.32
	IS15_TAME_TFBP_L_PF_L_0.03	0.03	142.74	163.79	174.72
	IS17_MEOH_TFRDBP_L_PF_L_1	1.00	60.85	60.67	60.45
17	IS17_MEOH_TFRDBP_L_PF_L_0.5	0.50	84.23	92.41	95.70
	IS17_MEOH_TFRDBP_L_PF_L_0.03	0.03	126.95	130.22	131.06
	IS19_MEOH_TR_L_PF_L_1	1.00	125.13	127.39	127.33
19	IS19_MEOH_TR_L_PF_L_0.5	0.50	163.63	176.97	181.81
	IS19_MEOH_TR_L_PF_L_0.03	0.03	230.28	236.92	237.79
	IS20_NAPH_RWCBP_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
20	IS20_NAPH_RWCBP_L_PF_L_0.5	0.50	103.28	106.61	107.45
Ref. 14 15 17 19 20 22 23 25 26	IS20_NAPH_RWCBP_L_PF_L_0.03	0.03	157.93	182.23	196.53
Ref. IS14 14 IS14 14 IS14 151 IS16 15 IS17 15 IS17 15 IS17 17 IS17 19 IS12 20 IS22 20 IS22 21 IS22 22 IS22 23 IS22 25 IS26 26 IS26	IS22_MEOH_MCFD_L_PF_L_1	1.00	48.96	53.43	53.95
22	IS22_MEOH_MCFD_L_PF_L_0.5	0.50	57.18	66.23	68.60
	IS22_MEOH_MCFD_L_PF_L_0.03	0.03	75.56	81.82	83.11
	IS23_MEOH_RC_L_PF_L_1	1.00	79.12	85.97	86.92
23	IS23_MEOH_RC_L_PF_L_0.5	0.50	97.75	111.62	115.60
Ref. 14 15 17 19 20 22 23 25 26	IS23_MEOH_RC_L_PF_L_0.03	0.03	132.94	142.10	144.12
	IS25_MEOH_MCRD_L_PF_L_1	1.00	35.41	36.24	36.27
25	IS25_MEOH_MCRD_L_PF_L_0.5	0.50	43.25	48.66	50.51
Ref. 14 15 17 19 20 22 23 25 26	IS25_MEOH_MCRD_L_PF_L_0.03	0.03	61.01	63.81	64.62
26	IS26_MEOH_MGP_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
20	IS26_MEOH_MGP_L_PF_L_0.5	0.50	71.14	84.44	87.84

Rof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.	ocenanos	Probability		Downwind Distance (m)	
	IS26_MEOH_MGP_L_PF_L_0.03	0.03	84.04	95.08	97.66
	IS27_MEOH_MMUSD_L_PF_L_1	1.00	36.93	37.25	37.29
27	IS27_MEOH_MMUSD_L_PF_L_0.5	0.50	48.54	54.54	56.86
Ref. 27 29 30 31 32 35 37 40 42	IS27_MEOH_MMUSD_L_PF_L_0.03	0.03	72.46	75.20	76.16
	IS29_HC_HCDD_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
29	IS29_HC_HCDD_L_PF_L_0.5	0.50	87.98	85.74	85.23
	IS29_HC_HCDD_L_PF_L_0.03	0.03	153.62	176.60	190.30
	IS30_NAPH_SGB_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
30	IS30_NAPH_SGB_L_PF_L_0.5	0.50	53.31	61.08	63.72
	IS30_NAPH_SGB_L_PF_L_0.03	0.03	74.88	87.44	91.37
	IS31_NAPH_FSD_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
31	IS31_NAPH_FSD_L_PF_L_0.5	0.50	68.75	72.06	72.96
Ref. 27 29 30 31 32 35 37 40 42	IS31_NAPH_FSD_L_PF_L_0.03	0.03	108.35	129.72	140.80
32	IS32_NAPH_FD_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
32	IS32_NAPH_FD_L_PF_L_0.5	0.50	89.94	Not reachable	Not reachable
	IS32_NAPH_FD_L_PF_L_0.03	0.03	114.78	Not reachable	Not reachable
	IS35_ISOM_CGB_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
35	IS35_ISOM_CGB_L_PF_L_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS35_ISOM_CGB_L_PF_L_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS37_NAPH_SIRBP_L_PF_L_1	1.00	83.91	92.40	95.91
37	IS37_NAPH_SIRBP_L_PF_L_0.5	0.50	90.70	103.96	101.69
27 29 30 31 32 35 37 40 42	IS37_NAPH_SIRBP_L_PF_L_0.03	0.03	108.13	114.52	106.21
	IS40_ISOM_SRDBP_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
40	IS40_ISOM_SRDBP_L_PF_L_0.5	0.50	74.42	82.70	84.95
Ref. III 27 III 27 III 29 III 29 III 30 III 31 III 32 III 33 III 34 III 35 III 37 III 40 III 42 III	IS40_ISOM_SRDBP_L_PF_L_0.03	0.03	103.28	123.17	131.76
42	IS42_ISOM_DRD_L_PF_L_1	1.00	47.93	55.50	56.57

Rof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.	ocenanos	Probability		Downwind Distance (m)	
	IS42_ISOM_DRD_L_PF_L_0.5	0.50	53.33	65.68	69.21
	IS42_ISOM_DRD_L_PF_L_0.03	0.03	72.79	86.53	89.40
	IS44_TAME_TST_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
44	IS44_TAME_TST_L_PF_L_0.5	0.50	54.66	54.68	55.08
	IS44_TAME_TST_L_PF_L_0.03	0.03	95.39	114.97	126.23
	IS45_ISOM_IST_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
45	IS45_ISOM_IST_L_PF_L_0.5	0.50	51.26	51.40	51.88
	IS45_ISOM_IST_L_PF_L_0.03	0.03	89.49	108.26	118.94
	IS46_NAPH_MST_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
46	IS46_NAPH_MST_L_PF_L_0.5	0.50	197.10	182.36	177.25
40	IS46_NAPH_MST_L_PF_L_0.03	0.03	297.60	310.75	326.53
	IS47_TAME_PIPESTPU_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
47	IS47_TAME_PIPESTPU_L_PF_L_0.5	0.50	64.43	69.63	70.93
Ref. 44 45 46 47 48 49 50 51	IS47_TAME_PIPESTPU_L_PF_L_0.03	0.03	97.02	117.14	126.55
43 46 47 48 49	IS48_TAME_PIPEPUST_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
48	IS48_TAME_PIPEPUST_L_PF_L_0.5	0.50	91.41	94.52	95.21
	IS48_TAME_PIPEPUST_L_PF_L_0.03	0.03	143.15	167.68	181.43
	IS49_ISOM_PIPEPUST_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
45 46 47 48 49 50	IS49_ISOM_PIPEPUST_L_PF_L_0.5	0.50	108.03	109.50	109.57
	IS49_ISOM_PIPEPUST_L_PF_L_0.03	0.03	169.93	195.74	211.18
	IS50_NAPH_PIPESTPU_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
50	IS50_NAPH_PIPESTPU_L_PF_L_0.5	0.50	98.13	102.48	103.69
Ref. 44 45 46 47 48 49 50 51	IS50_NAPH_PIPESTPU_L_PF_L_0.03	0.03	147.72	171.24	184.61
	IS51_NAPH_PIPEPUST_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
51	IS51_NAPH_PIPEPUST_L_PF_L_0.5	0.50	103.85	105.77	106.06
	IS51_NAPH_PIPEPUST_L_PF_L_0.03	0.03	163.29	188.88	203.95

Pof	Sconarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.	Scenarios	Probability		Downwind Distance (m)	
	IS52_NAPH_PIPEPUMHST_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
52	IS52_NAPH_PIPEPUMHST_L_PF_L_0.5	0.50	109.52	112.30	113.11
	IS52_NAPH_PIPEPUMHST_L_PF_L_0.03	0.03	166.97	191.19	205.95
	IS53_ETHY_EST_L_PF_L_1	1.00	34.80	41.60	43.67
53	IS53_ETHY_EST_L_PF_L_0.5	0.50	64.01	66.44	65.41
Ref. 52 53 53 56 57 58 59 60 61 66	IS53_ETHY_EST_L_PF_L_0.03	0.03	106.01	103.75	99.29
	IS56_ETHY_LPEBOGLR_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
56	IS56_ETHY_LPEBOGLR_L_PF_L_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS56_ETHY_LPEBOGLR_L_PF_L_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS57_PROPY_PSV_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
57	IS57_PROPY_PSV_L_PF_L_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS57_PROPY_PSV_L_PF_L_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS58_BUTD_BSV_L_PF_L_1	1.00	181.53	184.66	185.36
58	IS58_BUTD_BSV_L_PF_L_0.5	0.50	294.04	275.02	264.55
57 58 59	IS58_BUTD_BSV_L_PF_L_0.03	0.03	465.79	417.31	393.58
	IS59_ETHY_CFKOD_L_PF_L_1	1.00	27.84	35.06	38.05
59	IS59_ETHY_CFKOD_L_PF_L_0.5	0.50	51.32	55.88	56.67
	IS59_ETHY_CFKOD_L_PF_L_0.03	0.03	84.55	86.51	85.32
	IS60_ETHY_PIPEU2100U5220_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
60	IS60_ETHY_PIPEU2100U5220_L_PF_L_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS60_ETHY_PIPEU2100U5220_L_PF_L_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS61_ETHY_PIPEU5220PDT2_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
61	IS61_ETHY_PIPEU5220PDT2_L_PF_L_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS61_ETHY_PIPEU5220PDT2_L_PF_L_0.03	0.03	Not reachable	Not reachable	Not reachable
66	IS66_BUTD_PIPEU5210U5220_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
00	IS66_BUTD_PIPEU5210U5220_L_PF_L_0.5	0.50	Not reachable	Not reachable	Not reachable

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.		Probability		Downwind Distance (m)	
	IS66_BUTD_PIPEU5210U5220_L_PF_L_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS67_BUTD_PIPEU5220JLI_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
67	IS67_BUTD_PIPEU5220JLI_L_PF_L_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS67_BUTD_PIPEU5220JLI_L_PF_L_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS68_BUTD_PIPEU5220JCLI_L_PF_L_1	1.00	Not reachable	Not reachable	Not reachable
68	IS68_BUTD_PIPEU5220JCLI_L_PF_L_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS68_BUTD_PIPEU5220JCLI_L_PF_L_0.03	0.03	Not reachable	Not reachable	Not reachable

Pool Fire Events Due to Catastrophic Releases

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
itel.	ocenanos	Probability		Downwind Distance (m)	
	IS01_NAPH_SSHDSFSD_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable
1	IS01_NAPH_SSHDSFSD_L_PF_C_0.5	0.50	111.82	118.06	121.22
	IS01_NAPH_SSHDSFSD_L_PF_C_0.03	0.03	146.00	168.17	179.27
	IS03_NAPH_SSHDSSDBP_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable
3	IS03_NAPH_SSHDSSDBP_L_PF_C_0.5	0.50	147.00	154.93	156.93
	IS03_NAPH_SSHDSSDBP_L_PF_C_0.03	0.03	208.60	242.89	261.50
	IS06_MDEA_SSHDSLASD_L_PF_C_1	1.00	98.79	Not reachable	Not reachable
6	IS06_MDEA_SSHDSLASD_L_PF_C_0.5	0.50	102.00	Not reachable	Not reachable
6	IS06_MDEA_SSHDSLASD_L_PF_C_0.03	0.03	106.83	Not reachable	Not reachable
	IS07_MDEA_SSHDSAABP_L_PF_C_1	1.00	107.58	Not reachable	Not reachable
7	IS07_MDEA_SSHDSAABP_L_PF_C_0.5	0.50	116.34	Not reachable	Not reachable
	IS07_MDEA_SSHDSAABP_L_PF_C_0.03	0.03	127.56	Not reachable	Not reachable
	IS12_NAPH_LCNFSD_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable
12	IS12_NAPH_LCNFSD_L_PF_C_0.5	0.50	86.93	88.43	89.09
	IS12_NAPH_LCNFSD_L_PF_C_0.03	0.03	139.53	165.37	180.61

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Kei.	Scenarios	Probability		Downwind Distance (m)	
	IS13_MEOH_FR_L_PF_C_1	1.00	151.77	155.45	156.10
13	IS13_MEOH_FR_L_PF_C_0.5	0.50	192.64	208.12	214.21
	IS13_MEOH_FR_L_PF_C_0.03	0.03	263.03	271.99	274.16
	IS14_MEOH_SR_L_PF_C_1	1.00	148.21	151.74	152.30
14	IS14_MEOH_SR_L_PF_C_0.5	0.50	189.11	204.44	210.45
Ref. 13 14 15 17 19 20 22 23 25	IS14_MEOH_SR_L_PF_C_0.03	0.03	259.56	268.36	270.45
	IS15_TAME_TFBP_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable
15	IS15_TAME_TFBP_L_PF_C_0.5	0.50	122.399	125.495	126.428
Ref. I 13 I 14 I 15 I 17 I 19 I 20 I 22 I 23 I 25 I	IS15_TAME_TFBP_L_PF_C_0.03	0.03	183.632	213.572	230.998
	IS17_MEOH_TFRDBP_L_PF_C_1	1.00	67.41	67.70	67.72
17	IS17_MEOH_TFRDBP_L_PF_C_0.5	0.50	91.49	100.42	104.16
	IS17_MEOH_TFRDBP_L_PF_C_0.03	0.03	135.33	139.43	140.77
	IS19_MEOH_TR_L_PF_C_1	1.00	151.51	155.20	155.77
19	IS19_MEOH_TR_L_PF_C_0.5	0.50	192.38	207.87	213.89
13 14 15 17 19 20 22 23 25	IS19_MEOH_TR_L_PF_C_0.03	0.03	262.77	271.75	273.85
13 13 14 15 17 19 20 22 23 25	IS20_NAPH_RWCBP_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable
	IS20_NAPH_RWCBP_L_PF_C_0.5	0.50	130.77	137.97	139.40
	IS20_NAPH_RWCBP_L_PF_C_0.03	0.03	190.64	223.94	241.65
	IS22_MEOH_MCFD_L_PF_C_1	1.00	62.53	67.70	68.28
22	IS22_MEOH_MCFD_L_PF_C_0.5	0.50	71.05	80.99	83.48
	IS22_MEOH_MCFD_L_PF_C_0.03	0.03	89.92	97.11	98.52
	IS23_MEOH_RC_L_PF_C_1	1.00	99.27	107.02	108.04
23	IS23_MEOH_RC_L_PF_C_0.5	0.50	118.70	133.97	138.19
	IS23_MEOH_RC_L_PF_C_0.03	0.03	155.15	165.99	168.23
25	IS25_MEOH_MCRD_L_PF_C_1	1.00	43.72	45.49	45.63
25	IS25_MEOH_MCRD_L_PF_C_0.5	0.50	51.74	58.15	60.16

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D	
Nei.	Scenarios	Probability	Downwind Distance (m)			
	IS25_MEOH_MCRD_L_PF_C_0.03	0.03	69.80	73.59	74.54	
26	IS26_MEOH_MGP_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable	
	IS26_MEOH_MGP_L_PF_C_0.5	0.50	98.40	112.20	115.90	
	IS26_MEOH_MGP_L_PF_C_0.03	0.03	111.95	123.60	126.45	
	IS27_MEOH_MMUSD_L_PF_C_1	1.00	42.39	43.04	43.14	
27	IS27_MEOH_MMUSD_L_PF_C_0.5	0.50	54.20	60.60	63.03	
Ref. 26 27 29 30 31 32 35 37 40	IS27_MEOH_MMUSD_L_PF_C_0.03	0.03	78.45	81.58	82.66	
	IS29_HC_HCDD_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable	
29	IS29_HC_HCDD_L_PF_C_0.5	0.50	113.96	111.96	111.44	
	IS29_HC_HCDD_L_PF_C_0.03	0.03	192.34	220.11	237.54	
	IS30_NAPH_SGB_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable	
30	IS30_NAPH_SGB_L_PF_C_0.5	0.50	71.36	79.52	81.99	
	IS30_NAPH_SGB_L_PF_C_0.03	0.03	93.78	108.21	113.10	
	IS31_NAPH_FSD_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable	
31	IS31_NAPH_FSD_L_PF_C_0.5	0.50	83.76	88.26	89.35	
Ref. 1 26 1 27 1 29 1 30 1 31 1 32 1 35 1 37 1 40 1	IS31_NAPH_FSD_L_PF_C_0.03	0.03	125.78	150.31	162.85	
	IS32_NAPH_FD_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable	
32	IS32_NAPH_FD_L_PF_C_0.5	0.50	132.24	143.32	147.10	
Ref. 26 27 29 30 31 32 35 37 40	IS32_NAPH_FD_L_PF_C_0.03	0.03	159.73	183.51	193.82	
	IS35_ISOM_CGB_L_PF_C_1	1.00	112.08	119.71	124.09	
35	IS35_ISOM_CGB_L_PF_C_0.5	0.50	118.43	130.96	138.27	
	IS35_ISOM_CGB_L_PF_C_0.03	0.03	136.60	149.44	154.55	
	IS37_NAPH_SIRBP_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable	
37	IS37_NAPH_SIRBP_L_PF_C_0.5	0.50	123.05	132.27	137.26	
	IS37_NAPH_SIRBP_L_PF_C_0.03	0.03	147.59	165.65	174.50	
40	IS40_ISOM_SRDBP_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable	

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.	ocenanos	Probability		Downwind Distance (m)	
	IS40_ISOM_SRDBP_L_PF_C_0.5	0.50	102.37	112.12	114.37
	IS40_ISOM_SRDBP_L_PF_C_0.03	0.03	134.17	159.26	169.65
	IS42_ISOM_DRD_L_PF_C_1	1.00	Not reachable	Not reachable	75.27
Ref. 42 42 44 45 46 47 48 49 50	IS42_ISOM_DRD_L_PF_C_0.5	0.50	70.63	82.94	86.08
	IS42_ISOM_DRD_L_PF_C_0.03	0.03	90.98	106.66	110.13
	IS44_TAME_TST_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable
44	IS44_TAME_TST_L_PF_C_0.5	0.50	61.72	62.40	63.17
	IS44_TAME_TST_L_PF_C_0.03	0.03	103.59	124.56	136.83
	IS45_ISOM_IST_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable
45	IS45_ISOM_IST_L_PF_C_0.5	0.50	58.06	58.79	59.62
	IS45_ISOM_IST_L_PF_C_0.03	0.03	97.27	117.25	128.77
	IS46_NAPH_MST_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable
46	IS46_NAPH_MST_L_PF_C_0.5	0.50	507.81	474.98	459.88
Ref. 42 44 45 46 47 48 49 50	IS46_NAPH_MST_L_PF_C_0.03	0.03	698.89	722.92	753.91
	IS47_TAME_PIPESTPU_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable
47	IS47_TAME_PIPESTPU_L_PF_C_0.5	0.50	82.11	88.58	90.06
	IS47_TAME_PIPESTPU_L_PF_C_0.03	0.03	116.80	Weather Condition 3C Downwind Distance (m) 112.12 159.26 Not reachable 82.94 106.66 Not reachable 62.40 124.56 Not reachable 58.79 117.25 Not reachable 474.98 722.92 Not reachable 88.58 140.25 Not reachable 118.12 198.65 Not reachable 137.49 233.78 Not reachable 134.62 213.30	150.94
	IS48_TAME_PIPEPUST_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable
48	IS48_TAME_PIPEPUST_L_PF_C_0.5	0.50	112.48	118.12	119.77
	IS48_TAME_PIPEPUST_L_PF_C_0.03	0.03	168.09	198.65	215.05
	IS49_ISOM_PIPEPUST_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable
49	IS49_ISOM_PIPEPUST_L_PF_C_0.5	0.50	132.47	137.49	138.42
	IS49_ISOM_PIPEPUST_L_PF_C_0.03	0.03	199.77	233.78	253.24
	IS50_NAPH_PIPESTPU_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable
50	IS50_NAPH_PIPESTPU_L_PF_C_0.5	0.50	126.63	134.62	136.23
	IS50_NAPH_PIPESTPU_L_PF_C_0.03	0.03	181.17	213.30	229.79

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Kel.	Scenarios	Probability		Downwind Distance (m)	
	IS51_NAPH_PIPEPUST_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable
51	IS51_NAPH_PIPEPUST_L_PF_C_0.5	0.50	127.32	132.51	133.55
	IS51_NAPH_PIPEPUST_L_PF_C_0.03	0.03	191.73	224.93	243.65
	IS52_NAPH_PIPEPUMHST_L_PF_C_1	1.00	Not reachable	Not reachable	Not reachable
52	IS52_NAPH_PIPEPUMHST_L_PF_C_0.5	0.50	139.53	146.81	148.22
	IS52_NAPH_PIPEPUMHST_L_PF_C_0.03	0.03	202.88	237.39	256.13
	IS56_ETHY_LPEBOGLR_L_PF_C_1	1.00	93.87	107.98	111.35
56	IS56_ETHY_LPEBOGLR_L_PF_C_0.5	0.50	110.14	121.30	123.13
Ref. I 51 1 52 1 56 1 59 1 60 1 61 1 66 1 67 1 68 1	IS56_ETHY_LPEBOGLR_L_PF_C_0.03	0.03	132.48	138.73	139.55
	IS59_ETHY_CFKOD_L_PF_C_1	1.00	36.38	45.82	49.88
59	IS59_ETHY_CFKOD_L_PF_C_0.5	0.50	66.02	72.47	74.22
	IS59_ETHY_CFKOD_L_PF_C_0.03	0.03	108.67	112.76	112.47
	IS60_ETHY_PIPEU2100U5220_L_PF_C_1	1.00	174.36	168.96	0.00
60	IS60_ETHY_PIPEU2100U5220_L_PF_C_0.5	0.50	239.63	209.03	0.00
	IS60_ETHY_PIPEU2100U5220_L_PF_C_0.03	0.03	338.07	271.48	0.00
	IS61_ETHY_PIPEU5220PDT2_L_PF_C_1	1.00	163.76	Not reachable	Not reachable
61	IS61_ETHY_PIPEU5220PDT2_L_PF_C_0.5	0.50	219.19	Not reachable	Not reachable
Ref. $ $	IS61_ETHY_PIPEU5220PDT2_L_PF_C_0.03	0.03	302.11	Not reachable	Not reachable
	IS66_BUTD_PIPEU5210U5220_L_PF_C_1	1.00	148.25	165.69	173.47
66	IS66_BUTD_PIPEU5210U5220_L_PF_C_0.5	0.50	208.51	214.93	218.46
	IS66_BUTD_PIPEU5210U5220_L_PF_C_0.03	0.03	298.10	290.67	290.53
	IS67_BUTD_PIPEU5220JLI_L_PF_C_1	1.00	238.82	253.69	264.37
67	IS67_BUTD_PIPEU5220JLI_L_PF_C_0.5	0.50	357.20	351.56	354.89
	IS67_BUTD_PIPEU5220JLI_L_PF_C_0.03	0.03	538.20	505.94	502.79
68	IS68_BUTD_PIPEU5220JCLI_L_PF_C_1	1.00	163.70	180.92	189.32
00	IS68_BUTD_PIPEU5220JCLI_L_PF_C_0.5	0.50	233.73	238.16	241.81

Ref.	Scenarios	Fatality	Weather Condition 1F	Weather Condition 1F Weather Condition 3C Weather		
		Probability		Downwind Distance (m)		
	IS68_BUTD_PIPEU5220JCLI_L_PF_C_0.03	0.03	338.61	326.87	326.36	

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Jet Fire Events Due to Minor Releases

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
itel.	Scenarios	Probability		Downwind Distance (m)	
	IS01_NAPH_SSHDSFSD_L_JF_0_1	1.00	10.28	8.56	7.80
1	IS01_NAPH_SSHDSFSD_L_JF_0_0.5	0.50	12.26	10.60	9.90
Ref. 1 2 3 4 5 6 7 8	IS01_NAPH_SSHDSFSD_L_JF_0_0.03	0.03	15.38	13.89	13.29
	IS02_NAPH_SSHDSR_V_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
2	IS02_NAPH_SSHDSR_V_JF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS02_NAPH_SSHDSR_V_JF_0_0.03	0.03	4.41	4.26	4.02
	IS03_NAPH_SSHDSSDBP_L_JF_0_1	1.00	15.03	12.58	11.48
3	IS03_NAPH_SSHDSSDBP_L_JF_0_0.5	0.50	17.80	15.48	14.41
	IS03_NAPH_SSHDSSDBP_L_JF_0_0.03	0.03	22.27	20.24	19.27
	IS04_H2_SSHDSSDUP_V_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
4	IS04_H2_SSHDSSDUP_V_JF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS04_H2_SSHDSSDUP_V_JF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS05_H2_SSHDSAAKOD_V_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
5	IS05_H2_SSHDSAAKOD_V_JF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS05_H2_SSHDSAAKOD_V_JF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS06_MDEA_SSHDSLASD_L_JF_0_1	1.00	13.66	11.15	10.03
6	IS06_MDEA_SSHDSLASD_L_JF_0_0.5	0.50	15.72	13.22	12.13
	IS06_MDEA_SSHDSLASD_L_JF_0_0.03	0.03	18.82	16.44	15.44
	IS07_MDEA_SSHDSAABP_L_JF_0_1	1.00	14.84	12.13	10.93
7	IS07_MDEA_SSHDSAABP_L_JF_0_0.5	0.50	17.06	14.35	13.18
	IS07_MDEA_SSHDSAABP_L_JF_0_0.03	0.03	20.41	17.83	16.75
	IS08_H2_SSHDSAAUP_V_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
8	IS08_H2_SSHDSAAUP_V_JF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS08_H2_SSHDSAAUP_V_JF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
9	IS09_H2_SSHDSRGCKOD_V_JF_0_1	1.00	Not reachable	Not reachable	Not reachable

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
itei.	Scenarios	Probability		Downwind Distance (m)	
	IS09_H2_SSHDSRGCKOD_V_JF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS09_H2_SSHDSRGCKOD_V_JF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS10_NAPH_SSHDSS_V_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
10	IS10_NAPH_SSHDSS_V_JF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS10_NAPH_SSHDSS_V_JF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS11_H2_SSHDSSRD_V_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
11	IS11_H2_SSHDSSRD_V_JF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS11_H2_SSHDSSRD_V_JF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS12_NAPH_LCNFSD_L_JF_0_1	1.00	11.47	9.52	8.63
12	IS12_NAPH_LCNFSD_L_JF_0_0.5	0.50	13.71	11.79	10.85
	IS12_NAPH_LCNFSD_L_JF_0_0.03	0.03	17.18	15.39	14.42
	IS13_MEOH_FR_L_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
13	IS13_MEOH_FR_L_JF_0_0.5	0.50	20.77	17.02	15.34
13	IS13_MEOH_FR_L_JF_0_0.03	0.03	24.11	20.28	18.59
	IS14_MEOH_SR_L_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
14	IS14_MEOH_SR_L_JF_0_0.5	0.50	19.73	16.18	14.58
Ref. I I I <t< td=""><td>IS14_MEOH_SR_L_JF_0_0.03</td><td>0.03</td><td>22.94</td><td>19.29</td><td>17.67</td></t<>	IS14_MEOH_SR_L_JF_0_0.03	0.03	22.94	19.29	17.67
	IS15_TAME_TFBP_L_JF_0_1	1.00	10.02	8.34	7.59
15	IS15_TAME_TFBP_L_JF_0_0.5	0.50	11.96	10.37	9.65
	IS15_TAME_TFBP_L_JF_0_0.03	0.03	15.00	13.59	12.95
	IS16_MEOH_TFUP_V_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
16	IS16_MEOH_TFUP_V_JF_0_0.5	0.50	Not reachable	12.14	10.79
	IS16_MEOH_TFUP_V_JF_0_0.03	0.03	16.85	14.36	13.25
	IS17_MEOH_TFRDBP_L_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
17	IS17_MEOH_TFRDBP_L_JF_0_0.5	0.50	Not reachable	Not reachable	9.61
Ref. 10 10 11 12 12 13 14 15 16 17	IS17_MEOH_TFRDBP_L_JF_0_0.03	0.03	14.13	12.20	11.33

Rof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.	ocenanos	Probability		Downwind Distance (m)	
	IS18_NAPH_TFRDUP_V_JF_0_1	1.00	10.21	8.45	7.63
18	IS18_NAPH_TFRDUP_V_JF_0_0.5	0.50	12.27	10.48	9.60
	IS18_NAPH_TFRDUP_V_JF_0_0.03	0.03	15.39	13.66	12.72
	IS19_MEOH_TR_L_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
19	IS19_MEOH_TR_L_JF_0_0.5	0.50	20.70	16.97	15.29
	IS19_MEOH_TR_L_JF_0_0.03	0.03	24.03	20.21	18.53
	IS20_NAPH_RWCBP_L_JF_0_1	1.00	14.10	11.79	10.74
20	IS20_NAPH_RWCBP_L_JF_0_0.5	0.50	16.73	14.53	13.49
Ref. I 18 I 19 I 19 I 20 I 21 I 22 I 1 I 22 I 1 I 23 I 1 I 24 I 1 I 25 I 1 26	IS20_NAPH_RWCBP_L_JF_0_0.03	0.03	20.93	19.00	18.02
	IS21_MEOH_RWCUP_V_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
21	IS21_MEOH_RWCUP_V_JF_0_0.5	0.50	20.74	16.70	15.17
	IS21_MEOH_RWCUP_V_JF_0_0.03	0.03	24.17	20.31	18.56
	IS22_MEOH_MCFD_L_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
22	IS22_MEOH_MCFD_L_JF_0_0.5	0.50	Not reachable	15.72	14.34
$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	IS22_MEOH_MCFD_L_JF_0_0.03	0.03	22.93	19.25	17.57
Ref. IS 18 IS 18 IS 19 IS 20 IS 20 IS 20 IS 21 IS 22 IS 23 IS 24 IS 25 IS 26 IS 26 IS	IS23_MEOH_RC_L_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
	IS23_MEOH_RC_L_JF_0_0.5	0.50	21.22	17.23	15.62
	IS23_MEOH_RC_L_JF_0_0.03	0.03	24.84	20.88	19.09
	IS24_MEOH_MC_V_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
24	IS24_MEOH_MC_V_JF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS24_MEOH_MC_V_JF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS25_MEOH_MCRD_L_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
25	IS25_MEOH_MCRD_L_JF_0_0.5	0.50	Not reachable	11.33	10.08
	IS25_MEOH_MCRD_L_JF_0_0.03	0.03	15.60	13.29	12.26
26	IS26_MEOH_MGP_L_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
20	IS26_MEOH_MGP_L_JF_0_0.5	0.50	23.36	19.15	17.30

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
iter.		Probability	Downwind Distance (m)		
	IS26_MEOH_MGP_L_JF_0_0.03	0.03	27.29	22.98	21.05
27	IS27_MEOH_MMUSD_L_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
	IS27_MEOH_MMUSD_L_JF_0_0.5	0.50	Not reachable	Not reachable	9.90
	IS27_MEOH_MMUSD_L_JF_0_0.03	0.03	14.63	12.64	11.74
	IS28_MEOH_MDD_V_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
28	IS28_MEOH_MDD_V_JF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
Ref. 1 27 2 28 3 30 3 31 3 32 3 33 3 34 3 35 3 36 3	IS28_MEOH_MDD_V_JF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS30_NAPH_SGB_L_JF_0_1	1.00	12.55	10.49	9.57
30	IS30_NAPH_SGB_L_JF_0_0.5	0.50	14.88	12.92	12.05
	IS30_NAPH_SGB_L_JF_0_0.03	0.03	18.63	16.90	16.13
	IS31_NAPH_FSD_L_JF_0_1	1.00	12.52	10.43	9.47
31	IS31_NAPH_FSD_L_JF_0_0.5	0.50	14.91	12.89	11.91
	IS31_NAPH_FSD_L_JF_0_0.03	0.03	18.67	16.85	15.86
	IS32_NAPH_FD_L_JF_0_1	1.00	17.40	14.59	13.36
32	IS32_NAPH_FD_L_JF_0_0.5	0.50	20.55	17.89	16.72
Ref. 27 28 30 31 32 33 34 35 36	IS32_NAPH_FD_L_JF_0_0.03	0.03	25.72	23.37	22.38
	IS33_H2_H2PR_V_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
Ref. 27 28 30 31 32 33 34 35 36	IS33_H2_H2PR_V_JF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS33_H2_H2PR_V_JF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS34_H2_HD_V_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
34	IS34_H2_HD_V_JF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS34_H2_HD_V_JF_0_0.03	0.03	4.19	4.41	4.56
	IS35_ISOM_CGB_L_JF_0_1	1.00	12.64	10.55	9.64
35	IS35_ISOM_CGB_L_JF_0_0.5	0.50	14.98	12.97	12.11
	IS35_ISOM_CGB_L_JF_0_0.03	0.03	18.77	16.94	16.21
36	IS36_H2_FIR_V_JF_0_1	1.00	Not reachable	Not reachable	Not reachable

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.		Probability	Downwind Distance (m)		
	IS36_H2_FIR_V_JF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS36_H2_FIR_V_JF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS37_NAPH_SIRBP_L_JF_0_1	1.00	14.96	12.51	11.45
37	IS37_NAPH_SIRBP_L_JF_0_0.5	0.50	17.68	15.33	14.33
	IS37_NAPH_SIRBP_L_JF_0_0.03	0.03	22.14	20.01	19.16
	IS38_H2_SIRUP_V_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
38	IS38_H2_SIRUP_V_JF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS38_H2_SIRUP_V_JF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS39_LPG_S_V_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
39	IS39_LPG_S_V_JF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS39_LPG_S_V_JF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS40_ISOM_SRDBP_L_JF_0_1	1.00	15.00	12.55	11.45
40	IS40_ISOM_SRDBP_L_JF_0_0.5	0.50	17.76	15.45	14.38
	IS40_ISOM_SRDBP_L_JF_0_0.03	0.03	22.22	20.19	19.22
	IS41_LPG_SRDUP_V_JF_0_1	1.00	12.61	10.41	9.45
41	IS41_LPG_SRDUP_V_JF_0_0.5	0.50	14.76	12.61	11.69
	IS41_LPG_SRDUP_V_JF_0_0.03	0.03	18.19	16.16	15.34
	IS42_ISOM_DRD_L_JF_0_1	1.00	13.75	11.48	10.46
42	IS42_ISOM_DRD_L_JF_0_0.5	0.50	16.32	14.16	13.13
	IS42_ISOM_DRD_L_JF_0_0.03	0.03	20.42	18.51	17.53
	IS43_H2_CS_V_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
43	IS43_H2_CS_V_JF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS43_H2_CS_V_JF_0_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS44_TAME_TST_L_JF_0_1	1.00	10.46	8.66	7.82
44	IS44_TAME_TST_L_JF_0_0.5	0.50	12.55	10.73	9.84
	IS44_TAME_TST_L_JF_0_0.03	0.03	15.74	13.99	13.05

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.	ocenanos	Probability		Downwind Distance (m)	
	IS45_ISOM_IST_L_JF_0_1	1.00	10.46	8.66	7.82
45	IS45_ISOM_IST_L_JF_0_0.5	0.50	12.55	10.73	9.84
	IS45_ISOM_IST_L_JF_0_0.03	0.03	15.74	13.99	13.05
	IS46_NAPH_MST_L_JF_0_1	1.00	14.52	12.15	11.08
46	IS46_NAPH_MST_L_JF_0_0.5	0.50	17.21	14.96	13.91
	IS46_NAPH_MST_L_JF_0_0.03	0.03	21.53	19.56	18.58
	IS47_TAME_PIPESTPU_L_JF_0_1	1.00	13.23	11.04	10.05
47	IS47_TAME_PIPESTPU_L_JF_0_0.5	0.50	15.73	13.63	12.62
	IS47_TAME_PIPESTPU_L_JF_0_0.03	0.03	19.69	17.82	16.84
	IS48_TAME_PIPEPUST_L_JF_0_1	1.00	13.23	11.04	10.05
48	IS48_TAME_PIPEPUST_L_JF_0_0.5	0.50	15.73	13.63	12.62
	IS48_TAME_PIPEPUST_L_JF_0_0.03	0.03	19.69	17.82	16.84
	IS49_ISOM_PIPEPUST_L_JF_0_1	1.00	13.23	11.04	10.05
49	IS49_ISOM_PIPEPUST_L_JF_0_0.5	0.50	15.73	13.63	12.62
	IS49_ISOM_PIPEPUST_L_JF_0_0.03	0.03	19.69	17.82	16.84
	IS50_NAPH_PIPESTPU_L_JF_0_1	1.00	14.44	12.08	11.01
50	IS50_NAPH_PIPESTPU_L_JF_0_0.5	0.50	17.12	14.88	13.83
45 46 47 48 49 50 51 52 53	IS50_NAPH_PIPESTPU_L_JF_0_0.03	0.03	21.41	19.45	18.47
	IS51_NAPH_PIPEPUST_L_JF_0_1	1.00	13.23	11.04	10.05
51	IS51_NAPH_PIPEPUST_L_JF_0_0.5	0.50	15.73	13.63	12.62
	IS51_NAPH_PIPEPUST_L_JF_0_0.03	0.03	19.69	17.82	16.84
	IS52_NAPH_PIPEPUMHST_L_JF_0_1	1.00	14.31	11.96	10.91
52	IS52_NAPH_PIPEPUMHST_L_JF_0_0.5	0.50	16.97	14.74	13.70
	IS52_NAPH_PIPEPUMHST_L_JF_0_0.03	0.03	21.23	19.28	18.30
53	IS53_ETHY_EST_L_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
55	IS53_ETHY_EST_L_JF_0_0.5	0.50	Not reachable	Not reachable	Not reachable

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
itei.	Scenarios	Probability		Downwind Distance (m)	
	IS53_ETHY_EST_L_JF_0_0.03	0.03	3.24	2.81	2.59
	IS54_ETHY_BOGC_V_JF_0_1	1.00	19.89	16.34	14.76
54	IS54_ETHY_BOGC_V_JF_0_0.5	0.50	22.90	19.36	17.82
	IS54_ETHY_BOGC_V_JF_0_0.03	0.03	27.44	24.11	22.69
	IS55_ETHY_HPEBOGLR_V_JF_0_1	1.00	19.89	16.34	14.76
55	IS55_ETHY_HPEBOGLR_V_JF_0_0.5	0.50	22.90	19.36	17.82
	IS55_ETHY_HPEBOGLR_V_JF_0_0.03	0.03	27.44	24.11	22.69
	IS56_ETHY_LPEBOGLR_L_JF_0_1	1.00	16.83	13.80	12.46
56	IS56_ETHY_LPEBOGLR_L_JF_0_0.5	0.50	19.53	16.50	15.14
	IS56_ETHY_LPEBOGLR_L_JF_0_0.03	0.03	23.43	20.61	19.32
	IS57_PROPY_PSV_L_JF_0_1	1.00	4.26	3.35	2.94
57	IS57_PROPY_PSV_L_JF_0_0.5	0.50	5.42	4.57	4.19
	IS57_PROPY_PSV_L_JF_0_0.03	0.03	6.85	5.97	5.60
	IS58_BUTD_BSV_L_JF_0_1	1.00	13.62	11.25	10.20
58	IS58_BUTD_BSV_L_JF_0_0.5	0.50	16.09	13.74	12.62
	IS58_BUTD_BSV_L_JF_0_0.03	0.03	19.79	17.61	16.47
	IS60_ETHY_PIPEU2100U5220_L_JF_0_1	1.00	17.60	14.44	13.03
60	IS60_ETHY_PIPEU2100U5220_L_JF_0_0.5	0.50	20.36	17.21	15.81
	IS60_ETHY_PIPEU2100U5220_L_JF_0_0.03	0.03	Downwind Distance (m)3.242.8119.8916.3422.9019.3627.4424.1119.8916.3422.9019.3627.4424.1116.8313.8019.5316.5023.4320.614.263.355.424.576.855.9713.6211.2516.0913.7419.7917.6117.6014.4420.3617.2124.4121.4817.9614.7420.7617.5524.8821.89Not reachableNot reachableNot reachableNot reachable5.815.5114.4511.87	20.17	
	IS61_ETHY_PIPEU5220PDT2_L_JF_0_1	1.00	17.96	14.74	13.31
61	IS61_ETHY_PIPEU5220PDT2_L_JF_0_0.5	0.50	20.76	17.55	16.13
	IS61_ETHY_PIPEU5220PDT2_L_JF_0_0.03	0.03	24.88	21.89	20.57
	IS62_ETHY_PIPEU5220BLU_V_JF_0_1	1.00	Not reachable	Not reachable	Not reachable
62	IS62_ETHY_PIPEU5220BLU_V_JF_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS62_ETHY_PIPEU5220BLU_V_JF_0_0.03	0.03	5.81	5.51	5.46
63	IS63_PROPY_PIPEU5210U5220_V_JF_0_1	1.00	14.45	11.87	10.74

Ref.	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
	Cochailos	Probability		Downwind Distance (m)	
	IS63_PROPY_PIPEU5210U5220_V_JF_0_0.5	0.50	16.74	14.17	13.07
	IS63_PROPY_PIPEU5210U5220_V_JF_0_0.03	0.03	20.36	17.89	16.87
	IS64_PROPY_PIPEU5220J_V_JF_0_1	1.00	14.29	11.74	10.62
64	IS64_PROPY_PIPEU5220J_V_JF_0_0.5	0.50	16.56	14.03	12.94
	IS64_PROPY_PIPEU5220J_V_JF_0_0.03	0.03	20.14	17.71	16.72
	IS65_PROPY_PIPEMURP_V_JF_0_1	1.00	4.26	3.35	2.94
65	IS65_PROPY_PIPEMURP_V_JF_0_0.5	0.50	5.42	4.57	4.19
	IS65_PROPY_PIPEMURP_V_JF_0_0.03	0.03	6.85	5.97	5.60
	IS66_BUTD_PIPEU5210U5220_L_JF_0_1	1.00	16.59	13.76	12.50
66	IS66_BUTD_PIPEU5210U5220_L_JF_0_0.5	0.50	19.42	16.68	15.44
	IS66_BUTD_PIPEU5210U5220_L_JF_0_0.03	0.03	23.84	21.37	20.22
	IS67_BUTD_PIPEU5220JLI_L_JF_0_1	1.00	16.68	13.83	12.56
67	IS67_BUTD_PIPEU5220JLI_L_JF_0_0.5	0.50	19.51	16.77	15.52
	IS67_BUTD_PIPEU5220JLI_L_JF_0_0.03	0.03	23.96	21.48	20.32
	IS68_BUTD_PIPEU5220JCLI_L_JF_0_1	1.00	16.68	13.83	12.56
68	IS68_BUTD_PIPEU5220JCLI_L_JF_0_0.5	0.50	19.51	16.77	15.52
	IS68_BUTD_PIPEU5220JCLI_L_JF_0_0.03	0.03	23.96	21.48	20.32

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Jet Fire Events Due to Small Releases

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
itel.	Scenarios	Probability		Downwind Distance (m)	
	IS01_NAPH_SSHDSFSD_L_JF_S_1	1.00	28.42	23.93	21.97
1	IS01_NAPH_SSHDSFSD_L_JF_S_0.5	0.50	33.56	29.28	27.45
	IS01_NAPH_SSHDSFSD_L_JF_S_0.03	0.03	42.13	38.32	36.77
	IS02_NAPH_SSHDSR_V_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
2	IS02_NAPH_SSHDSR_V_JF_S_0.5	0.50	12.84	13.26	13.65
	IS02_NAPH_SSHDSR_V_JF_S_0.03	0.03	16.47	16.57	16.64
	IS03_NAPH_SSHDSSDBP_L_JF_S_1	1.00	40.21	33.97	31.16
3	IS03_NAPH_SSHDSSDBP_L_JF_S_0.5	0.50	47.68	41.83	39.11
	IS03_NAPH_SSHDSSDBP_L_JF_S_0.03	0.03	60.06	55.02	52.57
	IS04_H2_SSHDSSDUP_V_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
4	IS04_H2_SSHDSSDUP_V_JF_S_0.5	0.50	9.89	7.78	8.81
	IS04_H2_SSHDSSDUP_V_JF_S_0.03	0.03	12.50	10.49	11.05
	IS05_H2_SSHDSAAKOD_V_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
5	IS05_H2_SSHDSAAKOD_V_JF_S_0.5	0.50	9.89	7.78	8.81
	IS05_H2_SSHDSAAKOD_V_JF_S_0.03	0.03	12.50	10.49	11.05
	IS06_MDEA_SSHDSLASD_L_JF_S_1	1.00	37.07	30.58	27.69
6	IS06_MDEA_SSHDSLASD_L_JF_S_0.5	0.50	42.54	36.05	33.23
	IS06_MDEA_SSHDSLASD_L_JF_S_0.03	0.03	51.02	44.87	42.30
	IS07_MDEA_SSHDSAABP_L_JF_S_1	1.00	40.13	33.12	29.99
7	IS07_MDEA_SSHDSAABP_L_JF_S_0.5	0.50	46.05	39.04	35.99
	IS07_MDEA_SSHDSAABP_L_JF_S_0.03	0.03	55.25	48.60	45.83
	IS08_H2_SSHDSAAUP_V_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
8	IS08_H2_SSHDSAAUP_V_JF_S_0.5	0.50	6.41	7.56	8.60
	IS08_H2_SSHDSAAUP_V_JF_S_0.03	0.03	9.70	10.31	10.85
9	IS09_H2_SSHDSRGCKOD_V_JF_S_1	1.00	Not reachable	Not reachable	Not reachable

Sconarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Scenarios	Probability		Downwind Distance (m)	
IS09_H2_SSHDSRGCKOD_V_JF_S_0.5	0.50	6.35	7.52	8.56
IS09_H2_SSHDSRGCKOD_V_JF_S_0.03	0.03	9.67	10.27	10.82
IS10_NAPH_SSHDSS_V_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
IS10_NAPH_SSHDSS_V_JF_S_0.5	0.50	6.18	6.42	6.42
IS10_NAPH_SSHDSS_V_JF_S_0.03	0.03	8.80	8.96	9.10
IS11_H2_SSHDSSRD_V_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
IS11_H2_SSHDSSRD_V_JF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
IS11_H2_SSHDSSRD_V_JF_S_0.03	0.03	4.70	4.98	5.23
IS12_NAPH_LCNFSD_L_JF_S_1	1.00	30.77	25.85	23.60
IS12_NAPH_LCNFSD_L_JF_S_0.5	0.50	36.69	31.85	29.45
IS12_NAPH_LCNFSD_L_JF_S_0.03	0.03	46.18	41.72	39.24
IS13_MEOH_FR_L_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
IS13_MEOH_FR_L_JF_S_0.5	0.50	55.32	45.54	41.20
IS13_MEOH_FR_L_JF_S_0.03	0.03	63.96	54.20	49.88
IS14_MEOH_SR_L_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
IS14_MEOH_SR_L_JF_S_0.5	0.50	52.62	43.32	39.18
IS14_MEOH_SR_L_JF_S_0.03	0.03	60.89	51.59	47.46
IS15_TAME_TFBP_L_JF_S_1	1.00	27.53	23.20	21.26
IS15_TAME_TFBP_L_JF_S_0.5	0.50	32.55	28.47	26.63
IS15_TAME_TFBP_L_JF_S_0.03	0.03	40.85	37.31	35.69
IS16_MEOH_TFUP_V_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
IS16_MEOH_TFUP_V_JF_S_0.5	0.50	35.12	30.02	27.79
IS16_MEOH_TFUP_V_JF_S_0.03	0.03	42.59	36.61	33.93
IS17_MEOH_TFRDBP_L_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
IS17_MEOH_TFRDBP_L_JF_S_0.5	0.50	Not reachable	24.30	23.03
IS17_MEOH_TFRDBP_L_JF_S_0.03	0.03	34.53	30.06	28.07
	Scenarios IS09_H2_SSHDSRGCKOD_V_JF_S_0.5 IS09_H2_SSHDSRGCKOD_V_JF_S_0.03 IS10_NAPH_SSHDSS_V_JF_S_0.5 IS10_NAPH_SSHDSS_V_JF_S_0.03 IS10_NAPH_SSHDSS_V_JF_S_0.03 IS11_H2_SSHDSSRD_V_JF_S_0.03 IS11_H2_SSHDSSRD_V_JF_S_0.03 IS11_H2_SSHDSSRD_V_JF_S_0.03 IS12_NAPH_LCNFSD_L_JF_S_0.03 IS12_NAPH_LCNFSD_L_JF_S_0.03 IS13_MEOH_FR_L_JF_S_0.5 IS13_MEOH_FR_L_JF_S_0.5 IS13_MEOH_FR_L_JF_S_0.5 IS14_MEOH_SR_L_JF_S_0.5 IS14_MEOH_SR_L_JF_S_0.5 IS14_MEOH_SR_L_JF_S_0.5 IS14_MEOH_SR_L_JF_S_0.5 IS15_TAME_TFBP_L_JF_S_0.5 IS16_MEOH_TFUP_V_JF_S_0.5 IS16_MEOH_TFUP_V_JF_S_0.5 IS16_MEOH_TFUP_V_JF_S_0.5 IS16_MEOH_TFUP_V_JF_S_0.5 IS16_MEOH_TFUP_V_JF_S_0.5 IS16_MEOH_TFUP_V_JF_S_0.5 IS16_MEOH_TFUP_V_JF_S_0.5 IS16_MEOH_TFUP_V_JF_S_0.5 IS16_MEOH_TFUP_V_JF_S_0.5 IS16_MEOH_TFUP_V_JF_S_0.03 IS17_MEOH_TFRDBP_L_JF_S_0.03 IS17_MEOH_TFRDBP_L_JF_S_0.5 IS16_MEOH_TFRDBP_L_JF_S_0.5 IS17_MEOH_TFRDBP_L_JF_S_0.0	Scenarios Fatality Probability IS09_H2_SSHDSRGCKOD_V_JF_S_0.5 0.50 IS09_H2_SSHDSRGCKOD_V_JF_S_0.03 0.03 IS10_NAPH_SSHDSS_V_JF_S_0.5 0.50 IS10_NAPH_SSHDSS_V_JF_S_0.03 0.03 IS10_NAPH_SSHDSS_V_JF_S_0.03 0.03 IS11_H2_SSHDSSRD_V_JF_S_0.03 0.03 IS11_H2_SSHDSSRD_V_JF_S_0.03 0.03 IS11_H2_SSHDSSRD_V_JF_S_0.03 0.03 IS12_NAPH_LCNFSD_L_JF_S_0.03 0.03 IS12_NAPH_LCNFSD_L_JF_S_0.03 0.03 IS12_NAPH_LCNFSD_L_JF_S_0.03 0.03 IS13_MEOH_FR_L_JF_S_1 1.00 IS13_MEOH_FR_L_JF_S_1 1.00 IS13_MEOH_FR_L_JF_S_0.03 0.03 IS14_MEOH_SR_L_JF_S_1 1.00 IS14_MEOH_SR_L_JF_S_0.03 0.03 IS15_TAME_TFBP_L_JF_S_0.5 0.50 IS15_TAME_TFBP_L_JF_S_0.5 0.50 IS15_TAME_TFBP_L_JF_S_0.5 0.50 IS16_MEOH_TFUP_V_JF_S_0.5 0.50 IS16_MEOH_TFUP_V_JF_S_0.03 0.03 IS16_MEOH_TFUP_V_JF_S_0.03 0.03 IS16_MEOH_TFRDBP_L_JF_S_0.5 0.50	ScenariosFatality ProbabilityWeather Condition 1FIS09_H2_SSHDSRGCKOD_V_JF_S_0.050.0506.35IS09_H2_SSHDSRGCKOD_V_JF_S_0.030.039.67IS10_NAPH_SSHDSS_V_JF_S_11.00Not reachableIS10_NAPH_SSHDSS_V_JF_S_0.050.0506.18IS10_NAPH_SSHDSS_V_JF_S_0.030.038.80IS11_H2_SSHDSRD_V_JF_S_11.00Not reachableIS11_H2_SSHDSRD_V_JF_S_0.030.034.70IS12_NAPH_CNFSD_L_JF_S_11.0030.77IS12_NAPH_CNFSD_L_JF_S_10.0346.69IS13_NEOH_FR_L_JF_S_0.50.0346.618IS13_MEOH_FR_L_JF_S_0.50.0366.69IS14_MEOH_SR_L_JF_S_11.00Not reachableIS14_MEOH_FR_L_JF_S_0.50.0365.32IS14_MEOH_SR_L_JF_S_0.50.0360.89IS14_MEOH_SR_L_JF_S_0.50.0360.89IS15_TAME_TFBP_L_JF_S_11.00Not reachableIS15_TAME_TFBP_L_JF_S_0.50.0340.55IS15_TAME_TFBP_L_JF_S_0.50.0340.85IS15_TAME_TFBP_L_JF_S_0.50.0334.51IS16_MEOH_TFUP_V_JF_S_11.00Not reachableIS16_MEOH_TFUP_V_JF_S_0.030.0342.59IS17_MEOH_TFRDBP_L_JF_S_0.50.050Not reachableIS17_MEOH_TFRDBP_L_JF_S_0.50.050Not reachableIS16_MEOH_TFUP_V_JF_S_0.50.050Not reachableIS16_MEOH_TFUP_V_JF_S_0.50.050Not reachableIS15_TAME_TFBDB_L_JF_S_0.50.050Not reachableIS16_MEOH_TFUP_V_JF_S_0.5 <td< td=""><td>Patality ProbabilityWeather Condition 1FWeather Condition 3CIS09_H2_SSHDSRGCKOD_V_IF_S_0.030.5006.6357.52IS09_H2_SSHDSRGCKOD_V_IF_S_0.030.0309.6710.27IS10_NAPH_SSHDSS_V_IF_S_11.00Not reachableNot reachableIS10_NAPH_SSHDSS_V_IF_S_0.030.0306.6.186.42IS11_H2_SSHDSSRD_V_JF_S_0.030.0308.808.96IS11_H2_SSHDSSRD_V_JF_S_0.030.030Not reachableNot reachableIS11_H2_SSHDSSRD_V_JF_S_0.030.0304.704.98IS11_H2_SSHDSSRD_V_JF_S_0.030.0304.704.98IS11_H2_SSHDSSRD_V_JF_S_0.030.0304.704.98IS12_NAPH_ICNFSD_L_JF_S_0.030.03046.184.172IS12_NAPH_ICNFSD_L_JF_S_0.030.03046.184.172IS13_MEOH_FR_L_JF_S_11.000Not reachable1.12IS13_MEOH_FR_L_JF_S_0.030.03046.184.12IS13_MEOH_FR_L_JF_S_0.030.03063.966.42.0IS14_MEOH_SR_L_JF_S_0.030.03060.896.51.59IS14_MEOH_SR_L_JF_S_0.030.03060.893.31.85IS14_MEOH_SR_L_JF_S_0.030.03060.893.31.85IS15_TAME_TFBP_L_JF_S_0.50.5003.60.893.31.85IS15_TAME_TFBP_L_JF_S_0.50.5003.60.893.31.85IS15_TAME_TFBP_L_JF_S_0.50.5003.60.893.31.85IS15_TAME_TFBP_L_JF_S_0.50.5003.60.813.31.85IS15_TAME_TFBP_L_JF_S_0.50.5013.60.813.3.</td></td<>	Patality ProbabilityWeather Condition 1FWeather Condition 3CIS09_H2_SSHDSRGCKOD_V_IF_S_0.030.5006.6357.52IS09_H2_SSHDSRGCKOD_V_IF_S_0.030.0309.6710.27IS10_NAPH_SSHDSS_V_IF_S_11.00Not reachableNot reachableIS10_NAPH_SSHDSS_V_IF_S_0.030.0306.6.186.42IS11_H2_SSHDSSRD_V_JF_S_0.030.0308.808.96IS11_H2_SSHDSSRD_V_JF_S_0.030.030Not reachableNot reachableIS11_H2_SSHDSSRD_V_JF_S_0.030.0304.704.98IS11_H2_SSHDSSRD_V_JF_S_0.030.0304.704.98IS11_H2_SSHDSSRD_V_JF_S_0.030.0304.704.98IS12_NAPH_ICNFSD_L_JF_S_0.030.03046.184.172IS12_NAPH_ICNFSD_L_JF_S_0.030.03046.184.172IS13_MEOH_FR_L_JF_S_11.000Not reachable1.12IS13_MEOH_FR_L_JF_S_0.030.03046.184.12IS13_MEOH_FR_L_JF_S_0.030.03063.966.42.0IS14_MEOH_SR_L_JF_S_0.030.03060.896.51.59IS14_MEOH_SR_L_JF_S_0.030.03060.893.31.85IS14_MEOH_SR_L_JF_S_0.030.03060.893.31.85IS15_TAME_TFBP_L_JF_S_0.50.5003.60.893.31.85IS15_TAME_TFBP_L_JF_S_0.50.5003.60.893.31.85IS15_TAME_TFBP_L_JF_S_0.50.5003.60.893.31.85IS15_TAME_TFBP_L_JF_S_0.50.5003.60.813.31.85IS15_TAME_TFBP_L_JF_S_0.50.5013.60.813.3.

Rof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.		Probability		Downwind Distance (m)	
	IS18_NAPH_TFRDUP_V_JF_S_1	1.00	25.78	22.72	21.03
18	IS18_NAPH_TFRDUP_V_JF_S_0.5	0.50	30.83	27.94	26.13
	IS18_NAPH_TFRDUP_V_JF_S_0.03	0.03	38.75	36.45	34.62
	IS19_MEOH_TR_L_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
19	IS19_MEOH_TR_L_JF_S_0.5	0.50	55.14	45.40	41.06
	IS19_MEOH_TR_L_JF_S_0.03	0.03	63.76	54.02	49.71
	IS20_NAPH_RWCBP_L_JF_S_1	1.00	37.73	31.84	29.17
20	IS20_NAPH_RWCBP_L_JF_S_0.5	0.50	44.79	39.24	36.59
	IS20_NAPH_RWCBP_L_JF_S_0.03	0.03	56.40	51.59	49.11
	IS21_MEOH_RWCUP_V_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
21	IS21_MEOH_RWCUP_V_JF_S_0.5	0.50	54.12	44.66	40.51
	IS21_MEOH_RWCUP_V_JF_S_0.03	0.03	63.64	53.89	49.42
	IS22_MEOH_MCFD_L_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
22	IS22_MEOH_MCFD_L_JF_S_0.5	0.50	51.00	42.18	38.33
	IS22_MEOH_MCFD_L_JF_S_0.03	0.03	60.37	51.07	46.78
	IS23_MEOH_RC_L_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
23	IS23_MEOH_RC_L_JF_S_0.5	0.50	55.80	45.99	41.71
20 21 22 23 24	IS23_MEOH_RC_L_JF_S_0.03	0.03	65.42	55.43	50.86
	IS24_MEOH_MC_V_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
24	IS24_MEOH_MC_V_JF_S_0.5	0.50	7.14	5.50	4.78
	IS24_MEOH_MC_V_JF_S_0.03	0.03	8.29	6.87	6.25
	IS25_MEOH_MCRD_L_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
25	IS25_MEOH_MCRD_L_JF_S_0.5	0.50	33.13	28.03	25.89
	IS25_MEOH_MCRD_L_JF_S_0.03	0.03	39.67	34.10	31.62
26	IS26_MEOH_MGP_L_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
20	IS26_MEOH_MGP_L_JF_S_0.5	0.50	61.93	50.99	46.17

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.		Probability		Downwind Distance (m)	
	IS26_MEOH_MGP_L_JF_S_0.03	0.03	71.97	61.06	56.15
	IS27_MEOH_MMUSD_L_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
27	IS27_MEOH_MMUSD_L_JF_S_0.5	0.50	Not reachable	25.20	23.86
	IS27_MEOH_MMUSD_L_JF_S_0.03	0.03	35.76	31.13	29.08
	IS28_MEOH_MDD_V_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
28	IS28_MEOH_MDD_V_JF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS28_MEOH_MDD_V_JF_S_0.03	0.03	Not reachable	Not reachable	Not reachable
	IS30_NAPH_SGB_L_JF_S_1	1.00	33.95	28.65	26.29
30	IS30_NAPH_SGB_L_JF_S_0.5	0.50	40.18	35.19	32.95
	IS30_NAPH_SGB_L_JF_S_0.03	0.03	50.51	46.19	44.24
	IS31_NAPH_FSD_L_JF_S_1	1.00	33.53	28.23	25.80
31	IS31_NAPH_FSD_L_JF_S_0.5	0.50	39.89	34.80	32.30
	IS31_NAPH_FSD_L_JF_S_0.03	0.03	50.23	45.70	43.20
	IS32_NAPH_FD_L_JF_S_1	1.00	46.61	39.42	36.24
32	IS32_NAPH_FD_L_JF_S_0.5	0.50	55.21	48.43	45.47
	IS32_NAPH_FD_L_JF_S_0.03	0.03	69.60	63.68	61.18
	IS33_H2_H2PR_V_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
33	IS33_H2_H2PR_V_JF_S_0.5	0.50	10.51	11.62	12.74
	IS33_H2_H2PR_V_JF_S_0.03	0.03	14.28	15.01	15.65
	IS34_H2_HD_V_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
34	IS34_H2_HD_V_JF_S_0.5	0.50	11.80	12.96	14.53
	IS34_H2_HD_V_JF_S_0.03	0.03	16.05	16.81	17.47
	IS35_ISOM_CGB_L_JF_S_1	1.00	34.56	29.11	26.74
35	IS35_ISOM_CGB_L_JF_S_0.5	0.50	40.82	35.59	33.39
	IS35_ISOM_CGB_L_JF_S_0.03	0.03	51.30	46.60	44.75
36	IS36_H2_FIR_V_JF_S_1	1.00	Not reachable	Not reachable	Not reachable

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
iter.		Probability		Downwind Distance (m)	
	IS36_H2_FIR_V_JF_S_0.5	0.50	10.17	11.27	12.36
	IS36_H2_FIR_V_JF_S_0.03	0.03	13.83	14.54	15.18
	IS37_NAPH_SIRBP_L_JF_S_1	1.00	40.53	34.19	31.42
37	IS37_NAPH_SIRBP_L_JF_S_0.5	0.50	47.91	41.84	39.28
	IS37_NAPH_SIRBP_L_JF_S_0.03	0.03	60.30	54.86	52.71
	IS38_H2_SIRUP_V_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
38	IS38_H2_SIRUP_V_JF_S_0.5	0.50	9.78	10.87	11.96
	IS38_H2_SIRUP_V_JF_S_0.03	0.03	13.32	14.02	14.66
	IS39_LPG_S_V_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
39	IS39_LPG_S_V_JF_S_0.5	0.50	10.44	10.65	10.86
	IS39_LPG_S_V_JF_S_0.03	0.03	13.54	13.56	13.56
	IS40_ISOM_SRDBP_L_JF_S_1	1.00	40.12	33.90	31.09
40	IS40_ISOM_SRDBP_L_JF_S_0.5	0.50	47.58	41.74	39.02
	IS40_ISOM_SRDBP_L_JF_S_0.03	0.03	59.93	54.90	52.45
	IS41_LPG_SRDUP_V_JF_S_1	1.00	34.61	28.87	26.35
41	IS41_LPG_SRDUP_V_JF_S_0.5	0.50	40.32	34.69	32.30
	IS41_LPG_SRDUP_V_JF_S_0.03	0.03	49.75	44.49	42.39
	IS42_ISOM_DRD_L_JF_S_1	1.00	36.78	31.03	28.40
42	IS42_ISOM_DRD_L_JF_S_0.5	0.50	43.68	38.24	35.62
	IS42_ISOM_DRD_L_JF_S_0.03	0.03	55.00	50.26	47.78
	IS43_H2_CS_V_JF_S_1	1.00	Not reachable	Not reachable	Not reachable
43	IS43_H2_CS_V_JF_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS43_H2_CS_V_JF_S_0.03	0.03	6.41	6.97	7.39
	IS44_TAME_TST_L_JF_S_1	1.00	25.89	22.93	21.52
44	IS44_TAME_TST_L_JF_S_0.5	0.50	30.95	28.21	26.76
	IS44_TAME_TST_L_JF_S_0.03	0.03	38.90	36.82	35.50

Ref.	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
		Probability		Downwind Distance (m)	
	IS45_ISOM_IST_L_JF_S_1	1.00	25.89	22.93	21.52
45	IS45_ISOM_IST_L_JF_S_0.5	0.50	30.95	28.21	26.76
	IS45_ISOM_IST_L_JF_S_0.03	0.03	38.90	36.82	35.50
	IS46_NAPH_MST_L_JF_S_1	1.00	38.84	32.80	30.06
46	IS46_NAPH_MST_L_JF_S_0.5	0.50	46.09	40.40	37.73
	IS46_NAPH_MST_L_JF_S_0.03	0.03	58.05	53.14	50.67
	IS47_TAME_PIPESTPU_L_JF_S_1	1.00	35.42	29.86	27.31
47	IS47_TAME_PIPESTPU_L_JF_S_0.5	0.50	42.10	36.80	34.23
	IS47_TAME_PIPESTPU_L_JF_S_0.03	0.03	53.01	48.36	45.87
	IS48_TAME_PIPEPUST_L_JF_S_1	1.00	35.42	29.86	27.31
48	IS48_TAME_PIPEPUST_L_JF_S_0.5	0.50	42.10	36.80	34.23
	IS48_TAME_PIPEPUST_L_JF_S_0.03	0.03	53.01	48.36	45.87
	IS49_ISOM_PIPEPUST_L_JF_S_1	1.00	35.42	29.86	27.31
49	IS49_ISOM_PIPEPUST_L_JF_S_0.5	0.50	42.10	36.80	34.23
	IS49_ISOM_PIPEPUST_L_JF_S_0.03	0.03	53.01	48.36	45.87
	IS50_NAPH_PIPESTPU_L_JF_S_1	1.00	38.62	32.61	29.88
50	IS50_NAPH_PIPESTPU_L_JF_S_0.5	0.50	45.83	40.18	37.50
	IS50_NAPH_PIPESTPU_L_JF_S_0.03	0.03	57.72	52.83	50.36
	IS51_NAPH_PIPEPUST_L_JF_S_1	1.00	35.42	29.86	27.31
51	IS51_NAPH_PIPEPUST_L_JF_S_0.5	0.50	42.10	36.80	34.23
	IS51_NAPH_PIPEPUST_L_JF_S_0.03	0.03	53.01	48.36	45.87
	IS52_NAPH_PIPEPUMHST_L_JF_S_1	1.00	38.28	32.32	29.61
52	IS52_NAPH_PIPEPUMHST_L_JF_S_0.5	0.50	45.43	39.81	37.15
	IS52_NAPH_PIPEPUMHST_L_JF_S_0.03	0.03	57.21	52.35	49.88
53	IS53_ETHY_EST_L_JF_S_1	1.00	Not reachable	Not reachable	5.35
55	IS53_ETHY_EST_L_JF_S_0.5	0.50	8.90	7.20	6.34

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Non.		Probability	Downwind Distance (m)		
	IS53_ETHY_EST_L_JF_S_0.03	0.03	10.48	8.89	8.07
	IS54_ETHY_BOGC_V_JF_S_1	1.00	53.02	43.86	39.78
54	IS54_ETHY_BOGC_V_JF_S_0.5	0.50	61.05	52.00	48.04
	IS54_ETHY_BOGC_V_JF_S_0.03	0.03	73.57	65.13	61.54
	IS55_ETHY_HPEBOGLR_V_JF_S_1	1.00	53.02	43.86	39.78
55	IS55_ETHY_HPEBOGLR_V_JF_S_0.5	0.50	61.05	52.00	48.04
	IS55_ETHY_HPEBOGLR_V_JF_S_0.03	0.03	73.57	65.13	61.54
	IS56_ETHY_LPEBOGLR_L_JF_S_1	1.00	44.83	37.04	33.59
56	IS56_ETHY_LPEBOGLR_L_JF_S_0.5	0.50	51.91	44.22	40.75
	IS56_ETHY_LPEBOGLR_L_JF_S_0.03	0.03	62.59	55.51	52.25
	IS57_PROPY_PSV_L_JF_S_1	1.00	13.98	11.47	10.36
57	IS57_PROPY_PSV_L_JF_S_0.5	0.50	16.20	13.68	12.60
	IS57_PROPY_PSV_L_JF_S_0.03	0.03	19.71	17.26	16.25
	IS58_BUTD_BSV_L_JF_S_1	1.00	36.31	30.29	27.59
58	IS58_BUTD_BSV_L_JF_S_0.5	0.50	42.81	36.88	34.03
	IS58_BUTD_BSV_L_JF_S_0.03	0.03	52.94	47.50	44.61
	IS60_ETHY_PIPEU2100U5220_L_JF_S_1	1.00	46.89	38.75	35.14
60	IS60_ETHY_PIPEU2100U5220_L_JF_S_0.5	0.50	54.17	46.15	42.58
	IS60_ETHY_PIPEU2100U5220_L_JF_S_0.03	0.03	65.30	57.90	54.59
	IS61_ETHY_PIPEU5220PDT2_L_JF_S_1	1.00	47.85	39.57	35.88
61	IS61_ETHY_PIPEU5220PDT2_L_JF_S_0.5	0.50	55.25	47.07	43.44
	IS61_ETHY_PIPEU5220PDT2_L_JF_S_0.03	0.03	66.59	59.04	55.69
	IS62_ETHY_PIPEU5220BLU_V_JF_S_1	1.00	12.43	12.92	13.38
62	IS62_ETHY_PIPEU5220BLU_V_JF_S_0.5	0.50	16.28	16.56	16.82
	IS62_ETHY_PIPEU5220BLU_V_JF_S_0.03	0.03	20.29	20.28	20.25
63	IS63_PROPY_PIPEU5210U5220_V_JF_S_1	1.00	39.60	32.84	29.84

Ref.	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
	ocenanos	Probability		Downwind Distance (m)	
	IS63_PROPY_PIPEU5210U5220_V_JF_S_0.5	0.50	45.74	38.98	36.08
	IS63_PROPY_PIPEU5210U5220_V_JF_S_0.03	0.03	55.75	49.25	46.61
	IS64_PROPY_PIPEU5220J_V_JF_S_1	1.00	39.09	32.43	29.48
64	IS64_PROPY_PIPEU5220J_V_JF_S_0.5	0.50	45.17	38.53	35.69
	IS64_PROPY_PIPEU5220J_V_JF_S_0.03	0.03	55.07	48.72	46.14
	IS65_PROPY_PIPEMURP_V_JF_S_1	1.00	13.98	11.47	10.36
65	IS65_PROPY_PIPEMURP_V_JF_S_0.5	0.50	16.20	13.68	12.60
	IS65_PROPY_PIPEMURP_V_JF_S_0.03	0.03	19.71	17.26	16.25
	IS66_BUTD_PIPEU5210U5220_L_JF_S_1	1.00	44.20	36.97	33.73
66	IS66_BUTD_PIPEU5210U5220_L_JF_S_0.5	0.50	51.77	44.85	41.68
	IS66_BUTD_PIPEU5210U5220_L_JF_S_0.03	0.03	63.98	57.83	54.90
	IS67_BUTD_PIPEU5220JLI_L_JF_S_1	1.00	44.43	37.16	33.91
67	IS67_BUTD_PIPEU5220JLI_L_JF_S_0.5	0.50	52.03	45.08	41.90
	IS67_BUTD_PIPEU5220JLI_L_JF_S_0.03	0.03	64.31	58.12	55.20
	IS68_BUTD_PIPEU5220JCLI_L_JF_S_1	1.00	44.43	37.16	33.91
68	IS68_BUTD_PIPEU5220JCLI_L_JF_S_0.5	0.50	52.03	45.08	41.90
	IS68_BUTD_PIPEU5220JCLI_L_JF_S_0.03	0.03	64.31	58.12	55.20

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Jet Fire Events Due to Medium Releases

Ref.	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
		Probability	Downwind Distance (m)		
1	IS01_NAPH_SSHDSFSD_L_JF_M_1	1.00	82.94	70.34	64.47
	IS01_NAPH_SSHDSFSD_L_JF_M_0.5	0.50	98.56	86.64	80.99
	IS01_NAPH_SSHDSFSD_L_JF_M_0.03	0.03	124.84	114.35	109.18
2	IS02_NAPH_SSHDSR_V_JF_M_1	1.00	33.62	35.58	12.95
	IS02_NAPH_SSHDSR_V_JF_M_0.5	0.50	43.32	44.89	14.62
	IS02_NAPH_SSHDSR_V_JF_M_0.03	0.03	56.84	57.23	30.77
3	IS03_NAPH_SSHDSSDBP_L_JF_M_1	1.00	115.71	98.52	90.70
	IS03_NAPH_SSHDSSDBP_L_JF_M_0.5	0.50	138.29	122.31	114.83
	IS03_NAPH_SSHDSSDBP_L_JF_M_0.03	0.03	176.01	162.44	155.73
4	IS04_H2_SSHDSSDUP_V_JF_M_1	1.00	16.53	20.95	24.30
	IS04_H2_SSHDSSDUP_V_JF_M_0.5	0.50	24.10	26.97	29.01
	IS04_H2_SSHDSSDUP_V_JF_M_0.03	0.03	33.87	34.54	34.81
	IS05_H2_SSHDSAAKOD_V_JF_M_1	1.00	16.53	20.95	24.30
5	IS05_H2_SSHDSAAKOD_V_JF_M_0.5	0.50	24.10	26.97	29.01
	IS05_H2_SSHDSAAKOD_V_JF_M_0.03	0.03	33.87	34.54	34.81
6	IS06_MDEA_SSHDSLASD_L_JF_M_1	1.00	107.57	89.18	81.02
	IS06_MDEA_SSHDSLASD_L_JF_M_0.5	0.50	123.82	105.62	97.75
	IS06_MDEA_SSHDSLASD_L_JF_M_0.03	0.03	149.67	132.57	125.46
7	IS07_MDEA_SSHDSAABP_L_JF_M_1	1.00	116.35	96.49	87.67
	IS07_MDEA_SSHDSAABP_L_JF_M_0.5	0.50	133.94	114.28	105.79
	IS07_MDEA_SSHDSAABP_L_JF_M_0.03	0.03	161.99	143.50	135.82
8	IS08_H2_SSHDSAAUP_V_JF_M_1	1.00	16.19	20.64	24.00
	IS08_H2_SSHDSAAUP_V_JF_M_0.5	0.50	23.74	26.59	28.63
	IS08_H2_SSHDSAAUP_V_JF_M_0.03	0.03	33.36	34.04	34.33
9	IS09_H2_SSHDSRGCKOD_V_JF_M_1	1.00	16.13	20.58	23.94

Ref.	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
		Probability	Downwind Distance (m)		
	IS09_H2_SSHDSRGCKOD_V_JF_M_0.5	0.50	23.67	26.52	28.56
	IS09_H2_SSHDSRGCKOD_V_JF_M_0.03	0.03	33.26	33.94	34.24
10	IS10_NAPH_SSHDSS_V_JF_M_1	1.00	18.42	20.54	22.54
	IS10_NAPH_SSHDSS_V_JF_M_0.5	0.50	24.45	25.91	27.25
	IS10_NAPH_SSHDSS_V_JF_M_0.03	0.03	32.09	32.62	33.06
11	IS11_H2_SSHDSSRD_V_JF_M_1	1.00	Not reachable	Not reachable	Not reachable
	IS11_H2_SSHDSSRD_V_JF_M_0.5	0.50	14.02	15.55	17.43
	IS11_H2_SSHDSSRD_V_JF_M_0.03	0.03	19.25	20.04	20.71
12	IS12_NAPH_LCNFSD_L_JF_M_1	1.00	79.70	71.26	67.42
	IS12_NAPH_LCNFSD_L_JF_M_0.5	0.50	95.55	88.42	84.83
	IS12_NAPH_LCNFSD_L_JF_M_0.03	0.03	121.46	116.98	114.18
	IS13_MEOH_FR_L_JF_M_1	1.00	Not reachable	109.03	98.87
13	IS13_MEOH_FR_L_JF_M_0.5	0.50	158.71	131.31	119.11
	IS13_MEOH_FR_L_JF_M_0.03	0.03	183.80	156.85	144.91
	IS14_MEOH_SR_L_JF_M_1	1.00	Not reachable	103.32	93.61
14	IS14_MEOH_SR_L_JF_M_0.5	0.50	151.03	124.93	113.31
	IS14_MEOH_SR_L_JF_M_0.03	0.03	174.97	149.30	137.89
15	IS15_TAME_TFBP_L_JF_M_1	1.00	79.83	67.79	62.40
	IS15_TAME_TFBP_L_JF_M_0.5	0.50	95.02	83.79	78.71
	IS15_TAME_TFBP_L_JF_M_0.03	0.03	120.45	110.84	106.43
16	IS16_MEOH_TFUP_V_JF_M_1	1.00	Not reachable	Not reachable	Not reachable
	IS16_MEOH_TFUP_V_JF_M_0.5	0.50	95.69	80.39	73.95
	IS16_MEOH_TFUP_V_JF_M_0.03	0.03	113.13	97.46	90.32
17	IS17_MEOH_TFRDBP_L_JF_M_1	1.00	Not reachable	Not reachable	Not reachable
	IS17_MEOH_TFRDBP_L_JF_M_0.5	0.50	70.22	61.08	57.13
	IS17_MEOH_TFRDBP_L_JF_M_0.03	0.03	85.42	74.46	69.53

Ref.	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
		Probability	Downwind Distance (m)		
18	IS18_NAPH_TFRDUP_V_JF_M_1	1.00	61.27	53.91	50.69
	IS18_NAPH_TFRDUP_V_JF_M_0.5	0.50	73.51	66.63	63.38
	IS18_NAPH_TFRDUP_V_JF_M_0.03	0.03	93.22	87.67	84.73
19	IS19_MEOH_TR_L_JF_M_1	1.00	Not reachable	108.64	98.52
	IS19_MEOH_TR_L_JF_M_0.5	0.50	158.19	130.88	118.72
	IS19_MEOH_TR_L_JF_M_0.03	0.03	183.21	156.35	144.44
20	IS20_NAPH_RWCBP_L_JF_M_1	1.00	108.43	92.22	84.78
	IS20_NAPH_RWCBP_L_JF_M_0.5	0.50	129.69	114.57	107.27
	IS20_NAPH_RWCBP_L_JF_M_0.03	0.03	165.08	152.15	145.33
21	IS21_MEOH_RWCUP_V_JF_M_1	1.00	Not reachable	Not reachable	93.32
	IS21_MEOH_RWCUP_V_JF_M_0.5	0.50	140.03	126.13	116.53
	IS21_MEOH_RWCUP_V_JF_M_0.03	0.03	163.81	152.29	142.56
22	IS22_MEOH_MCFD_L_JF_M_1	1.00	Not reachable	Not reachable	82.00
	IS22_MEOH_MCFD_L_JF_M_0.5	0.50	123.28	109.42	101.89
	IS22_MEOH_MCFD_L_JF_M_0.03	0.03	144.86	132.37	124.60
	IS23_MEOH_RC_L_JF_M_1	1.00	Not reachable	Not reachable	96.42
23	IS23_MEOH_RC_L_JF_M_0.5	0.50	148.73	132.20	120.02
	IS23_MEOH_RC_L_JF_M_0.03	0.03	173.80	159.45	146.80
24	IS24_MEOH_MC_V_JF_M_1	1.00	Not reachable	Not reachable	15.15
	IS24_MEOH_MC_V_JF_M_0.5	0.50	23.14	18.95	17.05
	IS24_MEOH_MC_V_JF_M_0.03	0.03	26.49	22.13	20.23
25	IS25_MEOH_MCRD_L_JF_M_1	1.00	Not reachable	Not reachable	Not reachable
	IS25_MEOH_MCRD_L_JF_M_0.5	0.50	90.39	75.78	69.62
	IS25_MEOH_MCRD_L_JF_M_0.03	0.03	106.50	91.72	85.04
26	IS26_MEOH_MGP_L_JF_M_1	1.00	Not reachable	119.96	108.79
	IS26_MEOH_MGP_L_JF_M_0.5	0.50	177.04	146.53	132.97

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D	
Nei.	ocenanos	Probability	Downwind Distance (m)			
	IS26_MEOH_MGP_L_JF_M_0.03	0.03	205.87	175.97	162.41	
	IS27_MEOH_MMUSD_L_JF_M_1	1.00	Not reachable	Not reachable	Not reachable	
27	IS27_MEOH_MMUSD_L_JF_M_0.5	0.50	73.42	63.69	59.50	
	IS27_MEOH_MMUSD_L_JF_M_0.03	0.03	89.15	77.61	72.41	
	IS28_MEOH_MDD_V_JF_M_1	1.00	Not reachable	Not reachable	Not reachable	
28	IS28_MEOH_MDD_V_JF_M_0.5	0.50	Not reachable	Not reachable	Not reachable	
	IS28_MEOH_MDD_V_JF_M_0.03	0.03	7.05	8.15	9.24	
	IS30_NAPH_SGB_L_JF_M_1	1.00	98.16	83.48	76.90	
30	IS30_NAPH_SGB_L_JF_M_0.5	0.50	117.03	103.34	97.17	
0	IS30_NAPH_SGB_L_JF_M_0.03	0.03	148.62	136.93	131.60	
	IS31_NAPH_FSD_L_JF_M_1	1.00	96.23	81.63	74.84	
31	IS31_NAPH_FSD_L_JF_M_0.5	0.50	115.29	101.42	94.47	
	IS31_NAPH_FSD_L_JF_M_0.03	0.03	146.76	134.54	127.62	
	IS32_NAPH_FD_L_JF_M_1	1.00	134.65	114.67	103.53	
32	IS32_NAPH_FD_L_JF_M_0.5	0.50	160.73	142.05	130.21	
Ref. 27 27 28 30 31 32 33 33 33 33 33 33 33 33 33 33 34 35 36	IS32_NAPH_FD_L_JF_M_0.03	0.03	204.56	188.47	175.48	
	IS33_H2_H2PR_V_JF_M_1	1.00	23.48	27.89	31.36	
33	IS33_H2_H2PR_V_JF_M_0.5	0.50	32.80	35.90	38.07	
Ref. 27 28 30 31 32 33 34 35 36	IS33_H2_H2PR_V_JF_M_0.03	0.03	46.22	46.64	46.22	
	IS34_H2_HD_V_JF_M_1	1.00	26.04	30.60	34.21	
34	IS34_H2_HD_V_JF_M_0.5	0.50	36.20	39.51	41.70	
	IS34_H2_HD_V_JF_M_0.03	0.03	51.28	51.60	50.84	
	IS35_ISOM_CGB_L_JF_M_1	1.00	100.82	85.49	76.67	
35	IS35_ISOM_CGB_L_JF_M_0.5	0.50	119.88	105.29	95.71	
	IS35_ISOM_CGB_L_JF_M_0.03	0.03	152.01	139.00	128.13	
36	IS36_H2_FIR_V_JF_M_1	1.00	22.82	27.20	30.64	

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.	ocentarios	Probability	Downwind Dista	Downwind Distance (m)	
	IS36_H2_FIR_V_JF_M_0.5	0.50	31.87	34.98	37.14
	IS36_H2_FIR_V_JF_M_0.03	0.03	44.94	45.38	45.05
	IS37_NAPH_SIRBP_L_JF_M_1	1.00	117.92	99.46	89.19
37	IS37_NAPH_SIRBP_L_JF_M_0.5	0.50	140.39	122.45	111.29
	IS37_NAPH_SIRBP_L_JF_M_0.03	0.03	178.26	161.53	148.88
	IS38_H2_SIRUP_V_JF_M_1	1.00	22.06	26.41	29.84
38	IS38_H2_SIRUP_V_JF_M_0.5	0.50	30.81	33.94	36.10
Ref. 37 37 38 39 40 41 42 43 44	IS38_H2_SIRUP_V_JF_M_0.03	0.03	43.50	43.97	43.72
	IS39_LPG_S_V_JF_M_1	1.00	28.80	30.38	31.95
39	IS39_LPG_S_V_JF_M_0.5	0.50	36.80	38.02	39.18
	IS39_LPG_S_V_JF_M_0.03	0.03	47.70	48.02	48.27
	IS40_ISOM_SRDBP_L_JF_M_1	1.00	115.45	98.29	90.49
40	IS40_ISOM_SRDBP_L_JF_M_0.5	0.50	137.98	122.04	114.56
39 40 41	IS40_ISOM_SRDBP_L_JF_M_0.03	0.03	175.62	162.07	155.36
	IS41_LPG_SRDUP_V_JF_M_1	1.00	101.16	84.86	77.74
41	IS41_LPG_SRDUP_V_JF_M_0.5	0.50	118.51	102.62	95.92
Ref. 37 37 38 39 40 41 42 43 44	IS41_LPG_SRDUP_V_JF_M_0.03	0.03	147.39	132.66	126.82
	IS42_ISOM_DRD_L_JF_M_1	1.00	105.66	89.82	82.52
42	IS42_ISOM_DRD_L_JF_M_0.5	0.50	126.42	111.60	104.37
Ref. 37 38 39 40 41 42 43 44	IS42_ISOM_DRD_L_JF_M_0.03	0.03	160.91	148.18	141.32
	IS43_H2_CS_V_JF_M_1	1.00	7.96	13.79	18.38
43	IS43_H2_CS_V_JF_M_0.5	0.50	17.66	20.05	21.94
	IS43_H2_CS_V_JF_M_0.03	0.03	24.70	25.48	26.08
	IS44_TAME_TST_L_JF_M_1	1.00	60.62	53.52	50.48
44	IS44_TAME_TST_L_JF_M_0.5	0.50	72.70	66.17	63.16
37 38 39 40 41 42 43 44	IS44_TAME_TST_L_JF_M_0.03	0.03	92.17	87.10	84.50

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Rei.	Scenarios	Probability		Downwind Distance (m)	
	IS45_ISOM_IST_L_JF_M_1	1.00	60.62	53.52	50.48
45	IS45_ISOM_IST_L_JF_M_0.5	0.50	72.70	66.17	63.16
	IS45_ISOM_IST_L_JF_M_0.03	0.03	92.17	87.10	84.50
	IS46_NAPH_MST_L_JF_M_1	1.00	111.69	95.05	87.43
Ref. 45 46 47 48 49 50 51 52	IS46_NAPH_MST_L_JF_M_0.5	0.50	133.55	118.06	110.66
	IS46_NAPH_MST_L_JF_M_0.03	0.03	169.99	156.79	150.00
	IS47_TAME_PIPESTPU_L_JF_M_1	1.00	101.71	86.39	79.29
47	IS47_TAME_PIPESTPU_L_JF_M_0.5	0.50	121.75	107.35	100.22
Ref. I 45 I 46 I 47 I 48 I 49 I 50 I 51 I 52 I 53 I	IS47_TAME_PIPESTPU_L_JF_M_0.03	0.03	154.98	142.49	135.59
	IS48_TAME_PIPEPUST_L_JF_M_1	1.00	101.71	86.39	79.29
48	IS48_TAME_PIPEPUST_L_JF_M_0.5	0.50	121.75	107.35	100.22
	IS48_TAME_PIPEPUST_L_JF_M_0.03	0.03	154.98	142.49	135.59
	IS49_ISOM_PIPEPUST_L_JF_M_1	1.00	101.71	86.39	79.29
49	IS49_ISOM_PIPEPUST_L_JF_M_0.5	0.50	121.75	107.35	100.22
	IS49_ISOM_PIPEPUST_L_JF_M_0.03	0.03	154.98	142.49	135.59
	IS50_NAPH_PIPESTPU_L_JF_M_1	1.00	111.05	94.49	86.91
50	IS50_NAPH_PIPESTPU_L_JF_M_0.5	0.50	132.78	117.37	109.99
	IS50_NAPH_PIPESTPU_L_JF_M_0.03	0.03	169.02	155.87	149.08
	IS51_NAPH_PIPEPUST_L_JF_M_1	1.00	101.71	86.39	79.29
51	IS51_NAPH_PIPEPUST_L_JF_M_0.5	0.50	121.75	107.35	100.22
	IS51_NAPH_PIPEPUST_L_JF_M_0.03	0.03	154.98	142.49	135.59
	IS52_NAPH_PIPEPUMHST_L_JF_M_1	1.00	110.04	93.62	86.09
52	IS52_NAPH_PIPEPUMHST_L_JF_M_0.5	0.50	131.59	116.29	108.94
	IS52_NAPH_PIPEPUMHST_L_JF_M_0.03	0.03	167.49	154.44	147.64
53	IS53_ETHY_EST_L_JF_M_1	1.00	Not reachable	17.52	16.16
55	IS53_ETHY_EST_L_JF_M_0.5	0.50	23.32	20.75	18.98

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D	
itei.	Scenarios	Probability	Downwind Distance (m)			
	IS53_ETHY_EST_L_JF_M_0.03	0.03	28.38	25.31	23.30	
	IS54_ETHY_BOGC_V_JF_M_1	1.00	152.46	126.79	115.40	
54	IS54_ETHY_BOGC_V_JF_M_0.5	0.50	176.23	151.15	140.20	
	IS54_ETHY_BOGC_V_JF_M_0.03	0.03	214.21	191.05	181.18	
	IS55_ETHY_HPEBOGLR_V_JF_M_1	1.00	152.46	126.79	115.40	
55	IS55_ETHY_HPEBOGLR_V_JF_M_0.5	0.50	176.23	151.15	140.20	
	IS55_ETHY_HPEBOGLR_V_JF_M_0.03	0.03	214.21	191.05	181.18	
	IS56_ETHY_LPEBOGLR_L_JF_M_1	1.00	128.55	106.84	97.16	
56	IS56_ETHY_LPEBOGLR_L_JF_M_0.5	0.50	149.18	128.08	118.50	
	IS56_ETHY_LPEBOGLR_L_JF_M_0.03	0.03	181.55	162.31	153.36	
	IS57_PROPY_PSV_L_JF_M_1	1.00	42.45	35.16	31.93	
57	IS57_PROPY_PSV_L_JF_M_0.5	0.50	48.99	41.67	38.51	
	IS57_PROPY_PSV_L_JF_M_0.03	0.03	59.70	52.58	49.66	
	IS58_BUTD_BSV_L_JF_M_1	1.00	103.93	87.28	79.69	
58	IS58_BUTD_BSV_L_JF_M_0.5	0.50	123.08	106.91	98.99	
Ref. IS 54 IS 55 IS 56 IS 57 IS 58 IS 60 IS 61 IS 62 IS 63 IS	IS58_BUTD_BSV_L_JF_M_0.03	0.03	153.81	139.10	131.10	
	IS60_ETHY_PIPEU2100U5220_L_JF_M_1	1.00	134.54	111.85	101.76	
60	IS60_ETHY_PIPEU2100U5220_L_JF_M_0.5	0.50	155.90	133.85	123.97	
	IS60_ETHY_PIPEU2100U5220_L_JF_M_0.03	0.03	Weather Condition 1F Weather Condition 3C Downwind Distance (m) 28.38 25.31 152.46 126.79 176.23 151.15 214.21 191.05 152.46 126.79 152.46 126.79 152.46 126.79 152.46 126.79 152.46 126.79 152.46 126.79 176.23 151.15 214.21 191.05 128.55 106.84 149.18 128.08 181.55 162.31 42.45 35.16 48.99 41.67 59.70 52.58 103.93 87.28 123.08 106.91 153.81 139.10 134.54 111.85 155.90 133.85 189.62 169.48 137.36 114.21 159.08 136.57 193.47 172.89 41.46 43.21 53.14	160.40		
	IS61_ETHY_PIPEU5220PDT2_L_JF_M_1	1.00	137.36	114.21	103.91	
61	IS61_ETHY_PIPEU5220PDT2_L_JF_M_0.5	0.50	159.08	136.57	126.54	
	IS61_ETHY_PIPEU5220PDT2_L_JF_M_0.03	0.03	193.47	172.89	163.71	
	IS62_ETHY_PIPEU5220BLU_V_JF_M_1	1.00	41.46	43.21	44.98	
62	IS62_ETHY_PIPEU5220BLU_V_JF_M_0.5	0.50	53.14	54.57	55.93	
	IS62_ETHY_PIPEU5220BLU_V_JF_M_0.03	0.03	69.34	69.62	69.82	
63	IS63_PROPY_PIPEU5210U5220_V_JF_M_1	1.00	116.08	96.69	88.15	

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
itei.	Scenarios	Probability	Probability Downwind Distance (m) 0.50 134.67 115.41	Downwind Distance (m)	
	IS63_PROPY_PIPEU5210U5220_V_JF_M_0.5	0.50	134.67	115.41	107.20
	IS63_PROPY_PIPEU5210U5220_V_JF_M_0.03	0.03	165.30	146.89	139.45
	IS64_PROPY_PIPEU5220J_V_JF_M_1	1.00	114.39	95.34	86.96
64	IS64_PROPY_PIPEU5220J_V_JF_M_0.5	0.50	132.77	113.92	105.89
Ref. 64 65 66 67 68	IS64_PROPY_PIPEU5220J_V_JF_M_0.03	0.03	163.05	145.13	137.90
	IS65_PROPY_PIPEMURP_V_JF_M_1	1.00	42.45	35.16	31.93
65	IS65_PROPY_PIPEMURP_V_JF_M_0.5	0.50	48.99	41.67	38.51
05	IS65_PROPY_PIPEMURP_V_JF_M_0.03	0.03	59.70	52.58	49.66
	IS66_BUTD_PIPEU5210U5220_L_JF_M_1	1.00	126.79	106.80	97.80
66	IS66_BUTD_PIPEU5210U5220_L_JF_M_0.5	0.50	149.43	130.51	121.76
	IS66_BUTD_PIPEU5210U5220_L_JF_M_0.03	0.03	186.56	169.93	161.92
	IS67_BUTD_PIPEU5220JLI_L_JF_M_1	1.00	127.46	107.37	98.33
67	IS67_BUTD_PIPEU5220JLI_L_JF_M_0.5	0.50	150.21	131.20	122.42
	IS67_BUTD_PIPEU5220JLI_L_JF_M_0.03	0.03	187.52	170.81	162.80
	IS68_BUTD_PIPEU5220JCLI_L_JF_M_1	1.00	127.46	107.37	98.33
68	IS68_BUTD_PIPEU5220JCLI_L_JF_M_0.5	0.50	150.21	131.20	122.42
	IS68_BUTD_PIPEU5220JCLI_L_JF_M_0.03	0.03	187.52	170.81	162.80

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Jet Fire Events Due to Large Releases

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
itten.	ocentarios	Probability		Downwind Distance (m)	
	IS01_NAPH_SSHDSFSD_L_JF_L_1	1.00	152.68	128.20	115.05
1	IS01_NAPH_SSHDSFSD_L_JF_L_0.5	0.50	182.24	158.04	143.79
	IS01_NAPH_SSHDSFSD_L_JF_L_0.03	0.03	231.99	208.61	192.49
	IS02_NAPH_SSHDSR_V_JF_L_1	1.00	59.72	62.71	65.79
2	IS02_NAPH_SSHDSR_V_JF_L_0.5	0.50	78.76	81.54	83.91
	IS02_NAPH_SSHDSR_V_JF_L_0.03	0.03	107.71	107.96	107.72
	IS03_NAPH_SSHDSSDBP_L_JF_L_1	1.00	211.64	180.95	162.57
3	IS03_NAPH_SSHDSSDBP_L_JF_L_0.5	0.50	254.15	225.75	205.43
	IS03_NAPH_SSHDSSDBP_L_JF_L_0.03	0.03	325.16	301.15	277.68
	IS04_H2_SSHDSSDUP_V_JF_L_1	1.00	32.60	37.67	42.80
4	IS04_H2_SSHDSSDUP_V_JF_L_0.5	0.50	45.14	49.06	51.25
	IS04_H2_SSHDSSDUP_V_JF_L_0.03	0.03	64.68	64.76	62.99
	IS05_H2_SSHDSAAKOD_V_JF_L_1	1.00	32.60	37.67	42.80
5	IS05_H2_SSHDSAAKOD_V_JF_L_0.5	0.50	45.14	49.06	51.25
4	IS05_H2_SSHDSAAKOD_V_JF_L_0.03	0.03	64.68	64.76	62.99
	IS06_MDEA_SSHDSLASD_L_JF_L_1	1.00	197.40	164.11	149.36
6	IS06_MDEA_SSHDSLASD_L_JF_L_0.5	0.50	227.80	195.03	180.88
	IS06_MDEA_SSHDSLASD_L_JF_L_0.03	0.03	276.62	245.92	233.18
	IS07_MDEA_SSHDSAABP_L_JF_L_1	1.00	213.44	177.48	161.56
7	IS07_MDEA_SSHDSAABP_L_JF_L_0.5	0.50	246.35	210.96	195.69
	IS07_MDEA_SSHDSAABP_L_JF_L_0.03	0.03	299.27	266.08	252.34
	IS08_H2_SSHDSAAUP_V_JF_L_1	1.00	32.14	37.17	42.23
8	IS08_H2_SSHDSAAUP_V_JF_L_0.5	0.50	44.51	48.38	50.57
	IS08_H2_SSHDSAAUP_V_JF_L_0.03	0.03	63.73	63.83	62.13
9	IS09_H2_SSHDSRGCKOD_V_JF_L_1	1.00	32.05	37.08	42.12

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
itei.	Scenarios	Probability		Downwind Distance (m)	
	IS09_H2_SSHDSRGCKOD_V_JF_L_0.5	0.50	44.39	48.25	50.44
	IS09_H2_SSHDSRGCKOD_V_JF_L_0.03	0.03	63.55	63.65	61.97
Ref. 10 11 12 13 14 15 16 17	IS10_NAPH_SSHDSS_V_JF_L_1	1.00	34.53	37.45	40.22
	IS10_NAPH_SSHDSS_V_JF_L_0.5	0.50	45.70	48.09	50.15
	IS10_NAPH_SSHDSS_V_JF_L_0.03	0.03	62.12	62.55	62.64
	IS11_H2_SSHDSSRD_V_JF_L_1	1.00	18.81	23.12	26.47
11	IS11_H2_SSHDSSRD_V_JF_L_0.5	0.50	26.72	29.67	31.77
	IS11_H2_SSHDSSRD_V_JF_L_0.03	0.03	37.58	38.17	38.26
	IS12_NAPH_LCNFSD_L_JF_L_1	1.00	120.19	107.14	100.06
12	IS12_NAPH_LCNFSD_L_JF_L_0.5	0.50	144.50	133.37	126.34
	IS12_NAPH_LCNFSD_L_JF_L_0.03	0.03	184.46	177.12	170.65
	IS13_MEOH_FR_L_JF_L_1	1.00	236.75	195.78	177.89
13	IS13_MEOH_FR_L_JF_L_0.5	0.50	276.40	232.11	212.37
Ref. 10 11 12 13 14 15 16 17	IS13_MEOH_FR_L_JF_L_0.03	0.03	320.65	278.01	259.14
	IS14_MEOH_SR_L_JF_L_1	1.00	224.58	184.51	167.83
14	IS14_MEOH_SR_L_JF_L_0.5	0.50	261.60	219.53	200.83
	IS14_MEOH_SR_L_JF_L_0.03	0.03	303.56	263.04	245.13
	IS15_TAME_TFBP_L_JF_L_1	1.00	146.46	124.90	113.81
15	IS15_TAME_TFBP_L_JF_L_0.5	0.50	175.18	155.16	143.83
	IS15_TAME_TFBP_L_JF_L_0.03	0.03	223.29	206.28	194.68
	IS16_MEOH_TFUP_V_JF_L_1	1.00	Not reachable	Not reachable	100.78
16	IS16_MEOH_TFUP_V_JF_L_0.5	0.50	164.46	137.91	126.29
	IS16_MEOH_TFUP_V_JF_L_0.03	0.03	193.69	167.18	154.52
	IS17_MEOH_TFRDBP_L_JF_L_1	1.00	Not reachable	Not reachable	Not reachable
17	IS17_MEOH_TFRDBP_L_JF_L_0.5	0.50	115.91	99.62	92.37
Ref. 10 11 12 13 14 15 16 17	IS17_MEOH_TFRDBP_L_JF_L_0.03	0.03	139.22	121.06	112.52

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.	ocentarios	Probability		Downwind Distance (m)	
18	IS18_NAPH_TFRDUP_V_JF_L_1	1.00	96.90	84.84	78.96
	IS18_NAPH_TFRDUP_V_JF_L_0.5	0.50	116.60	105.23	99.14
	IS18_NAPH_TFRDUP_V_JF_L_0.03	0.03	148.57	139.09	133.12
	IS19_MEOH_TR_L_JF_L_1	1.00	235.96	195.01	177.19
19	IS19_MEOH_TR_L_JF_L_0.5	0.50	275.44	231.25	211.58
Ref. 18 19 20 21 22 23 24 25	IS19_MEOH_TR_L_JF_L_0.03	0.03	319.54	276.99	258.18
	IS20_NAPH_RWCBP_L_JF_L_1	1.00	198.18	169.27	154.03
20	IS20_NAPH_RWCBP_L_JF_L_0.5	0.50	238.17	211.32	195.27
18 19 20 21 22 23 24	IS20_NAPH_RWCBP_L_JF_L_0.03	0.03	304.80	281.96	264.83
	IS21_MEOH_RWCUP_V_JF_L_1	1.00	0.00	153.63	140.37
21	IS21_MEOH_RWCUP_V_JF_L_0.5	0.50	211.35	188.40	172.86
	IS21_MEOH_RWCUP_V_JF_L_0.03	0.03	247.35	227.70	211.83
	IS22_MEOH_MCFD_L_JF_L_1	1.00	Not reachable	Not reachable	121.58
22	IS22_MEOH_MCFD_L_JF_L_0.5	0.50	187.12	164.50	151.13
	IS22_MEOH_MCFD_L_JF_L_0.03	0.03	219.56	199.12	185.11
	IS23_MEOH_RC_L_JF_L_1	1.00	0.00	163.48	150.34
23	IS23_MEOH_RC_L_JF_L_0.5	0.50	224.35	200.87	184.20
Ref. I 18 I 19 I 19 I 20 I 21 I 22 I 1 I 22 I 1 I 22 I 1 I 23 I 1 I 24 I 1 I 25 I 1 I 26 I	IS23_MEOH_RC_L_JF_L_0.03	0.03	262.22	242.56	225.75
	IS24_MEOH_MC_V_JF_L_1	1.00	0.00	31.11	27.82
24	IS24_MEOH_MC_V_JF_L_0.5	0.50	43.55	35.78	32.25
	IS24_MEOH_MC_V_JF_L_0.03	0.03	49.81	41.75	38.23
	IS25_MEOH_MCRD_L_JF_L_1	1.00	Not reachable	Not reachable	95.72
25	IS25_MEOH_MCRD_L_JF_L_0.5	0.50	156.43	130.98	119.91
	IS25_MEOH_MCRD_L_JF_L_0.03	0.03	183.74	158.56	146.73
26	IS26_MEOH_MGP_L_JF_L_1	1.00	249.17	215.15	196.84
20	IS26_MEOH_MGP_L_JF_L_0.5	0.50	290.49	258.79	237.18

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.		Probability	Downwind Distance (m)		
	IS26_MEOH_MGP_L_JF_L_0.03	0.03	338.22	311.51	290.52
	IS27_MEOH_MMUSD_L_JF_L_1	1.00	Not reachable	Not reachable	Not reachable
27	IS27_MEOH_MMUSD_L_JF_L_0.5	0.50	122.40	104.86	97.02
	IS27_MEOH_MMUSD_L_JF_L_0.03	0.03	146.87	127.42	118.22
	IS28_MEOH_MDD_V_JF_L_1	1.00	Not reachable	Not reachable	Not reachable
28	IS28_MEOH_MDD_V_JF_L_0.5	0.50	5.18	12.26	15.51
Ref. 1 27 1 28 1 30 1 31 1 32 1 33 1 34 1 35 36	IS28_MEOH_MDD_V_JF_L_0.03	0.03	14.30	16.58	18.11
	IS30_NAPH_SGB_L_JF_L_1	1.00	179.94	153.65	138.01
30	IS30_NAPH_SGB_L_JF_L_0.5	0.50	215.53	191.15	173.99
	IS30_NAPH_SGB_L_JF_L_0.03	0.03	275.17	254.47	234.80
	IS31_NAPH_FSD_L_JF_L_1	1.00	162.07	148.91	137.43
31	IS31_NAPH_FSD_L_JF_L_0.5	0.50	194.95	185.93	174.38
	IS31_NAPH_FSD_L_JF_L_0.03	0.03	249.41	247.89	236.72
	IS32_NAPH_FD_L_JF_L_1	1.00	246.78	204.56	183.56
32	IS32_NAPH_FD_L_JF_L_0.5	0.50	295.91	252.40	229.57
Ref. 27 28 30 31 32 33 34 35 36	IS32_NAPH_FD_L_JF_L_0.03	0.03	378.33	332.92	307.06
	IS33_H2_H2PR_V_JF_L_1	1.00	43.61	49.79	56.35
33	IS33_H2_H2PR_V_JF_L_0.5	0.50	60.35	65.44	67.44
Ref. 27 28 30 31 32 33 34 35 36	IS33_H2_H2PR_V_JF_L_0.03	0.03	87.68	87.45	83.61
	IS34_H2_HD_V_JF_L_1	1.00	48.10	54.76	61.80
34	IS34_H2_HD_V_JF_L_0.5	0.50	66.55	72.14	74.00
	IS34_H2_HD_V_JF_L_0.03	0.03	97.10	96.75	91.96
	IS35_ISOM_CGB_L_JF_L_1	1.00	185.65	152.87	136.98
35	IS35_ISOM_CGB_L_JF_L_0.5	0.50	221.70	187.32	170.08
	IS35_ISOM_CGB_L_JF_L_0.03	0.03	282.39	245.57	226.08
36	IS36_H2_FIR_V_JF_L_1	1.00	42.47	48.53	54.96

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D		
iter.	ocenanos	Probability		Downwind Distance (m)			
	IS36_H2_FIR_V_JF_L_0.5	0.50	58.78	63.74	65.78		
	IS36_H2_FIR_V_JF_L_0.03	0.03	85.29	85.10	81.49		
	IS37_NAPH_SIRBP_L_JF_L_1	1.00	216.86	177.49	159.06		
37	IS37_NAPH_SIRBP_L_JF_L_0.5	0.50	259.30	217.36	197.40		
	IS37_NAPH_SIRBP_L_JF_L_0.03	0.03	330.68	284.65	262.14		
	IS38_H2_SIRUP_V_JF_L_1	1.00	41.19	47.11	53.39		
38	IS38_H2_SIRUP_V_JF_L_0.5	0.50	57.01	61.82	63.89		
Ref. 37 37 38 39 40 41 42 43 44	IS38_H2_SIRUP_V_JF_L_0.03	0.03	82.61	82.44	79.09		
	IS39_LPG_S_V_JF_L_1	1.00	52.30	54.90	57.57		
39	IS39_LPG_S_V_JF_L_0.5	0.50	68.39	70.67	72.73		
	IS39_LPG_S_V_JF_L_0.03	0.03	91.99	92.31	92.36		
	IS40_ISOM_SRDBP_L_JF_L_1	1.00	211.16	180.53	162.26		
40	IS40_ISOM_SRDBP_L_JF_L_0.5	0.50	253.57	225.23	205.07		
40	IS40_ISOM_SRDBP_L_JF_L_0.03	0.03	324.43	300.47	277.24		
	IS41_LPG_SRDUP_V_JF_L_1	1.00	186.39	156.84	141.65		
41	IS41_LPG_SRDUP_V_JF_L_0.5	0.50	219.16	190.47	174.71		
Ref. 37 37 38 39 40 41 42 43 44	IS41_LPG_SRDUP_V_JF_L_0.03	0.03	273.77	247.23	230.66		
	IS42_ISOM_DRD_L_JF_L_1	1.00	193.07	164.82	150.66		
42	IS42_ISOM_DRD_L_JF_L_0.5	0.50	232.10	205.79	191.18		
337 338 339 40 41 42 43 44	IS42_ISOM_DRD_L_JF_L_0.03	0.03	297.06	274.56	259.54		
	IS43_H2_CS_V_JF_L_1	1.00	24.20	28.64	32.13		
43	IS43_H2_CS_V_JF_L_0.5	0.50	33.74	36.90	39.08		
	IS43_H2_CS_V_JF_L_0.03	0.03	47.62	48.01	47.50		
	IS44_TAME_TST_L_JF_L_1	1.00	93.74	82.47	77.07		
44	IS44_TAME_TST_L_JF_L_0.5	0.50	112.72	102.31	96.81		
	IS44_TAME_TST_L_JF_L_0.03	0.03	143.57	135.26	130.05		

Pof	Scenarios	Fatality Weather Condition 1F		Weather Condition 3C Weather Condition 9	
Rei.	Scenarios	Probability		Downwind Distance (m)	
	IS45_ISOM_IST_L_JF_L_1	1.00	93.74	82.47	77.07
45	IS45_ISOM_IST_L_JF_L_0.5	0.50	112.72	102.31	96.81
	IS45_ISOM_IST_L_JF_L_0.03	0.03	143.57	135.26	130.05
	IS46_NAPH_MST_L_JF_L_1	1.00	204.20	174.51	157.93
Ref. I 45 I 46 I 47 I 48 I 49 I 50 I 51 I 52 I 53 I	IS46_NAPH_MST_L_JF_L_0.5	0.50	245.33	217.80	199.96
	IS46_NAPH_MST_L_JF_L_0.03	0.03	313.93	290.60	270.84
	IS47_TAME_PIPESTPU_L_JF_L_1	1.00	177.16	158.46	145.70
47	IS47_TAME_PIPESTPU_L_JF_L_0.5	0.50	213.00	197.88	185.08
Ref. 45 45 46 47 47 48 49 1 50 51 52 53	IS47_TAME_PIPESTPU_L_JF_L_0.03	0.03	272.55	263.95	251.56
	IS48_TAME_PIPEPUST_L_JF_L_1	1.00	177.16	158.46	145.70
48	IS48_TAME_PIPEPUST_L_JF_L_0.5	0.50	213.00	197.88	185.08
	IS48_TAME_PIPEPUST_L_JF_L_0.03	0.03	272.55	263.95	251.56
	IS49_ISOM_PIPEPUST_L_JF_L_1	1.00	177.16	158.46	145.70
49	IS49_ISOM_PIPEPUST_L_JF_L_0.5	0.50	213.00	197.88	185.08
46 47 48 49 50 51 52	IS49_ISOM_PIPEPUST_L_JF_L_0.03	0.03	272.55	263.95	251.56
	IS50_NAPH_PIPESTPU_L_JF_L_1	1.00	203.01	173.47	157.17
50	IS50_NAPH_PIPESTPU_L_JF_L_0.5	0.50	243.91	216.52	199.04
	IS50_NAPH_PIPESTPU_L_JF_L_0.03	0.03	312.12	288.89	269.67
	IS51_NAPH_PIPEPUST_L_JF_L_1	1.00	177.16	158.46	145.70
51	IS51_NAPH_PIPEPUST_L_JF_L_0.5	0.50	213.00	197.88	185.08
	IS51_NAPH_PIPEPUST_L_JF_L_0.03	0.03	272.55	263.95	251.56
	IS52_NAPH_PIPEPUMHST_L_JF_L_1	1.00	201.15	171.85	155.96
52	IS52_NAPH_PIPEPUMHST_L_JF_L_0.5	0.50	241.69	214.52	197.60
45 46 47 48 49 50 51 51 52 53	IS52_NAPH_PIPEPUMHST_L_JF_L_0.03	0.03	309.30	286.23	267.82
53	IS53_ETHY_EST_L_JF_L_1	1.00	Not reachable	31.09	28.86
55	IS53_ETHY_EST_L_JF_L_0.5	0.50	40.43	36.69	33.88

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.		Probability	Downwind Distance (m)		
	IS53_ETHY_EST_L_JF_L_0.03	0.03	49.21	44.93	41.81
	IS54_ETHY_BOGC_V_JF_L_1	1.00	278.57	232.39	211.90
54	IS54_ETHY_BOGC_V_JF_L_0.5	0.50	322.92	278.03	258.41
	IS54_ETHY_BOGC_V_JF_L_0.03	0.03	394.29	352.97	335.36
	IS55_ETHY_HPEBOGLR_V_JF_L_1	1.00	278.57	232.39	211.90
55	IS55_ETHY_HPEBOGLR_V_JF_L_0.5	0.50	322.92	278.03	258.41
Ref. I 54 I 55 I 55 I 55 I 56 I 57 I 57 I 58 I 60 I 61 I 62 I 63 I	IS55_ETHY_HPEBOGLR_V_JF_L_0.03	0.03	394.29	352.97	335.36
	IS56_ETHY_LPEBOGLR_L_JF_L_1	1.00	234.48	195.53	178.13
56	IS56_ETHY_LPEBOGLR_L_JF_L_0.5	0.50	272.78	235.17	218.03
	IS56_ETHY_LPEBOGLR_L_JF_L_0.03	0.03	333.61	299.48	283.49
	IS57_PROPY_PSV_L_JF_L_1	1.00	79.18	65.75	59.81
57	IS57_PROPY_PSV_L_JF_L_0.5	0.50	91.59	78.13	72.35
	IS57_PROPY_PSV_L_JF_L_0.03	0.03	112.01	98.96	93.61
	IS58_BUTD_BSV_L_JF_L_1	1.00	189.46	159.69	145.99
58	IS58_BUTD_BSV_L_JF_L_0.5	0.50	225.16	196.41	182.19
Ref. 54 55 55 55 55 56 57 57 58 60 1 60 1 61 1 62 1 63	IS58_BUTD_BSV_L_JF_L_0.03	0.03	282.96	256.89	242.53
	IS60_ETHY_PIPEU2100U5220_L_JF_L_1	1.00	245.53	204.82	186.65
60	IS60_ETHY_PIPEU2100U5220_L_JF_L_0.5	0.50	285.25	245.91	228.24
Ref. 54 55 56 57 58 60 61 62 63	IS60_ETHY_PIPEU2100U5220_L_JF_L_0.03	0.03	348.66	312.87	296.68
	IS61_ETHY_PIPEU5220PDT2_L_JF_L_1	1.00	250.73	209.17	190.64
61	IS61_ETHY_PIPEU5220PDT2_L_JF_L_0.5	0.50	291.16	250.97	233.02
	IS61_ETHY_PIPEU5220PDT2_L_JF_L_0.03	0.03	355.81	319.20	302.84
	IS62_ETHY_PIPEU5220BLU_V_JF_L_1	1.00	74.21	76.98	79.95
62	IS62_ETHY_PIPEU5220BLU_V_JF_L_0.5	0.50	97.04	99.73	102.09
	IS62_ETHY_PIPEU5220BLU_V_JF_L_0.03	0.03	131.66	131.89	131.69
63	IS63_PROPY_PIPEU5210U5220_V_JF_L_1	1.00	214.18	178.85	163.32

Rof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
itei.	ocentarios	Probability		Downwind Distance (m)	
	IS63_PROPY_PIPEU5210U5220_V_JF_L_0.5	0.50	249.23	214.26	199.39
	IS63_PROPY_PIPEU5210U5220_V_JF_L_0.03	0.03	307.10	273.75	260.30
	IS64_PROPY_PIPEU5220J_V_JF_L_1	1.00	210.87	176.21	161.00
64	IS64_PROPY_PIPEU5220J_V_JF_L_0.5	0.50	245.52	211.34	196.82
	IS64_PROPY_PIPEU5220J_V_JF_L_0.03	0.03	302.72	270.31	257.28
	IS65_PROPY_PIPEMURP_V_JF_L_1	1.00	79.18	65.75	59.81
65	IS65_PROPY_PIPEMURP_V_JF_L_0.5	0.50	91.59	78.13	72.35
00	IS65_PROPY_PIPEMURP_V_JF_L_0.03	0.03	112.01	98.96	93.61
	IS66_BUTD_PIPEU5210U5220_L_JF_L_1	1.00	231.48	195.75	179.60
66	IS66_BUTD_PIPEU5210U5220_L_JF_L_0.5	0.50	273.92	240.26	224.61
Ref. IS IS IS 64 IS 65 IS 65 IS 66 IS 66 IS 65 IS 66 IS 66 IS 66 IS 66 IS 65 IS 66 IS 66 IS 67 IS 68 IS 68 IS	IS66_BUTD_PIPEU5210U5220_L_JF_L_0.03	0.03	343.75	314.29	299.98
	IS67_BUTD_PIPEU5220JLI_L_JF_L_1	1.00	232.71	196.80	180.58
67	IS67_BUTD_PIPEU5220JLI_L_JF_L_0.5	0.50	275.36	241.52	225.83
	IS67_BUTD_PIPEU5220JLI_L_JF_L_0.03	0.03	345.54	315.94	301.61
	IS68_BUTD_PIPEU5220JCLI_L_JF_L_1	1.00	232.71	196.80	180.58
68	IS68_BUTD_PIPEU5220JCLI_L_JF_L_0.5	0.50	275.36	241.52	225.83
	IS68_BUTD_PIPEU5220JCLI_L_JF_L_0.03	0.03	345.54	315.94	301.61

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Jet Fire Events Due to Catastrophic Releases

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
itel.	Scenarios	Probability		Downwind Distance (m)	
	IS02_NAPH_SSHDSR_V_JF_C_1	1.00	128.51	133.32	136.86
2	IS02_NAPH_SSHDSR_V_JF_C_0.5	0.50	171.10	177.29	181.13
	IS02_NAPH_SSHDSR_V_JF_C_0.03	0.03	245.81	246.52	243.95
	IS04_H2_SSHDSSDUP_V_JF_C_1	1.00	73.09	82.44	91.94
4	IS04_H2_SSHDSSDUP_V_JF_C_0.5	0.50	100.95	109.33	110.52
	IS04_H2_SSHDSSDUP_V_JF_C_0.03	0.03	149.67	148.47	139.02
	IS05_H2_SSHDSAAKOD_V_JF_C_1	1.00	73.09	82.44	91.94
5	IS05_H2_SSHDSAAKOD_V_JF_C_0.5	0.50	100.95	109.33	110.52
8	IS05_H2_SSHDSAAKOD_V_JF_C_0.03	0.03	149.67	148.47	139.02
	IS08_H2_SSHDSAAUP_V_JF_C_1	1.00	72.06	81.30	90.63
8	IS08_H2_SSHDSAAUP_V_JF_C_0.5	0.50	99.54	107.81	108.93
	IS08_H2_SSHDSAAUP_V_JF_C_0.03	0.03	147.51	146.35	136.95
	IS09_H2_SSHDSRGCKOD_V_JF_C_1	1.00	71.86	81.08	90.38
9	IS09_H2_SSHDSRGCKOD_V_JF_C_0.5	0.50	99.27	107.52	108.63
	IS09_H2_SSHDSRGCKOD_V_JF_C_0.03	0.03	147.09	145.94	136.56
	IS10_NAPH_SSHDSS_V_JF_C_1	1.00	73.53	78.27	83.73
10	IS10_NAPH_SSHDSS_V_JF_C_0.5	0.50	99.32	104.17	107.05
	IS10_NAPH_SSHDSS_V_JF_C_0.03	0.03	142.34	142.37	139.86
	IS11_H2_SSHDSSRD_V_JF_C_1	1.00	43.69	49.88	56.45
11	IS11_H2_SSHDSSRD_V_JF_C_0.5	0.50	60.46	65.56	67.56
	IS11_H2_SSHDSSRD_V_JF_C_0.03	0.03	87.85	87.62	83.76
	IS16_MEOH_TFUP_V_JF_C_1	1.00	Not reachable	224.60	206.62
16	IS16_MEOH_TFUP_V_JF_C_0.5	0.50	330.60	277.57	252.84
	IS16_MEOH_TFUP_V_JF_C_0.03	0.03	389.28	336.88	310.27
18	IS18_NAPH_TFRDUP_V_JF_C_1	1.00	167.44	147.54	137.72

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D	
Rei.	Scenarios	Probability	Downwind Distance (m)			
	IS18_NAPH_TFRDUP_V_JF_C_0.5	0.50	202.21	183.81	173.76	
	IS18_NAPH_TFRDUP_V_JF_C_0.03	0.03	259.01	244.16	234.45	
	IS21_MEOH_RWCUP_V_JF_C_1	1.00	319.50	267.38	245.87	
21	IS21_MEOH_RWCUP_V_JF_C_0.5	0.50	373.77	326.40	298.03	
	IS21_MEOH_RWCUP_V_JF_C_0.03	0.03	437.78	395.16	366.11	
	IS24_MEOH_MC_V_JF_C_1	1.00	Not reachable	70.98	63.93	
24	IS24_MEOH_MC_V_JF_C_0.5	0.50	99.19	81.64	73.74	
	IS24_MEOH_MC_V_JF_C_0.03	0.03	113.56	95.52	87.65	
	IS28_MEOH_MDD_V_JF_C_1	1.00	8.81	13.80	29.40	
28	IS28_MEOH_MDD_V_JF_C_0.5	0.50	24.88	28.62	33.39	
20	IS28_MEOH_MDD_V_JF_C_0.03	0.03	35.16	37.60	38.08	
	IS33_H2_H2PR_V_JF_C_1	1.00	98.70	109.91	123.46	
33	IS33_H2_H2PR_V_JF_C_0.5	0.50	136.16	146.05	148.99	
Ref. 21 24 28 33 34 36 38 39	IS33_H2_H2PR_V_JF_C_0.03	0.03	202.38	199.88	189.11	
	IS34_H2_HD_V_JF_C_1	1.00	108.40	121.11	136.27	
34	IS34_H2_HD_V_JF_C_0.5	0.50	150.66	160.97	164.73	
	IS34_H2_HD_V_JF_C_0.03	0.03	223.98	220.82	209.66	
	IS36_H2_FIR_V_JF_C_1	1.00	95.95	107.07	120.21	
36	IS36_H2_FIR_V_JF_C_0.5	0.50	132.48	142.26	145.00	
	IS36_H2_FIR_V_JF_C_0.03	0.03	196.91	194.56	183.91	
	IS38_H2_SIRUP_V_JF_C_1	1.00	468.79	379.06	339.34	
38	IS38_H2_SIRUP_V_JF_C_0.5	0.50	558.19	460.60	417.79	
	IS38_H2_SIRUP_V_JF_C_0.03	0.03	707.03	596.59	548.72	
	IS39_LPG_S_V_JF_C_1	1.00	111.26	115.26	118.74	
39	IS39_LPG_S_V_JF_C_0.5	0.50	147.91	152.75	156.13	
	IS39_LPG_S_V_JF_C_0.03	0.03	210.02	210.36	208.57	

Pof	Scenarios	Fatality	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Nei.		Probability	Downwind Distance (m)		
	IS41_LPG_SRDUP_V_JF_C_1	1.00	415.68	340.44	303.92
41	IS41_LPG_SRDUP_V_JF_C_0.5	0.50	490.96	411.66	372.00
	IS41_LPG_SRDUP_V_JF_C_0.03	0.03	616.07	530.74	485.92
	IS43_H2_CS_V_JF_C_1	1.00	328.82	297.85	265.27
43	IS43_H2_CS_V_JF_C_0.5	0.50	397.05	372.86	334.73
	IS43_H2_CS_V_JF_C_0.03	0.03	510.36	498.16	450.94
	IS54_ETHY_BOGC_V_JF_C_1	1.00	62.10	64.28	60.37
54	IS54_ETHY_BOGC_V_JF_C_0.5	0.50	76.96	75.86	71.18
	IS54_ETHY_BOGC_V_JF_C_0.03	0.03	93.94	93.66	88.66
	IS55_ETHY_HPEBOGLR_V_JF_C_1	1.00	614.87	514.92	470.61
55	IS55_ETHY_HPEBOGLR_V_JF_C_0.5	0.50	715.23	618.58	576.31
	IS55_ETHY_HPEBOGLR_V_JF_C_0.03	0.03	877.30	788.54	750.62
	IS62_ETHY_PIPEU5220BLU_V_JF_C_1	1.00	362.96	325.62	300.59
62	IS62_ETHY_PIPEU5220BLU_V_JF_C_0.5	0.50	432.97	402.29	376.97
55 62	IS62_ETHY_PIPEU5220BLU_V_JF_C_0.03	0.03	546.86	528.61	504.02
	IS63_PROPY_PIPEU5210U5220_V_JF_C_1	1.00	478.35	397.37	353.19
63	IS63_PROPY_PIPEU5210U5220_V_JF_C_0.5	0.50	558.70	476.86	428.32
	IS63_PROPY_PIPEU5210U5220_V_JF_C_0.03	0.03	691.07	609.50	553.82
	IS64_PROPY_PIPEU5220J_V_JF_C_1	1.00	470.45	391.94	348.84
64	IS64_PROPY_PIPEU5220J_V_JF_C_0.5	0.50	549.88	471.23	424.07
	IS64_PROPY_PIPEU5220J_V_JF_C_0.03	0.03	680.74	603.54	549.73
	IS65_PROPY_PIPEMURP_V_JF_C_1	1.00	179.06	149.14	135.93
65	IS65_PROPY_PIPEMURP_V_JF_C_0.5	0.50	207.87	178.00	165.20
	IS65_PROPY_PIPEMURP_V_JF_C_0.03	0.03	255.43	226.55	214.75

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Flash Fire Events Due to Minor Releases

Pof	Scenarios	Fatality Probability	Weather Condition 1.5F	Weather Condition 3C	Weather Condition 5D
iter.	ocenanos		Downwind Distance (m)		
2	IS02_NAPH_SSHDSR_V_FF_0_LFL	LFL	2.41	2.23	2.12
2	IS02_NAPH_SSHDSR_V_FF_0_1/2 LFL	1/2 LFL	4.63	3.94	3.63
4	IS04_H2_SSHDSSDUP_V_FF_0_LFL	LFL	6.20	4.39	3.84
-	IS04_H2_SSHDSSDUP_V_FF_0_1/2 LFL	1/2 LFL	8.93	6.30	5.48
5	IS05_H2_SSHDSAAKOD_V_FF_0_LFL	LFL	6.20	4.39	3.84
J	IS05_H2_SSHDSAAKOD_V_FF_0_1/2 LFL	1/2 LFL	8.93	6.30	5.48
0	IS08_H2_SSHDSAAUP_V_FF_0_LFL	LFL	6.11	4.33	3.80
0	IS08_H2_SSHDSAAUP_V_FF_0_1/2 LFL	1/2 LFL	8.82	6.23	5.41
٥	IS09_H2_SSHDSRGCKOD_V_FF_0_LFL	LFL	6.08	4.32	3.78
9	IS09_H2_SSHDSRGCKOD_V_FF_0_1/2 LFL	1/2 LFL	8.77	6.20	5.39
10	IS10_NAPH_SSHDSS_V_FF_0_LFL	LFL	1.52	1.41	1.35
10	IS10_NAPH_SSHDSS_V_FF_0_1/2 LFL	1/2 LFL	2.86	2.46	2.27
11	IS11_H2_SSHDSSRD_V_FF_0_LFL	LFL	3.73	2.73	2.41
	IS11_H2_SSHDSSRD_V_FF_0_1/2 LFL	1/2 LFL	5.59	4.01	3.51
16	IS16_MEOH_TFUP_V_FF_0_LFL	LFL	5.03	3.97	3.58
10	IS16_MEOH_TFUP_V_FF_0_1/2 LFL	1/2 LFL	7.90	5.47	5.03
10	IS18_NAPH_TFRDUP_V_FF_0_LFL	LFL	4.67	5.19	4.87
10	IS18_NAPH_TFRDUP_V_FF_0_1/2 LFL	1/2 LFL	11.10	5.36	5.93
04	IS21_MEOH_RWCUP_V_FF_0_LFL	LFL	6.13	4.96	4.49
21	IS21_MEOH_RWCUP_V_FF_0_1/2 LFL	1/2 LFL	12.15	7.30	6.31
24	IS24_MEOH_MC_V_FF_0_LFL	LFL	0.34	0.33	0.33
24	IS24_MEOH_MC_V_FF_0_1/2 LFL	1/2 LFL	0.68	0.66	0.65
20	IS28_MEOH_MDD_V_FF_0_LFL	LFL	0.21	0.21	0.21
20	IS28_MEOH_MDD_V_FF_0_1/2 LFL	1/2 LFL	0.44	0.41	0.40
33	IS33_H2_H2PR_V_FF_0_LFL	LFL	7.42	5.28	4.63

Ref	of Scenarios E	Fatality Probability	Weather Condition 1.5F	Weather Condition 3C	Weather Condition 5D
Non.	occitatios		Downwind Distance (m)		
	IS33_H2_H2PR_V_FF_0_1/2 LFL	1/2 LFL	10.25	7.57	6.64
34	IS34_H2_HD_V_FF_0_LFL	LFL	9.02	6.30	5.48
54	IS34_H2_HD_V_FF_0_1/2 LFL	1/2 LFL	12.69	9.05	8.04
26	IS36_H2_FIR_V_FF_0_LFL	LFL	7.50	5.31	4.65
30	IS36_H2_FIR_V_FF_0_1/2 LFL	1/2 LFL	10.45	7.60	6.63
38	IS38_H2_SIRUP_V_FF_0_LFL	LFL	7.38	5.20	4.55
50	IS38_H2_SIRUP_V_FF_0_1/2 LFL	1/2 LFL	10.32	7.46	6.51
20	IS39_LPG_S_V_FF_0_LFL	LFL	2.34	2.17	2.07
39	IS39_LPG_S_V_FF_0_1/2 LFL	1/2 LFL	4.41	3.77	3.47
11	IS41_LPG_SRDUP_V_FF_0_LFL	LFL	7.76	6.50	5.92
41	IS41_LPG_SRDUP_V_FF_0_1/2 LFL	1/2 LFL	16.12	11.36	9.52
12	IS43_H2_CS_V_FF_0_LFL	LFL	4.65	3.35	2.95
43	IS43_H2_CS_V_FF_0_1/2 LFL	1/2 LFL	6.84	4.87	4.25
52	IS53_ETHY_EST_L_FF_0_LFL	LFL	1.41	1.74	2.65
55	IS53_ETHY_EST_L_FF_0_1/2 LFL	1/2 LFL	10.12 10.13 9.02 6.30 12.69 9.05 7.50 5.31 10.45 7.60 7.38 5.20 10.32 7.46 2.34 2.17 4.41 3.77 7.76 6.50 16.12 11.36 4.65 3.35 6.84 4.87 1.41 1.74 1.41 1.76 22.72 16.17 61.28 40.38 22.72 16.17 61.28 40.38 2.55 2.34 4.78 4.04 13.41 6.48	3.99	
54	IS54_ETHY_BOGC_V_FF_0_LFL	LFL	22.72	16.17	13.60
34 - 36 - 38 - 39 - 41 - 43 - 53 - 54 - 55 - 57 - 58 -	IS54_ETHY_BOGC_V_FF_0_1/2 LFL	1/2 LFL	61.28	40.38	33.40
55	IS55_ETHY_HPEBOGLR_V_FF_0_LFL	LFL	22.72	16.17	13.60
55	IS55_ETHY_HPEBOGLR_V_FF_0_1/2 LFL	1/2 LFL	61.28	40.38	33.40
57	IS57_PROPY_PSV_L_FF_0_LFL	LFL	2.55	2.34	2.23
57	IS57_PROPY_PSV_L_FF_0_1/2 LFL	1/2 LFL	4.78	4.04	3.70
59	IS58_BUTD_BSV_L_FF_0_LFL	LFL	13.41	6.48	5.69
50	IS58_BUTD_BSV_L_FF_0_1/2 LFL	1/2 LFL	37.90	13.66	9.07

Pof	. Scenarios Fatality Probabili	Eatality Probability	Weather Condition 1.5F	Weather Condition 3C	Weather Condition 5D
itei.				Downwind Distance (m)	
62	IS62_ETHY_PIPEU5220BLU_V_FF_0_LFL	LFL	4.21	3.78	3.55
02	IS62_ETHY_PIPEU5220BLU_V_FF_0_1/2 LFL	1/2 LFL	7.84	6.38	5.77
63	IS63_PROPY_PIPEU5210U5220_V_FF_0_LFL	LFL	4.21	3.78	3.55
03	IS63_PROPY_PIPEU5210U5220_V_FF_0_1/2 LFL	1/2 LFL	7.84	6.38	5.77
64	IS64_PROPY_PIPEU5220J_V_FF_0_LFL	LFL	8.35	7.16	6.59
Ref. 62 63 64 65	IS64_PROPY_PIPEU5220J_V_FF_0_1/2 LFL	1/2 LFL	17.66	13.63	11.68
65	IS65_PROPY_PIPEMURP_V_FF_0_LFL	LFL	8.43	7.15	6.56
05	IS65_PROPY_PIPEMURP_V_FF_0_1/2 LFL	1/2 LFL	17.94	13.54	11.49

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Flash Fire Events Due to Small Releases

Pof	Scenarios	Fatality Probability	Weather Condition 1.5F	Weather Condition 3C	Weather Condition 5D
itel.	occitatios		Downwind Distance (m)		
2	IS02_NAPH_SSHDSR_V_FF_S_LFL	LFL	7.13	6.34	5.91
2	IS02_NAPH_SSHDSR_V_FF_S_1/2 LFL	1/2 LFL	14.56	11.79	10.54
1	IS04_H2_SSHDSSDUP_V_FF_S_LFL	LFL	15.44	11.13	10.30
-	IS04_H2_SSHDSSDUP_V_FF_S_1/2 LFL	1/2 LFL	20.98	16.67	16.97
5	IS05_H2_SSHDSAAKOD_V_FF_S_LFL	LFL	15.44	11.13	10.30
Ŭ	IS05_H2_SSHDSAAKOD_V_FF_S_1/2 LFL	1/2 LFL	20.98	16.67	16.97
0	IS08_H2_SSHDSAAUP_V_FF_S_LFL	LFL	15.24	10.94	10.13
0	IS08_H2_SSHDSAAUP_V_FF_S_1/2 LFL	1/2 LFL	20.72	16.45	16.72
٩	IS09_H2_SSHDSRGCKOD_V_FF_S_LFL	LFL	15.15	10.85	10.05
3	IS09_H2_SSHDSRGCKOD_V_FF_S_1/2 LFL	1/2 LFL	20.59	16.33	16.56
10	IS10_NAPH_SSHDSS_V_FF_S_LFL	LFL	4.46	3.98	3.74
10	IS10_NAPH_SSHDSS_V_FF_S_1/2 LFL	1/2 LFL	8.25	6.66	6.01
11	IS11_H2_SSHDSSRD_V_FF_S_LFL	LFL	9.59	6.64	5.77
	IS11_H2_SSHDSSRD_V_FF_S_1/2 LFL	1/2 LFL	13.38	9.68	8.73
16	IS16_MEOH_TFUP_V_FF_S_LFL	LFL	10.87	9.01	8.61
10	IS16_MEOH_TFUP_V_FF_S_1/2 LFL	1/2 LFL	31.29	21.83	18.26
10	IS18_NAPH_TFRDUP_V_FF_S_LFL	LFL	17.74	12.11	9.59
10	IS18_NAPH_TFRDUP_V_FF_S_1/2 LFL	1/2 LFL	49.24	28.49	23.56
24	IS21_MEOH_RWCUP_V_FF_S_LFL	LFL	19.08	17.97	15.74
21	IS21_MEOH_RWCUP_V_FF_S_1/2 LFL	1/2 LFL	47.37	43.73	37.68
24	IS24_MEOH_MC_V_FF_S_LFL	LFL	1.00	0.97	0.96
24	IS24_MEOH_MC_V_FF_S_1/2 LFL	1/2 LFL	2.03	1.91	1.85
28	IS28_MEOH_MDD_V_FF_S_LFL	LFL	0.63	0.60	0.59
20	IS28_MEOH_MDD_V_FF_S_1/2 LFL	1/2 LFL	1.28	1.17	1.10
33	IS33_H2_H2PR_V_FF_S_LFL	LFL	17.29	12.69	12.35

Ref	Scenarios	Fatality Probability	Weather Condition 1.5F	Weather Condition 3C	Weather Condition 5D
itei.		T atanty T TODADInty		Downwind Distance (m)	
	IS33_H2_H2PR_V_FF_S_1/2 LFL	1/2 LFL	22.78	17.96	18.43
3/	IS34_H2_HD_V_FF_S_LFL	LFL	22.09	16.80	16.74
04	IS34_H2_HD_V_FF_S_1/2 LFL	1/2 LFL	29.55	23.42	24.99
36	IS36_H2_FIR_V_FF_S_LFL	LFL	17.77	12.86	12.77
30	IS36_H2_FIR_V_FF_S_1/2 LFL	1/2 LFL	23.56	18.18	19.28
38	IS38_H2_SIRUP_V_FF_S_LFL	LFL	17.61	12.76	12.55
00	IS38_H2_SIRUP_V_FF_S_1/2 LFL	1/2 LFL	23.41	18.02	19.16
30	IS39_LPG_S_V_FF_S_LFL	LFL	6.90	6.16	5.76
- 39	IS39_LPG_S_V_FF_S_1/2 LFL	1/2 LFL	13.86	10.92	9.67
41	IS41_LPG_SRDUP_V_FF_S_LFL	LFL	29.39	26.24	24.77
41	IS41_LPG_SRDUP_V_FF_S_1/2 LFL	1/2 LFL	69.55	64.81	64.79
13	IS43_H2_CS_V_FF_S_LFL	LFL	11.74	8.13	7.08
43	IS43_H2_CS_V_FF_S_1/2 LFL	1/2 LFL	16.21	12.32	11.81
53	IS53_ETHY_EST_L_FF_S_LFL	LFL	27.83	17.71	10.91
55	IS53_ETHY_EST_L_FF_S_1/2 LFL	1/2 LFL	FL 69.55 64.81 . 11.74 8.13 FL 16.21 12.32 . 27.83 17.71 FL 40.44 24.82 . 93.38 93.47	17.57	
54	IS54_ETHY_BOGC_V_FF_S_LFL	LFL	93.38	93.47	82.87
54	IS54_ETHY_BOGC_V_FF_S_1/2 LFL	1/2 LFL	247.40	158.05	130.42
55	IS55_ETHY_HPEBOGLR_V_FF_S_LFL	LFL	93.38	93.47	82.87
55	IS55_ETHY_HPEBOGLR_V_FF_S_1/2 LFL	1/2 LFL	247.40	158.05	130.42
57	IS57_PROPY_PSV_L_FF_S_LFL	LFL	7.51	6.62	6.19
57	IS57_PROPY_PSV_L_FF_S_1/2 LFL	1/2 LFL	15.53	12.19	10.66
58	IS58_BUTD_BSV_L_FF_S_LFL	LFL	77.33	44.17	34.53
50	IS58_BUTD_BSV_L_FF_S_1/2 LFL	1/2 LFL	132.06	67.41	53.81

Pof	Scenarios	Estality Probability	Weather Condition 1.5F	Weather Condition 3C	Weather Condition 5D
itei.	Scenarios	Fatality Frobability		Downwind Distance (m)	
62	IS62_ETHY_PIPEU5220BLU_V_FF_S_LFL	LFL	12.82	11.08	10.17
02	IS62_ETHY_PIPEU5220BLU_V_FF_S_1/2 LFL	1/2 LFL	30.49	26.75	25.16
63	IS63_PROPY_PIPEU5210U5220_V_FF_S_LFL	LFL	12.82	11.08	10.17
05	IS63_PROPY_PIPEU5210U5220_V_FF_S_1/2 LFL	1/2 LFL	30.49	26.75	25.16
64	IS64_PROPY_PIPEU5220J_V_FF_S_LFL	LFL	31.09	28.53	27.69
Ref. 62 63 64 65	IS64_PROPY_PIPEU5220J_V_FF_S_1/2 LFL	1/2 LFL	73.34	70.55	72.63
65	IS65_PROPY_PIPEMURP_V_FF_S_LFL	LFL	31.95	29.09	28.14
05	IS65_PROPY_PIPEMURP_V_FF_S_1/2 LFL	1/2 LFL	75.23	72.06	74.14

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Flash Fire Events Due to Medium Releases

Pof	Scenarios	Estality Probability	Weather Condition 1.5F	Weather Condition 3C	Weather Condition 5D
Rei.	Scenarios			Downwind Distance (m)	
2	IS02_NAPH_SSHDSR_V_FF_M_LFL	LFL	28.63	26.65	26.10
2	IS02_NAPH_SSHDSR_V_FF_M_1/2 LFL	1/2 LFL	60.41	56.37	56.70
4	IS04_H2_SSHDSSDUP_V_FF_M_LFL	LFL	36.84	30.86	31.67
-	IS04_H2_SSHDSSDUP_V_FF_M_1/2 LFL	1/2 LFL	44.84	39.49	41.34
5	IS05_H2_SSHDSAAKOD_V_FF_M_LFL	LFL	38.15	31.75	32.92
Ŭ	IS05_H2_SSHDSAAKOD_V_FF_M_1/2 LFL	1/2 LFL	47.07	41.01	43.59
0	IS08_H2_SSHDSAAUP_V_FF_M_LFL	LFL	38.38	30.80	30.21
0	IS08_H2_SSHDSAAUP_V_FF_M_1/2 LFL	1/2 LFL	49.96	41.96	41.91
٩	IS09_H2_SSHDSRGCKOD_V_FF_M_LFL	LFL	37.61	31.22	32.31
9	IS09_H2_SSHDSRGCKOD_V_FF_M_1/2 LFL	1/2 LFL	46.50	40.42	42.90
10	IS10_NAPH_SSHDSS_V_FF_M_LFL	LFL	15.86	13.80	12.68
10	IS10_NAPH_SSHDSS_V_FF_M_1/2 LFL	1/2 LFL	37.53	33.53	32.54
11	IS11_H2_SSHDSSRD_V_FF_M_LFL	LFL	19.68	15.47	15.36
	IS11_H2_SSHDSSRD_V_FF_M_1/2 LFL	1/2 LFL	23.88	19.47	19.89
16	IS16_MEOH_TFUP_V_FF_M_LFL	LFL	30.56	27.89	29.08
10	IS16_MEOH_TFUP_V_FF_M_1/2 LFL	1/2 LFL	99.59	78.27	64.20
10	IS18_NAPH_TFRDUP_V_FF_M_LFL	LFL	64.89	57.87	50.44
10	IS18_NAPH_TFRDUP_V_FF_M_1/2 LFL	1/2 LFL	152.21	88.97	74.92
24	IS21_MEOH_RWCUP_V_FF_M_LFL	LFL	49.77	51.00	56.23
21	IS21_MEOH_RWCUP_V_FF_M_1/2 LFL	1/2 LFL	109.80	123.95	111.99
24	IS24_MEOH_MC_V_FF_M_LFL	LFL	3.30	3.17	3.09
24	IS24_MEOH_MC_V_FF_M_1/2 LFL	1/2 LFL	6.66	6.10	5.78
28	IS28_MEOH_MDD_V_FF_M_LFL	LFL	2.06	1.92	1.84
20	IS28_MEOH_MDD_V_FF_M_1/2 LFL	1/2 LFL	4.14	3.57	3.31
33	IS33_H2_H2PR_V_FF_M_LFL	LFL	38.54	34.38	34.40

Rof	Scenarios	Fatality Probability	Weather Condition 1.5F	Weather Condition 3C	Weather Condition 5D
itei.		T atanty T Tobability		Downwind Distance (m)	
	IS33_H2_H2PR_V_FF_M_1/2 LFL	1/2 LFL	47.25	43.69	46.05
34	IS34_H2_HD_V_FF_M_LFL	LFL	50.21	44.41	45.04
04	IS34_H2_HD_V_FF_M_1/2 LFL	1/2 LFL	61.25	56.55	59.88
36	IS36_H2_FIR_V_FF_M_LFL	LFL	40.97	35.54	34.27
	IS36_H2_FIR_V_FF_M_1/2 LFL	1/2 LFL	53.00	48.02	48.34
38	IS38_H2_SIRUP_V_FF_M_LFL	LFL	41.03	35.25	33.79
00	IS38_H2_SIRUP_V_FF_M_1/2 LFL	1/2 LFL	53.18	47.68	47.77
30	IS39_LPG_S_V_FF_M_LFL	LFL	27.36	25.20	24.38
- 39	IS39_LPG_S_V_FF_M_1/2 LFL	1/2 LFL	65.34	62.98	64.90
41	IS41_LPG_SRDUP_V_FF_M_LFL	LFL	89.50	99.44	104.45
41	IS41_LPG_SRDUP_V_FF_M_1/2 LFL	1/2 LFL	120.50	139.83	139.61
13	IS43_H2_CS_V_FF_M_LFL	LFL	31.32	25.04	23.85
43	IS43_H2_CS_V_FF_M_1/2 LFL	1/2 LFL	39.85	33.84	33.72
53	IS53_ETHY_EST_L_FF_M_LFL	LFL	104.28	47.54	43.46
55	IS53_ETHY_EST_L_FF_M_1/2 LFL	1/2 LFL	162.80	25 43.69 21 44.41 25 56.55 37 35.54 30 48.02 33 35.25 18 47.68 36 25.20 34 62.98 30 99.44 50 139.83 32 25.04 35 33.84 28 47.54 80 72.12 30 350.35 27 533.64 30 350.35 27 533.64 48 28.29 72 70.71 29 162.16 72 224.18	66.04
54	IS54_ETHY_BOGC_V_FF_M_LFL	LFL	296.30	350.35	312.39
54	IS54_ETHY_BOGC_V_FF_M_1/2 LFL	1/2 LFL	634.27	533.64	445.60
55	IS55_ETHY_HPEBOGLR_V_FF_M_LFL	LFL	296.30	350.35	312.39
55	IS55_ETHY_HPEBOGLR_V_FF_M_1/2 LFL	1/2 LFL	634.27	533.64	445.60
57	IS57_PROPY_PSV_L_FF_M_LFL	LFL	30.48	28.29	27.70
57	IS57_PROPY_PSV_L_FF_M_1/2 LFL	1/2 LFL	72.72	70.71	73.17
58	IS58_BUTD_BSV_L_FF_M_LFL	LFL	335.29	162.16	132.19
50	IS58_BUTD_BSV_L_FF_M_1/2 LFL	1/2 LFL	522.72	224.18	181.33

Pof	. Scenarios Fatality I	Estality Probability	Weather Condition 1.5F	Weather Condition 3C	Weather Condition 5D
itei.				Downwind Distance (m)	
62	IS62_ETHY_PIPEU5220BLU_V_FF_M_LFL	LFL	58.39	55.88	56.83
02	IS62_ETHY_PIPEU5220BLU_V_FF_M_1/2 LFL	1/2 LFL	138.13	139.84	150.74
63	IS63_PROPY_PIPEU5210U5220_V_FF_M_LFL	LFL	58.39	55.88	56.83
03	IS63_PROPY_PIPEU5210U5220_V_FF_M_1/2 LFL	1/2 LFL	138.13	139.84	150.74
64	IS64_PROPY_PIPEU5220J_V_FF_M_LFL	LFL	133.64	133.59	138.43
04	IS64_PROPY_PIPEU5220J_V_FF_M_1/2 LFL	1/2 LFL	262.43	302.64	320.15
65	IS65_PROPY_PIPEMURP_V_FF_M_LFL	LFL	135.25	137.06	143.08
05	IS65_PROPY_PIPEMURP_V_FF_M_1/2 LFL	1/2 LFL	262.48	311.01	315.83

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Flash Fire Events Due to Large Releases

Pof	Scenarios	Fatality Probability	Weather Condition 1.5F	Weather Condition 3C	Weather Condition 5D
Nei.	Scenarios		Downwind Distance (m)		
2	IS02_NAPH_SSHDSR_V_FF_L_LFL	LFL	65.66	62.06	62.81
Ref. 2 4 5 8 9 10 11 16 18 21 24 28	IS02_NAPH_SSHDSR_V_FF_L_1/2 LFL	1/2 LFL	113.58	108.81	111.46
4	IS04_H2_SSHDSSDUP_V_FF_L_LFL	LFL	44.06	40.24	40.25
-	IS04_H2_SSHDSSDUP_V_FF_L_1/2 LFL	1/2 LFL	51.47	48.23	50.28
5	IS05_H2_SSHDSAAKOD_V_FF_L_LFL	LFL	46.55	42.64	42.96
0	IS05_H2_SSHDSAAKOD_V_FF_L_1/2 LFL	1/2 LFL	54.99	52.16	53.73
0	IS08_H2_SSHDSAAUP_V_FF_L_LFL	LFL	60.73	55.09	54.93
0	IS08_H2_SSHDSAAUP_V_FF_L_1/2 LFL	1/2 LFL	75.67	71.01	75.11
٩	IS09_H2_SSHDSRGCKOD_V_FF_L_LFL	LFL	46.02	42.12	42.43
3	IS09_H2_SSHDSRGCKOD_V_FF_L_1/2 LFL	1/2 LFL	54.34	51.51	53.11
10	IS10_NAPH_SSHDSS_V_FF_L_LFL	LFL	38.37	35.69	35.50
10	IS10_NAPH_SSHDSS_V_FF_L_1/2 LFL	1/2 LFL	89.63	86.97	92.02
11	IS11_H2_SSHDSSRD_V_FF_L_LFL	LFL	23.13	18.28	17.10
	IS11_H2_SSHDSSRD_V_FF_L_1/2 LFL	1/2 LFL	27.14	22.43	21.59
16	IS16_MEOH_TFUP_V_FF_L_LFL	LFL	51.09	45.16	48.01
10	IS16_MEOH_TFUP_V_FF_L_1/2 LFL	1/2 LFL	152.40	135.73	109.09
10	IS18_NAPH_TFRDUP_V_FF_L_LFL	LFL	118.57	102.57	88.14
10	IS18_NAPH_TFRDUP_V_FF_L_1/2 LFL	1/2 LFL	281.45	150.54	124.59
21	IS21_MEOH_RWCUP_V_FF_L_LFL	LFL	62.37	65.86	71.53
21	IS21_MEOH_RWCUP_V_FF_L_1/2 LFL	1/2 LFL	130.89	151.15	164.81
24	IS24_MEOH_MC_V_FF_L_LFL	LFL	6.58	6.25	6.05
27	IS24_MEOH_MC_V_FF_L_1/2 LFL	1/2 LFL	13.89	12.54	11.90
28	IS28_MEOH_MDD_V_FF_L_LFL	LFL	4.09	3.73	3.53
20	IS28_MEOH_MDD_V_FF_L_1/2 LFL	1/2 LFL	8.13	6.74	6.16
33	IS33_H2_H2PR_V_FF_L_LFL	LFL	44.26	42.99	43.60

Rof	Scenarios	Fatality Probability	Weather Condition 1.5F	Weather Condition 3C	Weather Condition 5D
itter.	ocenanos	T atanty Trobability			
	IS33_H2_H2PR_V_FF_L_1/2 LFL	1/2 LFL	52.49	52.32	55.05
34	IS34_H2_HD_V_FF_L_LFL	LFL	59.54	57.02	58.67
04	IS34_H2_HD_V_FF_L_1/2 LFL	1/2 LFL	70.75	68.89	73.43
36	IS36_H2_FIR_V_FF_L_LFL	LFL	63.16	60.27	61.96
36 38 39 41 43	IS36_H2_FIR_V_FF_L_1/2 LFL	1/2 LFL	78.57	76.55	83.76
38	IS38_H2_SIRUP_V_FF_L_LFL	LFL	63.51	60.23	61.69
Ref. I 34 I 36 I 38 I 39 I 41 I 53 I 54 I 55 I 57 I 58 I 1 1 58 I	IS38_H2_SIRUP_V_FF_L_1/2 LFL	1/2 LFL	78.98	76.55	83.39
30	IS39_LPG_S_V_FF_L_LFL	LFL	65.38	62.49	63.96
Ref. 34 36 38 39 41 43 53 54 55 57 58	IS39_LPG_S_V_FF_L_1/2 LFL	1/2 LFL	151.25	152.97	164.37
11	IS41_LPG_SRDUP_V_FF_L_LFL	LFL	109.39	125.04	129.00
41	IS41_LPG_SRDUP_V_FF_L_1/2 LFL	1/2 LFL	137.74	161.27	160.29
13	IS43_H2_CS_V_FF_L_LFL	LFL	41.04	36.28	36.46
43	IS43_H2_CS_V_FF_L_1/2 LFL	1/2 LFL	48.74	45.01	46.58
53	IS53_ETHY_EST_L_FF_L_LFL	LFL	238.66	85.21	69.36
55	IS53_ETHY_EST_L_FF_L_1/2 LFL	1/2 LFL	377.43	133.45	109.59
54	IS54_ETHY_BOGC_V_FF_L_LFL	LFL	618.58	770.96	618.40
54	IS54_ETHY_BOGC_V_FF_L_1/2 LFL	1/2 LFL	921.97	1042.52	884.72
55	IS55_ETHY_HPEBOGLR_V_FF_L_LFL	LFL	618.58	770.96	618.40
55	IS55_ETHY_HPEBOGLR_V_FF_L_1/2 LFL	1/2 LFL	921.97	1042.52	884.72
57	IS57_PROPY_PSV_L_FF_L_LFL	LFL	72.61	69.53	71.45
57	IS57_PROPY_PSV_L_FF_L_1/2 LFL	1/2 LFL	163.90	Weather Condition 3C ownwind Distance (m 52.32 57.02 68.89 60.27 76.55 60.23 76.55 60.23 76.55 62.49 152.97 125.04 161.27 36.28 45.01 85.21 133.45 770.96 1042.52 69.53 170.39 311.15 428.00	183.05
59	IS58_BUTD_BSV_L_FF_L_LFL	LFL	745.71	311.15	245.09
Ref. IS 34 IS 36 IS 38 IS 39 IS 39	IS58_BUTD_BSV_L_FF_L_1/2 LFL	1/2 LFL	1161.60	428.00	339.70

Pof	Scenarios	Scenarios Fatality Probability	Weather Condition 1.5F	Weather Condition 3C	Weather Condition 5D
itei.	Scenarios			Downwind Distance (m)	
62	IS62_ETHY_PIPEU5220BLU_V_FF_L_LFL	LFL	136.57	133.10	139.00
02	IS62_ETHY_PIPEU5220BLU_V_FF_L_1/2 LFL	1/2 LFL	293.69	320.43	351.13
63	IS63_PROPY_PIPEU5210U5220_V_FF_L_LFL	LFL	136.57	133.10	139.00
63	IS63_PROPY_PIPEU5210U5220_V_FF_L_1/2 LFL	1/2 LFL	293.69	320.43	351.13
64	IS64_PROPY_PIPEU5220J_V_FF_L_LFL	LFL	275.31	289.42	308.67
04	IS64_PROPY_PIPEU5220J_V_FF_L_1/2 LFL	1/2 LFL	500.87	607.73	653.09
65	IS65_PROPY_PIPEMURP_V_FF_L_LFL	LFL	275.71	293.10	316.03
05	IS65_PROPY_PIPEMURP_V_FF_L_1/2 LFL	1/2 LFL	497.96	623.83	641.99

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Flash Fire Events Due to Catastrophic Releases

Pof	Scenarios	Eatality Probability	Weather Condition 1.5F	Weather Condition 3C	Weather Condition 5D
Nei.	Scenarios			Downwind Distance (m)	
2	IS02_NAPH_SSHDSR_V_FF_C_LFL	LFL	163.84	156.87	159.94
2	IS02_NAPH_SSHDSR_V_FF_C_1/2 LFL	1/2 LFL	241.74	219.70	227.93
Ref. 2 4 5 8 9 10 11 16 18 21 24 23	IS04_H2_SSHDSSDUP_V_FF_C_LFL	LFL	46.07	45.41	45.03
	IS04_H2_SSHDSSDUP_V_FF_C_1/2 LFL	1/2 LFL	53.45	53.73	55.74
5	IS05_H2_SSHDSAAKOD_V_FF_C_LFL	LFL	49.96	48.92	49.36
5	IS05_H2_SSHDSAAKOD_V_FF_C_1/2 LFL	1/2 LFL	57.85	58.44	60.40
0	IS08_H2_SSHDSAAUP_V_FF_C_LFL	LFL	75.73	75.24	78.41
Ref. 2 4 5 8 9 10 11 16 18 21 24 28 33	IS08_H2_SSHDSAAUP_V_FF_C_1/2 LFL	1/2 LFL	90.80	90.69	98.85
٥	IS09_H2_SSHDSRGCKOD_V_FF_C_LFL	LFL	49.12	48.22	48.87
Ref. 2 4 5 8 9 10 11 16 18 21 24 28 33	IS09_H2_SSHDSRGCKOD_V_FF_C_1/2 LFL	1/2 LFL	57.34	57.21	59.70
10	IS10_NAPH_SSHDSS_V_FF_C_LFL	LFL	118.46	115.08	120.06
10 11	IS10_NAPH_SSHDSS_V_FF_C_1/2 LFL	1/2 LFL	247.36	245.81	272.34
11	IS11_H2_SSHDSSRD_V_FF_C_LFL	LFL	25.20	20.24	18.53
11	IS11_H2_SSHDSSRD_V_FF_C_1/2 LFL	1/2 LFL	29.02	Downwind Distance (m) 156.87 219.70 45.41 53.73 48.92 58.44 75.24 90.69 48.22 57.21 115.08 245.81 20.24 245.81 20.24 241.28 106.20 291.23 54.22 64.24 87.10 184.75 16.94 40.89 9.05 21.39 46.04	23.13
Ref. 2 4 5 8 9 10 11 16 18 21 24 28 33	IS16_MEOH_TFUP_V_FF_C_LFL	LFL	111.22	106.20	117.47
10	IS16_MEOH_TFUP_V_FF_C_1/2 LFL	1/2 LFL	301.07	291.23	252.72
10	IS18_NAPH_TFRDUP_V_FF_C_LFL	LFL	46.14	54.22	53.78
10	IS18_NAPH_TFRDUP_V_FF_C_1/2 LFL	1/2 LFL	52.22	64.24	64.76
04	IS21_MEOH_RWCUP_V_FF_C_LFL	LFL	83.72	87.10	90.56
21	IS21_MEOH_RWCUP_V_FF_C_1/2 LFL	1/2 LFL	188.78	184.75	201.88
24	IS24_MEOH_MC_V_FF_C_LFL	LFL	17.73	16.94	16.61
Ref. 2 4 5 8 9 10 11 16 18 21 24 28 33	IS24_MEOH_MC_V_FF_C_1/2 LFL	1/2 LFL	43.51	40.89	41.06
29	IS28_MEOH_MDD_V_FF_C_LFL	LFL	10.32	9.05	8.46
20	IS28_MEOH_MDD_V_FF_C_1/2 LFL	1/2 LFL	24.30	I.Sr Weather Condition 30 Downwind Distance (m 156.87 219.70 45.41 53.73 48.92 58.44 75.24 90.69 48.22 57.21 115.08 245.81 20.24 242.28 106.20 291.23 54.22 64.24 87.10 184.75 16.94 40.89 9.05 21.39 46.04	20.21
33	IS33_H2_H2PR_V_FF_C_LFL	LFL	44.39	46.04	47.22

Rof	Scenarios	Eatality Probability	Weather Condition 1.5F	Weather Condition 3C	Weather Condition 5D
itten.	ocenanos	T atanty T Tobability		Downwind Distance (m)	
	IS33_H2_H2PR_V_FF_C_1/2 LFL	1/2 LFL	51.73	54.86	58.66
34	IS34_H2_HD_V_FF_C_LFL	LFL	62.98	63.46	65.13
54	IS34_H2_HD_V_FF_C_1/2 LFL	1/2 LFL	72.85	75.41	80.40
26	IS36_H2_FIR_V_FF_C_LFL	LFL	74.82	76.39	80.09
30	IS36_H2_FIR_V_FF_C_1/2 LFL	1/2 LFL	90.30	92.20	101.46
38	IS38_H2_SIRUP_V_FF_C_LFL	LFL	597.48	695.88	775.27
Ref. I 34 I 36 I 38 I 39 I 41 I 53 I 54 I 55 I 57 I 58 I	IS38_H2_SIRUP_V_FF_C_1/2 LFL	1/2 LFL	1039.70	1517.41	1464.41
20	IS39_LPG_S_V_FF_C_LFL	LFL	197.22	190.26	199.23
Ref. 34 36 38 39 41 43 53 54 55 57 58	IS39_LPG_S_V_FF_C_1/2 LFL	1/2 LFL	338.48	393.44	401.48
11	IS41_LPG_SRDUP_V_FF_C_LFL	LFL	126.51	144.88	149.07
41	IS41_LPG_SRDUP_V_FF_C_1/2 LFL	1/2 LFL	152.47	177.69	176.84
13	IS43_H2_CS_V_FF_C_LFL	LFL	286.70	365.34	381.30
43	IS43_H2_CS_V_FF_C_1/2 LFL	1/2 LFL	521.28	674.87	565.03
53	IS53_ETHY_EST_L_FF_C_LFL	LFL	717.93	198.18	143.95
55	IS53_ETHY_EST_L_FF_C_1/2 LFL	1/2 LFL	1112.81	320.50	240.29
54	IS54_ETHY_BOGC_V_FF_C_LFL	LFL	784.89	974.00	982.69
54	IS54_ETHY_BOGC_V_FF_C_1/2 LFL	1/2 LFL	1081.26	1217.58	1213.51
55	IS55_ETHY_HPEBOGLR_V_FF_C_LFL	LFL	784.89	974.00	982.69
55	IS55_ETHY_HPEBOGLR_V_FF_C_1/2 LFL	1/2 LFL	1081.26	1217.58	1213.51
57	IS57_PROPY_PSV_L_FF_C_LFL	LFL	211.70	211.12	221.65
57	IS57_PROPY_PSV_L_FF_C_1/2 LFL	1/2 LFL	415.82	Weather Condition 30 Downwind Distance (m 54.86 63.46 75.41 76.39 92.20 695.88 1517.41 190.26 393.44 144.88 177.69 365.34 674.87 198.18 320.50 974.00 1217.58 974.00 1217.58 211.12 465.60 757.15 1098.57	516.51
59	IS58_BUTD_BSV_L_FF_C_LFL	LFL	2154.78	757.15	516.31
50	IS58_BUTD_BSV_L_FF_C_1/2 LFL	1/2 LFL	3420.88	1098.57	746.35

Pof	. Scenarios Fatality	Estality Probability	Weather Condition 1.5F	Weather Condition 3C	Weather Condition 5D
itei.		T atanty Probability		Downwind Distance (m)	
62	IS62_ETHY_PIPEU5220BLU_V_FF_C_LFL	LFL	316.67	342.12	372.18
02	IS62_ETHY_PIPEU5220BLU_V_FF_C_1/2 LFL	1/2 LFL	451.07	523.99	547.07
63	IS63_PROPY_PIPEU5210U5220_V_FF_C_LFL	LFL	316.67	342.12	372.18
05	IS63_PROPY_PIPEU5210U5220_V_FF_C_1/2 LFL	1/2 LFL	451.07	523.99	547.07
64	IS64_PROPY_PIPEU5220J_V_FF_C_LFL	LFL	667.52	730.87	789.85
04	IS64_PROPY_PIPEU5220J_V_FF_C_1/2 LFL	1/2 LFL	945.32	1143.04	1210.79
65	IS65_PROPY_PIPEMURP_V_FF_C_LFL	LFL	642.45	713.57	772.32
05	IS65_PROPY_PIPEMURP_V_FF_C_1/2 LFL	1/2 LFL	1192.65	1456.56	1515.88

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Explosion Events Due to Minor Releases

Def	Occurrica	Hame Brack at 1114 0/	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Ref.	Scenarios	Harm Probability %		Downwind Distance (m)	
	IS02_NAPH_SSHDSR_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
2	IS02_NAPH_SSHDSR_V_EXP_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS02_NAPH_SSHDSR_V_EXP_0_0.01	0.01	Not reachable	Not reachable	Not reachable
	IS04_H2_SSHDSSDUP_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
4	IS04_H2_SSHDSSDUP_V_EXP_0_0.5	0.50	Not reachable	Not reachable	Not reachable
Ref. 2 4 5 8 9 10 11 16 18	IS04_H2_SSHDSSDUP_V_EXP_0_0.01	0.01	Not reachable	Not reachable	Not reachable
Ref. 2 4 5 8 9 10 11 16 18	IS05_H2_SSHDSAAKOD_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
	IS05_H2_SSHDSAAKOD_V_EXP_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS05_H2_SSHDSAAKOD_V_EXP_0_0.01	0.01	Not reachable	Not reachable	Not reachable
	IS08_H2_SSHDSAAUP_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
8	IS08_H2_SSHDSAAUP_V_EXP_0_0.5	0.50	Not reachable	Not reachable	Not reachable
2 4 5 8 9 10 11	IS08_H2_SSHDSAAUP_V_EXP_0_0.01	0.01	Not reachable	Not reachable	Not reachable
	IS09_H2_SSHDSRGCKOD_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
9	IS09_H2_SSHDSRGCKOD_V_EXP_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS09_H2_SSHDSRGCKOD_V_EXP_0_0.01	0.01	Not reachable	Not reachable	Not reachable
	IS10_NAPH_SSHDSS_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
10	IS10_NAPH_SSHDSS_V_EXP_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS10_NAPH_SSHDSS_V_EXP_0_0.01	0.01	Not reachable	Not reachable	Not reachable
	IS11_H2_SSHDSSRD_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
11	IS11_H2_SSHDSSRD_V_EXP_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS11_H2_SSHDSSRD_V_EXP_0_0.01	0.01	Not reachable	Not reachable	Not reachable
	IS16_MEOH_TFUP_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
16	IS16_MEOH_TFUP_V_EXP_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS16_MEOH_TFUP_V_EXP_0_0.01	0.01	Not reachable	Not reachable	Not reachable
18	IS18_NAPH_TFRDUP_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable

Def	O	Harm Probability %	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Ref.	Scenarios		Downwind Distance (m)		
	IS18_NAPH_TFRDUP_V_EXP_0_0.5	0.50	11.21	Not reachable	Not reachable
	IS18_NAPH_TFRDUP_V_EXP_0_0.01	0.01	13.25	Not reachable	Not reachable
	IS21_MEOH_RWCUP_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
21	IS21_MEOH_RWCUP_V_EXP_0_0.5	0.50	10.92	Not reachable	Not reachable
	IS21_MEOH_RWCUP_V_EXP_0_0.01	0.01	12.47	Not reachable	Not reachable
	IS24_MEOH_MC_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
24	IS24_MEOH_MC_V_EXP_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS24_MEOH_MC_V_EXP_0_0.01	0.01	Not reachable	Not reachable	Not reachable
	IS28_MEOH_MDD_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
28	IS28_MEOH_MDD_V_EXP_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS28_MEOH_MDD_V_EXP_0_0.01	0.01	Not reachable	Not reachable	Not reachable
	IS33_H2_H2PR_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
33	IS33_H2_H2PR_V_EXP_0_0.5	0.50	11.12	Not reachable	Not reachable
	IS33_H2_H2PR_V_EXP_0_0.01	0.01	13.01	Not reachable	Not reachable
	IS34_H2_HD_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
34	IS34_H2_HD_V_EXP_0_0.5	0.50	11.29	Not reachable	Not reachable
	IS34_H2_HD_V_EXP_0_0.01	0.01	13.45	Not reachable	Not reachable
	IS36_H2_FIR_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
36	IS36_H2_FIR_V_EXP_0_0.5	0.50	11.10	Not reachable	Not reachable
	IS36_H2_FIR_V_EXP_0_0.01	0.01	12.96	Not reachable	Not reachable
	IS38_H2_SIRUP_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
38	IS38_H2_SIRUP_V_EXP_0_0.5	0.50	11.07	Not reachable	Not reachable
	IS38_H2_SIRUP_V_EXP_0_0.01	0.01	12.88	Not reachable	Not reachable
	IS39_LPG_S_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
39	IS39_LPG_S_V_EXP_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS39_LPG_S_V_EXP_0_0.01	0.01	Not reachable	Not reachable	Not reachable

Def	O remeniae	Hamme Duck als ilites 0(Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Ref.	Scenarios	Harm Probability %	0.99 Not reachable	Downwind Distance (m)	
	IS41_LPG_SRDUP_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
41	IS41_LPG_SRDUP_V_EXP_0_0.5	0.50	11.27	11.11	Not reachable
	IS41_LPG_SRDUP_V_EXP_0_0.01	0.01	13.40	12.99	Not reachable
	IS43_H2_CS_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
43	IS43_H2_CS_V_EXP_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS43_H2_CS_V_EXP_0_0.01	0.01	Not reachable	Not reachable	Not reachable
	IS53_ETHY_EST_L_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
53	IS53_ETHY_EST_L_EXP_0_0.5	0.50	Not reachable	Not reachable	Not reachable
Ref. 41 43 53 54 55 57 58 62 63	IS53_ETHY_EST_L_EXP_0_0.01	0.01	Not reachable	Not reachable	Not reachable
	IS54_ETHY_BOGC_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
54	IS54_ETHY_BOGC_V_EXP_0_0.5	0.50	63.19	42.35	32.11
	IS54_ETHY_BOGC_V_EXP_0_0.01	0.01	68.55	46.29	35.66
	IS55_ETHY_HPEBOGLR_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
55	IS55_ETHY_HPEBOGLR_V_EXP_0_0.5	0.50	63.19	42.35	32.11
	IS55_ETHY_HPEBOGLR_V_EXP_0_0.01	0.01	68.55	46.29	35.66
	IS57_PROPY_PSV_L_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
57	IS57_PROPY_PSV_L_EXP_0_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS57_PROPY_PSV_L_EXP_0_0.01	0.01	Not reachable	Not reachable	Not reachable
	IS58_BUTD_BSV_L_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
58	IS58_BUTD_BSV_L_EXP_0_0.5	0.50	32.16	11.37	Not reachable
	IS58_BUTD_BSV_L_EXP_0_0.01	0.01	35.79	13.67	Not reachable
	IS62_ETHY_PIPEU5220BLU_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
62	IS62_ETHY_PIPEU5220BLU_V_EXP_0_0.5	0.50	Not reachable	Not reachable	Not reachable
Ref. 41 43 53 54 55 57 58 62 63	IS62_ETHY_PIPEU5220BLU_V_EXP_0_0.01	0.01	Not reachable	Not reachable	Not reachable
63	IS63_PROPY_PIPEU5210U5220_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
03	IS63_PROPY_PIPEU5210U5220_V_EXP_0_0.5	0.50	Not reachable	Not reachable	Not reachable

D .(Scenarios		Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Ref.		Harm Probability %		Downwind Distance (m)	
	IS63_PROPY_PIPEU5210U5220_V_EXP_0_0.01	0.01	Not reachable	Not reachable	Not reachable
	IS64_PROPY_PIPEU5220J_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
64	IS64_PROPY_PIPEU5220J_V_EXP_0_0.5	0.50	11.33	11.19	11.14
	IS64_PROPY_PIPEU5220J_V_EXP_0_0.01	0.01	13.58	13.19	13.05
	IS65_PROPY_PIPEMURP_V_EXP_0_0.99	0.99	Not reachable	Not reachable	Not reachable
65	IS65_PROPY_PIPEMURP_V_EXP_0_0.5	0.50	11.35	11.20	11.14
	IS65_PROPY_PIPEMURP_V_EXP_0_0.01	0.01	13.63	13.21	13.06

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Explosion Events Due to Small Releases

Def	Occurrica	Lienen Breck et iliter 0/	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Ref.	Scenarios	Harm Probability %		Downwind Distance (m)	
	IS02_NAPH_SSHDSR_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable
2	IS02_NAPH_SSHDSR_V_EXP_S_0.5	0.50	11.26	11.15	11.11
	IS02_NAPH_SSHDSR_V_EXP_S_0.01	0.01	13.39	13.09	12.99
Ref. 2 4 5 8 9 10 11 16 18	IS04_H2_SSHDSSDUP_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable
4	IS04_H2_SSHDSSDUP_V_EXP_S_0.5	0.50	22.36	11.79	11.67
	IS04_H2_SSHDSSDUP_V_EXP_S_0.01	0.01	26.33	14.80	14.47
	IS05_H2_SSHDSAAKOD_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable
5	IS05_H2_SSHDSAAKOD_V_EXP_S_0.5	0.50	22.36	11.79	11.67
	IS05_H2_SSHDSAAKOD_V_EXP_S_0.01	0.01	26.33	14.80	14.47
	IS08_H2_SSHDSAAUP_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable
8	IS08_H2_SSHDSAAUP_V_EXP_S_0.5	0.50	22.33	11.76	11.64
	IS08_H2_SSHDSAAUP_V_EXP_S_0.01	0.01	26.24	14.73	14.40
	IS09_H2_SSHDSRGCKOD_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable
9	IS09_H2_SSHDSRGCKOD_V_EXP_S_0.5	0.50	22.32	11.76	11.64
	IS09_H2_SSHDSRGCKOD_V_EXP_S_0.01	0.01	26.22	14.71	14.39
Ref. 2 4 5 8 9 10 11 16 18	IS10_NAPH_SSHDSS_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable
10	IS10_NAPH_SSHDSS_V_EXP_S_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS10_NAPH_SSHDSS_V_EXP_S_0.01	0.01	Not reachable	Not reachable	Not reachable
	IS11_H2_SSHDSSRD_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable
11	IS11_H2_SSHDSSRD_V_EXP_S_0.5	0.50	11.38	Not reachable	Not reachable
Ref. 2 4 5 8 9 10 11 16 18	IS11_H2_SSHDSSRD_V_EXP_S_0.01	0.01	13.70	Not reachable	Not reachable
	IS16_MEOH_TFUP_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable
16	IS16_MEOH_TFUP_V_EXP_S_0.5	0.50	31.90	21.67	11.59
	IS16_MEOH_TFUP_V_EXP_S_0.01	0.01	35.11	24.47	14.27
18	IS18_NAPH_TFRDUP_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable

Def	Secondrice Horm Drobability (Llow Drobobility 0/	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D	
itei.	Scenarios		Downwind Distance (m)			
	IS18_NAPH_TFRDUP_V_EXP_S_0.5	0.50	32.58	22.29	22.27	
	IS18_NAPH_TFRDUP_V_EXP_S_0.01	0.01	36.92	26.15	26.08	
	IS21_MEOH_RWCUP_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable	
21	IS21_MEOH_RWCUP_V_EXP_S_0.5	0.50	43.22	42.69	32.43	
	IS21_MEOH_RWCUP_V_EXP_S_0.01	0.01	48.64	47.21	36.51	
	IS24_MEOH_MC_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable	
24	IS24_MEOH_MC_V_EXP_S_0.5	0.50	Not reachable	Not reachable	Not reachable	
	IS24_MEOH_MC_V_EXP_S_0.01	0.01	Not reachable	Not reachable	Not reachable	
	IS28_MEOH_MDD_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable	
28	IS28_MEOH_MDD_V_EXP_S_0.5	0.50	Not reachable	Not reachable	Not reachable	
	IS28_MEOH_MDD_V_EXP_S_0.01	0.01	Not reachable	Not reachable	Not reachable	
	IS33_H2_H2PR_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable	
33	IS33_H2_H2PR_V_EXP_S_0.5	0.50	23.01	12.26	12.17	
	IS33_H2_H2PR_V_EXP_S_0.01	0.01	28.08	16.07	15.82	
	IS34_H2_HD_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable	
34	IS34_H2_HD_V_EXP_S_0.5	0.50	23.45	22.84	22.70	
	IS34_H2_HD_V_EXP_S_0.01	0.01	29.25	27.63	27.26	
	IS36_H2_FIR_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable	
36	IS36_H2_FIR_V_EXP_S_0.5	0.50	22.98	12.22	12.13	
	IS36_H2_FIR_V_EXP_S_0.01	0.01	28.01	15.95	15.71	
	IS38_H2_SIRUP_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable	
38	IS38_H2_SIRUP_V_EXP_S_0.5	0.50	22.91	12.17	12.08	
	IS38_H2_SIRUP_V_EXP_S_0.01	0.01	27.82	15.82	15.57	
	IS39_LPG_S_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable	
39	IS39_LPG_S_V_EXP_S_0.5	0.50	11.13	11.03	0.00	
	IS39_LPG_S_V_EXP_S_0.01	0.01	13.02	12.76	0.00	

Def	Secondrice	Hama Dask skiliter 0/	Weather Condition 1F	Weather Condition 1F Weather Condition 3C	
Ref.	Scenarios	Harm Probability %		Downwind Distance (m)	
	IS41_LPG_SRDUP_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable
41	IS41_LPG_SRDUP_V_EXP_S_0.5	0.50	62.76	63.86	63.68
	IS41_LPG_SRDUP_V_EXP_S_0.01	0.01	67.40	70.35	69.86
	IS43_H2_CS_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable
43	IS43_H2_CS_V_EXP_S_0.5	0.50	11.68	11.32	11.20
	IS43_H2_CS_V_EXP_S_0.01	0.01	14.50	13.54	13.21
	IS53_ETHY_EST_L_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable
53	IS53_ETHY_EST_L_EXP_S_0.5	0.50	46.35	22.76	11.98
	IS53_ETHY_EST_L_EXP_S_0.01	0.01	57.03	27.39	15.31
	IS54_ETHY_BOGC_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable
54	IS54_ETHY_BOGC_V_EXP_S_0.5	0.50	252.03	159.43	138.96
	IS54_ETHY_BOGC_V_EXP_S_0.01	0.01	272.28	175.30	154.03
	IS55_ETHY_HPEBOGLR_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable
55	IS55_ETHY_HPEBOGLR_V_EXP_S_0.5	0.50	252.03	159.43	138.96
	IS55_ETHY_HPEBOGLR_V_EXP_S_0.01	0.01	272.28	175.30	154.03
	IS57_PROPY_PSV_L_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable
57	IS57_PROPY_PSV_L_EXP_S_0.5	0.50	11.21	11.09	11.06
	IS57_PROPY_PSV_L_EXP_S_0.01	0.01	13.24	12.93	12.84
	IS58_BUTD_BSV_L_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable
58	IS58_BUTD_BSV_L_EXP_S_0.5	0.50	141.88	66.00	55.18
	IS58_BUTD_BSV_L_EXP_S_0.01	0.01	161.87	76.09	63.88
	IS62_ETHY_PIPEU5220BLU_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable
62	IS62_ETHY_PIPEU5220BLU_V_EXP_S_0.5	0.50	31.91	21.72	21.65
	IS62_ETHY_PIPEU5220BLU_V_EXP_S_0.01	0.01	35.12	24.61	24.43
63	IS63_PROPY_PIPEU5210U5220_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable
03	IS63_PROPY_PIPEU5210U5220_V_EXP_S_0.5	0.50	31.91	21.72	21.65

D .(Scenarios		Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Ref.		Harm Probability %		Downwind Distance (m)	
	IS63_PROPY_PIPEU5210U5220_V_EXP_S_0.01	0.01	35.12	24.61	24.43
	IS64_PROPY_PIPEU5220J_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable
64	IS64_PROPY_PIPEU5220J_V_EXP_S_0.5	0.50	74.62	74.10	74.00
64	IS64_PROPY_PIPEU5220J_V_EXP_S_0.01	0.01	82.39	81.01	80.73
	IS65_PROPY_PIPEMURP_V_EXP_S_0.99	0.99	Not reachable	Not reachable	Not reachable
65	IS65_PROPY_PIPEMURP_V_EXP_S_0.5	0.50	74.73	74.16	74.04
	IS65_PROPY_PIPEMURP_V_EXP_S_0.01	0.01	82.68	81.16	80.84

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Explosion Events Due to Medium Releases

Def	Secondrice		Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Ref.	Scenarios	Harm Probability %		Downwind Distance (m)	1
	IS02_NAPH_SSHDSR_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable
2	IS02_NAPH_SSHDSR_V_EXP_M_0.5	0.50	64.83	54.38	54.31
	IS02_NAPH_SSHDSR_V_EXP_M_0.01	0.01	72.94	61.74	61.56
	IS04_H2_SSHDSSDUP_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable
4	IS04_H2_SSHDSSDUP_V_EXP_M_0.5	0.50	41.07	32.82	33.02
	IS04_H2_SSHDSSDUP_V_EXP_M_0.01	0.01	42.88	37.56	38.09
	IS05_H2_SSHDSAAKOD_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable
5	IS05_H2_SSHDSAAKOD_V_EXP_M_0.5	0.50	42.27	33.39	34.16
	IS05_H2_SSHDSAAKOD_V_EXP_M_0.01	0.01	46.08	39.10	41.16
	IS08_H2_SSHDSAAUP_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable
8	IS08_H2_SSHDSAAUP_V_EXP_M_0.5	0.50	46.78	45.66	45.41
8	IS08_H2_SSHDSAAUP_V_EXP_M_0.01	0.01	58.17	55.17	54.52
	IS09_H2_SSHDSRGCKOD_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable
9	IS09_H2_SSHDSRGCKOD_V_EXP_M_0.5	0.50	41.98	33.24	34.04
	IS09_H2_SSHDSRGCKOD_V_EXP_M_0.01	0.01	45.32	38.68	40.84
	IS10_NAPH_SSHDSS_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable
10	IS10_NAPH_SSHDSS_V_EXP_M_0.5	0.50	32.66	32.36	32.25
	IS10_NAPH_SSHDSS_V_EXP_M_0.01	0.01	37.13	36.33	36.05
	IS11_H2_SSHDSSRD_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable
11	IS11_H2_SSHDSSRD_V_EXP_M_0.5	0.50	20.90	11.71	11.69
	IS11_H2_SSHDSSRD_V_EXP_M_0.01	0.01	22.42	14.60	14.52
	IS16_MEOH_TFUP_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable
16	IS16_MEOH_TFUP_V_EXP_M_0.5	0.50	95.82	74.35	64.45
	IS16_MEOH_TFUP_V_EXP_M_0.01	0.01	105.61	81.68	71.93
18	IS18_NAPH_TFRDUP_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable

Def	Secondrine	Llow Drobobility 0/	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D	
Ref.	Scenarios		Downwind Distance (m)			
	IS18_NAPH_TFRDUP_V_EXP_M_0.5	0.50	71.18	70.63	61.48	
	IS18_NAPH_TFRDUP_V_EXP_M_0.01	0.01	73.17	71.70	63.98	
	IS21_MEOH_RWCUP_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable	
21	IS21_MEOH_RWCUP_V_EXP_M_0.5	0.50	107.37	127.59	118.16	
	IS21_MEOH_RWCUP_V_EXP_M_0.01	0.01	119.78	140.35	131.89	
	IS24_MEOH_MC_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable	
24	IS24_MEOH_MC_V_EXP_M_0.5	0.50	Not reachable	Not reachable	Not reachable	
	IS24_MEOH_MC_V_EXP_M_0.01	0.01	Not reachable	Not reachable	Not reachable	
	IS28_MEOH_MDD_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable	
28	IS28_MEOH_MDD_V_EXP_M_0.5	0.50	Not reachable	Not reachable	Not reachable	
	IS28_MEOH_MDD_V_EXP_M_0.01	0.01	Not reachable	Not reachable	Not reachable	
	IS33_H2_H2PR_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable	
33	IS33_H2_H2PR_V_EXP_M_0.5	0.50	43.40	34.76	34.55	
	IS33_H2_H2PR_V_EXP_M_0.01	0.01	49.11	42.77	42.21	
	IS34_H2_HD_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable	
34	IS34_H2_HD_V_EXP_M_0.5	0.50	54.39	50.95	51.63	
	IS34_H2_HD_V_EXP_M_0.01	0.01	61.78	53.93	54.37	
	IS36_H2_FIR_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable	
36	IS36_H2_FIR_V_EXP_M_0.5	0.50	58.50	47.20	46.79	
	IS36_H2_FIR_V_EXP_M_0.01	0.01	72.81	59.30	58.22	
	IS38_H2_SIRUP_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable	
38	IS38_H2_SIRUP_V_EXP_M_0.5	0.50	58.31	47.02	46.62	
	IS38_H2_SIRUP_V_EXP_M_0.01	0.01	72.29	58.84	57.76	
	IS39_LPG_S_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable	
39	IS39_LPG_S_V_EXP_M_0.5	0.50	64.26	63.82	63.73	
	IS39_LPG_S_V_EXP_M_0.01	0.01	71.43	70.26	70.00	

D -(Secondrine	Hanna Duck als iliter 0/	Weather Condition 1F	Weather Condition 1F Weather Condition 3C W		
Ref.	Scenarios	Harm Probability %		Downwind Distance (m)		
	IS41_LPG_SRDUP_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable	
41	IS41_LPG_SRDUP_V_EXP_M_0.5	0.50	101.51	110.61	112.59	
	IS41_LPG_SRDUP_V_EXP_M_0.01	0.01	104.05	111.64	116.95	
	IS43_H2_CS_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable	
43	IS43_H2_CS_V_EXP_M_0.5	0.50	32.83	24.11	33.07	
	IS43_H2_CS_V_EXP_M_0.01	0.01	37.58	31.02	38.24	
	IS53_ETHY_EST_L_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable	
53	IS53_ETHY_EST_L_EXP_M_0.5	0.50	182.42	79.04	67.29	
	IS53_ETHY_EST_L_EXP_M_0.01	0.01	220.13	94.26	79.54	
	IS54_ETHY_BOGC_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable	
54	IS54_ETHY_BOGC_V_EXP_M_0.5	0.50	670.95	565.25	473.29	
	IS54_ETHY_BOGC_V_EXP_M_0.01	0.01	739.84	624.55	529.30	
	IS55_ETHY_HPEBOGLR_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable	
55	IS55_ETHY_HPEBOGLR_V_EXP_M_0.5	0.50	670.95	565.25	473.29	
	IS55_ETHY_HPEBOGLR_V_EXP_M_0.01	0.01	739.84	624.55	529.30	
	IS57_PROPY_PSV_L_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable	
57	IS57_PROPY_PSV_L_EXP_M_0.5	0.50	74.62	74.16	74.09	
Ref. 41 43 53 54 55 57 58 62 63	IS57_PROPY_PSV_L_EXP_M_0.01	0.01	82.39	81.16	80.96	
	IS58_BUTD_BSV_L_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable	
58	IS58_BUTD_BSV_L_EXP_M_0.5	0.50	577.72	243.23	200.24	
	IS58_BUTD_BSV_L_EXP_M_0.01	0.01	674.82	282.30	234.29	
	IS62_ETHY_PIPEU5220BLU_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable	
62	IS62_ETHY_PIPEU5220BLU_V_EXP_M_0.5	0.50	137.76	137.02	157.01	
	IS62_ETHY_PIPEU5220BLU_V_EXP_M_0.01	0.01	150.82	148.84	168.81	
63	IS63_PROPY_PIPEU5210U5220_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable	
03	IS63_PROPY_PIPEU5210U5220_V_EXP_M_0.5	0.50	137.76	137.02	157.01	

Ref.	Scenarios	Hanna Daakakilita 0/	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
		Harm Probability %		Downwind Distance (m)	
	IS63_PROPY_PIPEU5210U5220_V_EXP_M_0.01	0.01	150.82	148.84	168.81
	IS64_PROPY_PIPEU5220J_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable
64	IS64_PROPY_PIPEU5220J_V_EXP_M_0.5	0.50	277.39	315.60	335.76
	IS64_PROPY_PIPEU5220J_V_EXP_M_0.01	0.01	306.65	341.86	362.27
	IS65_PROPY_PIPEMURP_V_EXP_M_0.99	0.99	Not reachable	Not reachable	Not reachable
65	IS65_PROPY_PIPEMURP_V_EXP_M_0.5	0.50	277.64	325.82	325.97
	IS65_PROPY_PIPEMURP_V_EXP_M_0.01	0.01	307.32	352.44	352.85

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Explosion Events Due to Large Releases

Def	Connection Horm Dro	Lienen Breck et illite 0/	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Ref.	Scenarios	Harm Probability %		Downwind Distance (m)	
	IS02_NAPH_SSHDSR_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
Ref. 2 4 5 8 9 10 11 16 18	IS02_NAPH_SSHDSR_V_EXP_L_0.5	0.50	120.73	109.53	119.57
	IS02_NAPH_SSHDSR_V_EXP_L_0.01	0.01	138.77	125.57	135.66
	IS04_H2_SSHDSSDUP_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
4	IS04_H2_SSHDSSDUP_V_EXP_L_0.5	0.50	43.53	42.60	42.58
	IS04_H2_SSHDSSDUP_V_EXP_L_0.01	0.01	49.46	46.98	46.92
	IS05_H2_SSHDSAAKOD_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
5	IS05_H2_SSHDSAAKOD_V_EXP_L_0.5	0.50	51.51	43.52	43.54
	IS05_H2_SSHDSAAKOD_V_EXP_L_0.01	0.01	54.06	49.44	49.49
	IS08_H2_SSHDSAAUP_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
8	IS08_H2_SSHDSAAUP_V_EXP_L_0.5	0.50	66.49	63.75	66.67
4 5 8 9 10	IS08_H2_SSHDSAAUP_V_EXP_L_0.01	0.01	77.40	70.06	77.88
	IS09_H2_SSHDSRGCKOD_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
9	IS09_H2_SSHDSRGCKOD_V_EXP_L_0.5	0.50	51.23	43.38	43.40
	IS09_H2_SSHDSRGCKOD_V_EXP_L_0.01	0.01	53.29	49.06	49.12
	IS10_NAPH_SSHDSS_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
Ref. 2 4 5 8 9 10 11 16 18	IS10_NAPH_SSHDSS_V_EXP_L_0.5	0.50	86.11	85.45	95.39
	IS10_NAPH_SSHDSS_V_EXP_L_0.01	0.01	96.40	94.62	104.45
	IS11_H2_SSHDSSRD_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
11	IS11_H2_SSHDSSRD_V_EXP_L_0.5	0.50	21.43	11.84	11.82
	IS11_H2_SSHDSSRD_V_EXP_L_0.01	0.01	23.84	14.93	14.89
	IS16_MEOH_TFUP_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
16	IS16_MEOH_TFUP_V_EXP_L_0.5	0.50	160.15	137.13	106.43
	IS16_MEOH_TFUP_V_EXP_L_0.01	0.01	177.22	149.12	117.23
18	IS18_NAPH_TFRDUP_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable

Def	Connection	Harm Brobability %	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Ref.	Scenarios	Harm Probability %		Downwind Distance (m)	
	IS18_NAPH_TFRDUP_V_EXP_L_0.5	0.50	121.91	102.24	92.20
	IS18_NAPH_TFRDUP_V_EXP_L_0.01	0.01	125.12	106.01	95.90
	IS21_MEOH_RWCUP_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
21	IS21_MEOH_RWCUP_V_EXP_L_0.5	0.50	138.93	159.72	169.93
	IS21_MEOH_RWCUP_V_EXP_L_0.01	0.01	153.96	176.07	186.64
	IS24_MEOH_MC_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
24	IS24_MEOH_MC_V_EXP_L_0.5	0.50	11.18	11.11	11.10
	IS24_MEOH_MC_V_EXP_L_0.01	0.01	13.15	12.99	12.95
	IS28_MEOH_MDD_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
28	IS28_MEOH_MDD_V_EXP_L_0.5	0.50	Not reachable	Not reachable	Not reachable
	IS28_MEOH_MDD_V_EXP_L_0.01	0.01	Not reachable	Not reachable	Not reachable
	IS33_H2_H2PR_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
33	IS33_H2_H2PR_V_EXP_L_0.5	0.50	45.05	44.53	44.55
	IS33_H2_H2PR_V_EXP_L_0.01	0.01	53.55	52.14	52.20
	IS34_H2_HD_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
34	IS34_H2_HD_V_EXP_L_0.5	0.50	64.42	63.04	63.49
Ref. 21 24 28 33 34 36 38 39	IS34_H2_HD_V_EXP_L_0.01	0.01	71.86	68.16	69.35
	IS36_H2_FIR_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
36	IS36_H2_FIR_V_EXP_L_0.5	0.50	74.39	67.62	73.02
	IS36_H2_FIR_V_EXP_L_0.01	0.01	84.02	80.45	81.13
	IS38_H2_SIRUP_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
38	IS38_H2_SIRUP_V_EXP_L_0.5	0.50	74.55	67.43	72.56
	IS38_H2_SIRUP_V_EXP_L_0.01	0.01	83.70	79.94	80.21
	IS39_LPG_S_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
39	IS39_LPG_S_V_EXP_L_0.5	0.50	159.39	158.46	168.51
	IS39_LPG_S_V_EXP_L_0.01	0.01	175.18	172.70	182.83

D -(Seconariae	Weather Condition 1F W		Weather Condition 3C	Weather Condition 5D
Ref.	Scenarios	Harm Probability %		Downwind Distance (m)	
	IS41_LPG_SRDUP_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
41	IS41_LPG_SRDUP_V_EXP_L_0.5	0.50	122.25	132.86	141.83
	IS41_LPG_SRDUP_V_EXP_L_0.01	0.01	126.03	137.67	144.92
	IS43_H2_CS_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
43	IS43_H2_CS_V_EXP_L_0.5	0.50	42.97	40.83	40.93
	IS43_H2_CS_V_EXP_L_0.01	0.01	47.97	42.22	42.50
	IS53_ETHY_EST_L_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
53	IS53_ETHY_EST_L_EXP_L_0.5	0.50	416.55	147.26	113.48
	IS53_ETHY_EST_L_EXP_L_0.01	0.01	494.87	176.29	136.16
	IS54_ETHY_BOGC_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
54	IS54_ETHY_BOGC_V_EXP_L_0.5	0.50	841.17	990.75	946.99
	IS54_ETHY_BOGC_V_EXP_L_0.01	0.01	880.23	1025.43	1059.70
	IS55_ETHY_HPEBOGLR_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
55	IS55_ETHY_HPEBOGLR_V_EXP_L_0.5	0.50	841.17	990.75	946.99
	IS55_ETHY_HPEBOGLR_V_EXP_L_0.01	0.01	880.23	1025.43	1059.70
	IS57_PROPY_PSV_L_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
57	IS57_PROPY_PSV_L_EXP_L_0.5	0.50	170.12	179.06	189.14
Ref. 41 43 53 54 55 57 58 62 63	IS57_PROPY_PSV_L_EXP_L_0.01	0.01	187.14	194.31	204.53
	IS58_BUTD_BSV_L_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
58	IS58_BUTD_BSV_L_EXP_L_0.5	0.50	1277.13	468.30	370.26
	IS58_BUTD_BSV_L_EXP_L_0.01	0.01	1474.18	549.55	437.99
	IS62_ETHY_PIPEU5220BLU_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
62	IS62_ETHY_PIPEU5220BLU_V_EXP_L_0.5	0.50	254.76	292.64	321.38
	IS62_ETHY_PIPEU5220BLU_V_EXP_L_0.01	0.01	262.77	297.08	323.70
63	IS63_PROPY_PIPEU5210U5220_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
03	IS63_PROPY_PIPEU5210U5220_V_EXP_L_0.5	0.50	254.76	292.64	321.38

D .(Scenarios		Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Ref.		Harm Probability %		Downwind Distance (m)	
	IS63_PROPY_PIPEU5210U5220_V_EXP_L_0.01	0.01	262.77	297.08	323.70
	IS64_PROPY_PIPEU5220J_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
64	IS64_PROPY_PIPEU5220J_V_EXP_L_0.5	0.50	535.54	632.27	682.98
	IS64_PROPY_PIPEU5220J_V_EXP_L_0.01	0.01	595.34	686.55	738.47
	IS65_PROPY_PIPEMURP_V_EXP_L_0.99	0.99	Not reachable	Not reachable	Not reachable
65	IS65_PROPY_PIPEMURP_V_EXP_L_0.5	0.50	525.98	652.68	673.49
	IS65_PROPY_PIPEMURP_V_EXP_L_0.01	0.01	586.51	707.67	729.83

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Explosion Events Due to Catastrophic Releases

Def	Occurrentes	Harry Brahability 0/	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Ref.	Scenarios	Harm Probability %		Downwind Distance (m)	
	IS02_NAPH_SSHDSR_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable
2	IS02_NAPH_SSHDSR_V_EXP_C_0.5	0.50	267.49	234.71	244.87
	IS02_NAPH_SSHDSR_V_EXP_C_0.01	0.01	313.73	276.27	286.72
	IS04_H2_SSHDSSDUP_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable
4	IS04_H2_SSHDSSDUP_V_EXP_C_0.5	0.50	51.14	50.53	43.61
	IS04_H2_SSHDSSDUP_V_EXP_C_0.01	0.01	53.05	51.43	49.69
	IS05_H2_SSHDSAAKOD_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable
5	IS05_H2_SSHDSAAKOD_V_EXP_C_0.5	0.50	53.24	52.64	52.66
	IS05_H2_SSHDSAAKOD_V_EXP_C_0.01	0.01	58.69	57.07	57.14
	IS08_H2_SSHDSAAUP_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable
8	IS08_H2_SSHDSAAUP_V_EXP_C_0.5	0.50	85.13	84.04	85.17
8	IS08_H2_SSHDSAAUP_V_EXP_C_0.01	0.01	93.75	90.82	93.85
	IS09_H2_SSHDSRGCKOD_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable
9	IS09_H2_SSHDSRGCKOD_V_EXP_C_0.5	0.50	53.06	52.41	52.44
	IS09_H2_SSHDSRGCKOD_V_EXP_C_0.01	0.01	58.20	56.47	56.55
	IS10_NAPH_SSHDSS_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable
10	IS10_NAPH_SSHDSS_V_EXP_C_0.5	0.50	256.98	255.13	285.25
	IS10_NAPH_SSHDSS_V_EXP_C_0.01	0.01	285.55	280.59	310.91
	IS11_H2_SSHDSSRD_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable
11	IS11_H2_SSHDSSRD_V_EXP_C_0.5	0.50	21.58	21.04	20.33
	IS11_H2_SSHDSSRD_V_EXP_C_0.01	0.01	24.23	22.80	20.88
	IS16_MEOH_TFUP_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable
16	IS16_MEOH_TFUP_V_EXP_C_0.5	0.50	267.05	304.63	263.61
	IS16_MEOH_TFUP_V_EXP_C_0.01	0.01	295.72	329.25	286.50
18	IS18_NAPH_TFRDUP_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable

Def	O remeniae	Hama Daskakilita (Weather Condition 1F	Weather Condition 3C	Weather Condition 5D	
Ref.	Scenarios	Harm Probability %		Downwind Distance (m)		
	IS18_NAPH_TFRDUP_V_EXP_C_0.5	0.50	52.34	60.67	60.44	
	IS18_NAPH_TFRDUP_V_EXP_C_0.01	0.01	56.28	61.79	61.18	
	IS21_MEOH_RWCUP_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable	
21	IS21_MEOH_RWCUP_V_EXP_C_0.5	0.50	180.01	190.82	210.93	
	IS21_MEOH_RWCUP_V_EXP_C_0.01	0.01	196.85	209.02	229.31	
	IS24_MEOH_MC_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable	
24	IS24_MEOH_MC_V_EXP_C_0.5	0.50	43.10	42.91	42.89	
	IS24_MEOH_MC_V_EXP_C_0.01	0.01	48.31	47.80	47.75	
	IS28_MEOH_MDD_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable	
28	IS28_MEOH_MDD_V_EXP_C_0.5	0.50	21.91	21.75	21.70	
	IS28_MEOH_MDD_V_EXP_C_0.01	0.01	25.14	24.68	24.56	
	IS33_H2_H2PR_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable	
33	IS33_H2_H2PR_V_EXP_C_0.5	0.50	50.78	51.75	52.49	
	IS33_H2_H2PR_V_EXP_C_0.01	0.01	54.02	54.70	56.69	
	IS34_H2_HD_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable	
34	IS34_H2_HD_V_EXP_C_0.5	0.50	71.00	70.30	72.23	
	IS34_H2_HD_V_EXP_C_0.01	0.01	74.38	73.79	75.99	
	IS36_H2_FIR_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable	
36	IS36_H2_FIR_V_EXP_C_0.5	0.50	86.06	86.30	92.93	
	IS36_H2_FIR_V_EXP_C_0.01	0.01	96.26	96.90	99.75	
	IS38_H2_SIRUP_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable	
38	IS38_H2_SIRUP_V_EXP_C_0.5	0.50	1035.89	743.29	856.15	
	IS38_H2_SIRUP_V_EXP_C_0.01	0.01	1045.79	767.07	874.45	
	IS39_LPG_S_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable	
39	IS39_LPG_S_V_EXP_C_0.5	0.50	224.95	265.25	292.31	
	IS39_LPG_S_V_EXP_C_0.01	0.01	250.10	274.09	296.49	

Def	O remenia e	Hama Daakahilita ()	Weather Condition 1F	Weather Condition 3C	Weather Condition 5D			
Ref.	Scenarios	Harm Probability %	Downwind Distance (m)					
	IS41_LPG_SRDUP_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable			
41	IS41_LPG_SRDUP_V_EXP_C_0.5	0.50	141.35	152.98	161.13			
	IS41_LPG_SRDUP_V_EXP_C_0.01	0.01	143.61	157.99	163.03			
	IS43_H2_CS_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable			
43	IS43_H2_CS_V_EXP_C_0.5	0.50	525.41	414.15	417.64			
	IS43_H2_CS_V_EXP_C_0.01	0.01	534.52	421.14	430.48			
	IS53_ETHY_EST_L_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable			
53	IS53_ETHY_EST_L_EXP_C_0.5	0.50	1227.56	361.03	272.32			
	IS53_ETHY_EST_L_EXP_C_0.01	0.01	1425.34	430.07	326.69			
	IS54_ETHY_BOGC_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable			
54	IS54_ETHY_BOGC_V_EXP_C_0.5	0.50	1012.14	1201.76	1188.64			
	IS54_ETHY_BOGC_V_EXP_C_0.01	0.01	1059.92	1242.97	1236.15			
	IS55_ETHY_HPEBOGLR_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable			
55	IS55_ETHY_HPEBOGLR_V_EXP_C_0.5	0.50	1012.14	1201.76	1188.64			
	IS55_ETHY_HPEBOGLR_V_EXP_C_0.01	0.01	1059.92	1242.97	1236.15			
	IS57_PROPY_PSV_L_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable			
57	IS57_PROPY_PSV_L_EXP_C_0.5	0.50	437.00	484.13	534.73			
	IS57_PROPY_PSV_L_EXP_C_0.01	0.01	482.43	524.71	576.33			
	IS58_BUTD_BSV_L_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable			
58	IS58_BUTD_BSV_L_EXP_C_0.5	0.50	3248.63	1213.36	835.40			
	IS58_BUTD_BSV_L_EXP_C_0.01	0.01	3272.81	1420.88	995.89			
	IS62_ETHY_PIPEU5220BLU_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable			
62	IS62_ETHY_PIPEU5220BLU_V_EXP_C_0.5	0.50	354.97	382.68	421.17			
	IS62_ETHY_PIPEU5220BLU_V_EXP_C_0.01	0.01	363.33	387.19	423.15			
62	IS63_PROPY_PIPEU5210U5220_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable			
03	IS63_PROPY_PIPEU5210U5220_V_EXP_C_0.5	0.50	354.97	382.68	421.17			

D .(Weather Condition 1F	Weather Condition 3C	Weather Condition 5D
Ref.	Scenarios	Harm Probability %		Downwind Distance (m)	
	IS63_PROPY_PIPEU5210U5220_V_EXP_C_0.01	0.01	363.33	387.19	423.15
	IS64_PROPY_PIPEU5220J_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable
64	IS64_PROPY_PIPEU5220J_V_EXP_C_0.5	0.50	813.46	887.00	951.33
	IS64_PROPY_PIPEU5220J_V_EXP_C_0.01	0.01	847.03	902.31	964.63
	IS65_PROPY_PIPEMURP_V_EXP_C_0.99	0.99	Not reachable	Not reachable	Not reachable
65	IS65_PROPY_PIPEMURP_V_EXP_C_0.5	0.50	1105.49	1245.97	1536.61
	IS65_PROPY_PIPEMURP_V_EXP_C_0.01	0.01	1249.32	1373.78	1631.86

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Fireball Events Due to Catastrophic Releases (BLEVE)

Ref.	Scenarios	Fatality Probability	Radius for lethality	Fireball Radius
	IS53_ETHY_EST_L_FB_1	1.00	Not reachable	Not reachable
53	IS53_ETHY_EST_L_FB_0.5	0.50	Not reachable	Not reachable
	IS53_ETHY_EST_L_FB_0.03	0.03	Not reachable	Not reachable
	IS57_PROPY_PSV_L_FB_1	1.00	124.88	119.97
57	IS57_PROPY_PSV_L_FB_0.5	0.50	367.33	119.97
	IS57_PROPY_PSV_L_FB_0.03	0.03	685.75	119.97
	IS58_BUTD_BSV_L_FB_1	1.00	Not reachable	Not reachable
58	IS58_BUTD_BSV_L_FB_0.5	0.50	Not reachable	Not reachable
	IS58_BUTD_BSV_L_FB_0.03	0.03	Not reachable	Not reachable

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Explosion Events Due to Catastrophic Releases (BLEVE)

	- ·		Weather Condition 1F (m)	Weather Condition 3C (m)	Weather Condition 5D (m)
Ref.	Scenarios	Harm Probability %		Downwind Distance	
	IS53_ETHY_EST_L_BLV_C_0.99	99%	Not reachable	Not reachable	Not reachable
53 IS	IS53_ETHY_EST_L_BLV_C_0.5	50%	Not reachable	Not reachable	Not reachable
	IS53_ETHY_EST_L_BLV_C_0.01	1%	Not reachable	Not reachable	Not reachable
	IS57_PROPY_PSV_L_BLV_C_0.99	99%	79.95	79.95	79.95
57	IS57_PROPY_PSV_L_BLV_C_0.5	50%	79.99	79.99	79.99
	IS57_PROPY_PSV_L_BLV_C_0.01	1%	171.21	171.21	171.21
	IS58_BUTD_BSV_L_BLV_C_0.99	99%	Not reachable	Not reachable	Not reachable
58	IS58_BUTD_BSV_L_BLV_C_0.5	50%	Not reachable	Not reachable	Not reachable
	IS58_BUTD_BSV_L_BLV_C_0.01	1%	Not reachable	Not reachable	Not reachable

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

SUB-APPENDIX 3C: EVENT FREQUENCY FOR EURO 5 MOGAS UNITS AND **OLEFINS STORAGE TANKAGES**

No.	Section ID	Hole Size	Immediate Ignition	Immediate Ignition Frequency (/year)	Delayed Ignition 1	Delayed Ignition 1 Frequency(/year)	Delayed Ignition 2	Delayed Ignition 2 Frequency(/year)	Delayed Ignition 3	Delayed Ignition 3 Frequency(/year)	Un-ignited Release / Toxic Dispersion	Un-ignited / Toxic Frequency(/year)
		Minor	Jet Fire	4.54E-06	Pool Fire	4.09E-05	-	0.00E+00	-	0.00E+00	Unignited	4.50E-03
		Small	Jet Fire	2.00E-05	Pool Fire	2.00E-05	-	0.00E+00	-	0.00E+00	Unignited	1.29E-03
1	IS01_NAPH_SSHDSFSD_L	Medium	Jet Fire	7.59E-06	Pool Fire	7.59E-06	-	0.00E+00	-	0.00E+00	Unignited	4.91E-04
		Large	Jet Fire	6.19E-06	Pool Fire	4.13E-06	-	0.00E+00	-	0.00E+00	Unignited	1.19E-04
		Catastrophic	Pool Fire	3.56E-06	Pool Fire	2.37E-06	-	0.00E+00	-	0.00E+00	Unignited	6.83E-05
		Minor	Jet Fire	8.73E-06	Explosion	3.14E-06	Flash Fire	7.54E-05	-	0.00E+00	Unignited	8.64E-03
		Small	Jet Fire	2.55E-06	Explosion	9.18E-07	Flash Fire	2.20E-05	-	0.00E+00	Unignited	2.52E-03
2	IS02_NAPH_SSHDSR_V	Medium	Jet Fire	2.04E-05	Explosion	2.45E-06	Flash Fire	1.80E-05	-	0.00E+00	Unignited	5.42E-04
		Large	Jet Fire	4.62E-06	Explosion	5.54E-07	Flash Fire	4.06E-06	-	0.00E+00	Unignited	1.23E-04
		Catastrophic	Jet Fire	2.38E-05	Explosion	4.77E-06	Flash Fire	1.11E-05	-	0.00E+00	Unignited	9.27E-05
		Minor	Jet Fire	3.72E-06	Pool Fire	3.35E-05	-	0.00E+00	-	0.00E+00	Unignited	3.69E-03
		Small	Jet Fire	1.53E-05	Pool Fire	1.53E-05	-	0.00E+00	-	0.00E+00	Unignited	9.92E-04
3	IS03_NAPH_SSHDSSDBP_L	Medium	Jet Fire	1.50E-05	Pool Fire	1.00E-05	-	0.00E+00	-	0.00E+00	Unignited	2.88E-04
		Large	Jet Fire	4.25E-06	Pool Fire	2.84E-06	-	0.00E+00	-	0.00E+00	Unignited	8.15E-05
		Catastrophic	Pool Fire	2.55E-06	Pool Fire	1.70E-06	-	0.00E+00	-	0.00E+00	Unignited	4.89E-05
		Minor	Jet Fire	4.37E-07	Explosion	1.57E-07	Flash Fire	3.77E-06	-	0.00E+00	Unignited	4.32E-04
		Small	Jet Fire	2.53E-07	Explosion	9.12E-08	Flash Fire	2.19E-06	-	0.00E+00	Unignited	2.51E-04
4	IS04_H2_SSHDSSDUP_V	Medium	Jet Fire	5.36E-06	Explosion	6.43E-07	Flash Fire	4.72E-06	-	0.00E+00	Unignited	1.42E-04
		Large	Jet Fire	8.63E-07	Explosion	1.04E-07	Flash Fire	7.59E-07	-	0.00E+00	Unignited	2.29E-05
		Catastrophic	Jet Fire	4.43E-07	Explosion	5.32E-08	Flash Fire	3.90E-07	-	0.00E+00	Unignited	1.18E-05
		Minor	Jet Fire	1.26E-06	Explosion	4.52E-07	Flash Fire	1.08E-05	-	0.00E+00	Unignited	1.24E-03
		Small	Jet Fire	5.64E-07	Explosion	2.03E-07	Flash Fire	4.87E-06	-	0.00E+00	Unignited	5.58E-04
5	IS05_H2_SSHDSAAKOD_V	Medium	Jet Fire	1.21E-05	Explosion	1.45E-06	Flash Fire	1.07E-05	-	0.00E+00	Unignited	3.22E-04
		Large	Jet Fire	2.27E-06	Explosion	2.73E-07	Flash Fire	2.00E-06	-	0.00E+00	Unignited	6.04E-05
		Catastrophic	Jet Fire	1.18E-06	Explosion	1.42E-07	Flash Fire	1.04E-06	-	0.00E+00	Unignited	3.14E-05
		Minor	Jet Fire	2.52E-06	Pool Fire	2.27E-05	-	0.00E+00	-	0.00E+00	Unignited	2.50E-03
		Small	Jet Fire	1.13E-05	Pool Fire	1.13E-05	-	0.00E+00	-	0.00E+00	Unignited	7.29E-04
6	IS06_MDEA_SSHDSLASD_L	Medium	Jet Fire	7.17E-06	Pool Fire	7.17E-06	-	0.00E+00	-	0.00E+00	Unignited	4.63E-04
		Large	Jet Fire	5.61E-06	Pool Fire	3.74E-06	-	0.00E+00	-	0.00E+00	Unignited	1.08E-04
		Catastrophic	Pool Fire	2.96E-06	Pool Fire	1.97E-06	-	0.00E+00	-	0.00E+00	Unignited	5.67E-05
7	IS07_MDEA_SSHDSAABP_L	Minor	Jet Fire	1.07E-06	Pool Fire	9.63E-06	-	0.00E+00	-	0.00E+00	Unignited	1.06E-03

No.	Section ID	Hole Size	Immediate Ignition	Immediate Ignition Frequency (/year)	Delayed Ignition 1	Delayed Ignition 1 Frequency(/year)	Delayed Ignition 2	Delayed Ignition 2 Frequency(/year)	Delayed Ignition 3	Delayed Ignition 3 Frequency(/year)	Un-ignited Release / Toxic Dispersion	Un-ignited / Toxic Frequency(/year)
		Small	Jet Fire	5.21E-06	Pool Fire	5.21E-06	-	0.00E+00	-	0.00E+00	Unignited	3.37E-04
		Medium	Jet Fire	1.05E-05	Pool Fire	7.01E-06	-	0.00E+00	-	0.00E+00	Unignited	2.01E-04
		Large	Jet Fire	2.43E-06	Pool Fire	1.62E-06	-	0.00E+00	-	0.00E+00	Unignited	4.66E-05
		Catastrophic	Pool Fire	1.28E-06	Pool Fire	8.51E-07	-	0.00E+00	-	0.00E+00	Unignited	2.45E-05
		Minor	Jet Fire	1.70E-06	Explosion	6.13E-07	Flash Fire	1.47E-05	-	0.00E+00	Unignited	1.69E-03
		Small	Jet Fire	4.42E-07	Explosion	1.59E-07	Flash Fire	3.82E-06	-	0.00E+00	Unignited	4.37E-04
8	IS08_H2_SSHDSAAUP_V	Medium	Jet Fire	9.97E-06	Explosion	1.20E-06	Flash Fire	8.77E-06	-	0.00E+00	Unignited	2.65E-04
		Large	Jet Fire	2.68E-06	Explosion	3.22E-07	Flash Fire	2.36E-06	-	0.00E+00	Unignited	7.12E-05
		Catastrophic	Jet Fire	1.42E-06	Explosion	1.70E-07	Flash Fire	1.25E-06	-	0.00E+00	Unignited	3.77E-05
		Minor	Jet Fire	3.92E-05	Explosion	1.41E-05	Flash Fire	3.38E-04	-	0.00E+00	Unignited	3.88E-02
		Small	Jet Fire	1.15E-05	Explosion	4.13E-06	Flash Fire	9.90E-05	-	0.00E+00	Unignited	1.13E-02
9	IS09_H2_SSHDSRGCKOD_V	Medium	Jet Fire	3.05E-05	Explosion	3.66E-06	Flash Fire	2.68E-05	-	0.00E+00	Unignited	8.10E-04
		Large	Jet Fire	1.05E-05	Explosion	1.26E-06	Flash Fire	9.21E-06	-	0.00E+00	Unignited	2.78E-04
		Catastrophic	Jet Fire	9.48E-06	Explosion	1.14E-06	Flash Fire	8.34E-06	-	0.00E+00	Unignited	2.52E-04
		Minor	Jet Fire	8.26E-06	Explosion	2.97E-06	Flash Fire	7.13E-05	-	0.00E+00	Unignited	8.17E-03
		Small	Jet Fire	2.47E-06	Explosion	8.89E-07	Flash Fire	2.13E-05	-	0.00E+00	Unignited	2.44E-03
10	IS10_NAPH_SSHDSS_V	Medium	Jet Fire	1.86E-05	Explosion	2.23E-06	Flash Fire	1.64E-05	-	0.00E+00	Unignited	4.95E-04
		Large	Jet Fire	4.26E-06	Explosion	5.11E-07	Flash Fire	3.74E-06	-	0.00E+00	Unignited	1.13E-04
		Catastrophic	Jet Fire	2.02E-05	Explosion	4.04E-06	Flash Fire	9.42E-06	-	0.00E+00	Unignited	7.85E-05
		Minor	Jet Fire	7.15E-06	Explosion	2.57E-06	Flash Fire	6.18E-05	-	0.00E+00	Unignited	7.08E-03
		Small	Jet Fire	2.29E-06	Explosion	8.26E-07	Flash Fire	1.98E-05	-	0.00E+00	Unignited	2.27E-03
11	IS11_H2_SSHDSSRD_V	Medium	Jet Fire	4.15E-07	Explosion	1.49E-07	Flash Fire	3.59E-06	-	0.00E+00	Unignited	4.11E-04
		Large	Jet Fire	2.99E-06	Explosion	3.58E-07	Flash Fire	2.63E-06	-	0.00E+00	Unignited	7.93E-05
		Catastrophic	Jet Fire	2.73E-06	Explosion	3.27E-07	Flash Fire	2.40E-06	-	0.00E+00	Unignited	7.25E-05
		Minor	Jet Fire	4.54E-06	Pool Fire	4.09E-05	-	0.00E+00	-	0.00E+00	Unignited	4.50E-03
		Small	Jet Fire	2.00E-05	Pool Fire	2.00E-05	-	0.00E+00	-	0.00E+00	Unignited	1.29E-03
12	IS12_NAPH_LCNFSD_L	Medium	Jet Fire	7.59E-06	Pool Fire	7.59E-06	-	0.00E+00	-	0.00E+00	Unignited	4.91E-04
		Large	Jet Fire	6.19E-06	Pool Fire	4.13E-06	-	0.00E+00	-	0.00E+00	Unignited	1.19E-04
		Catastrophic	Pool Fire	3.56E-06	Pool Fire	2.37E-06	-	0.00E+00	-	0.00E+00	Unignited	6.83E-05
10		Minor	Jet Fire	5.12E-06	Pool Fire	4.61E-05	-	0.00E+00	-	0.00E+00	Unignited	5.07E-03
13	IS IS_WEUH_FK_L	Small	Jet Fire	1.70E-05	Pool Fire	1.70E-05	-	0.00E+00	-	0.00E+00	Unignited	1.10E-03

No.	Section ID	Hole Size	Immediate Ignition	Immediate Ignition Frequency (/year)	Delayed Ignition 1	Delayed Ignition 1 Frequency(/year)	Delayed Ignition 2	Delayed Ignition 2 Frequency(/year)	Delayed Ignition 3	Delayed Ignition 3 Frequency(/year)	Un-ignited Release / Toxic Dispersion	Un-ignited / Toxic Frequency(/year)
		Medium	Jet Fire	3.59E-05	Pool Fire	2.39E-05	-	0.00E+00	-	0.00E+00	Unignited	6.88E-04
		Large	Jet Fire	1.07E-05	Pool Fire	7.13E-06	-	0.00E+00	-	0.00E+00	Unignited	2.05E-04
		Catastrophic	Pool Fire	5.69E-06	Pool Fire	3.79E-06	-	0.00E+00	-	0.00E+00	Unignited	1.09E-04
		Minor	Jet Fire	4.26E-06	Pool Fire	3.83E-05	-	0.00E+00	-	0.00E+00	Unignited	4.21E-03
		Small	Jet Fire	1.51E-05	Pool Fire	1.51E-05	-	0.00E+00	-	0.00E+00	Unignited	9.77E-04
14	IS14_MEOH_SR_L	Medium	Jet Fire	3.16E-05	Pool Fire	2.11E-05	-	0.00E+00	-	0.00E+00	Unignited	6.05E-04
		Large	Jet Fire	9.00E-06	Pool Fire	6.00E-06	-	0.00E+00	-	0.00E+00	Unignited	1.73E-04
		Catastrophic	Pool Fire	4.78E-06	Pool Fire	3.19E-06	-	0.00E+00	-	0.00E+00	Unignited	9.16E-05
		Minor	Jet Fire	7.44E-06	Pool Fire	6.69E-05	-	0.00E+00	-	0.00E+00	Unignited	7.36E-03
		Small	Jet Fire	3.24E-05	Pool Fire	3.24E-05	-	0.00E+00	-	0.00E+00	Unignited	2.09E-03
15	IS15_TAME_TFBP_L	Medium	Jet Fire	5.09E-06	Pool Fire	5.09E-06	-	0.00E+00	-	0.00E+00	Unignited	3.29E-04
		Large	Jet Fire	3.90E-06	Pool Fire	2.60E-06	-	0.00E+00	-	0.00E+00	Unignited	7.48E-05
		Catastrophic	Pool Fire	4.37E-06	Pool Fire	2.91E-06	-	0.00E+00	-	0.00E+00	Unignited	8.38E-05
		Minor	Jet Fire	2.34E-06	Explosion	8.41E-07	Flash Fire	2.02E-05	-	0.00E+00	Unignited	2.31E-03
		Small	Jet Fire	1.88E-05	Explosion	2.25E-06	Flash Fire	1.65E-05	-	0.00E+00	Unignited	4.98E-04
16	IS16_MEOH_TFUP_V	Medium	Jet Fire	1.23E-05	Explosion	1.47E-06	Flash Fire	1.08E-05	-	0.00E+00	Unignited	3.26E-04
		Large	Jet Fire	1.85E-05	Explosion	3.69E-06	Flash Fire	8.62E-06	-	0.00E+00	Unignited	7.18E-05
		Catastrophic	Jet Fire	9.80E-06	Explosion	1.96E-06	Flash Fire	4.57E-06	-	0.00E+00	Unignited	3.81E-05
		Minor	Jet Fire	2.46E-06	Pool Fire	2.21E-05	-	0.00E+00	-	0.00E+00	Unignited	2.43E-03
		Small	Jet Fire	1.25E-05	Pool Fire	1.25E-05	-	0.00E+00	-	0.00E+00	Unignited	8.09E-04
17	IS17_MEOH_TFRDBP_L	Medium	Jet Fire	2.72E-06	Pool Fire	2.72E-06	-	0.00E+00	-	0.00E+00	Unignited	1.76E-04
		Large	Jet Fire	1.76E-06	Pool Fire	1.17E-06	-	0.00E+00	-	0.00E+00	Unignited	3.37E-05
		Catastrophic	Pool Fire	1.21E-06	Pool Fire	8.09E-07	-	0.00E+00	-	0.00E+00	Unignited	2.32E-05
		Minor	Jet Fire	3.56E-06	Explosion	1.28E-06	Flash Fire	3.08E-05	-	0.00E+00	Unignited	3.52E-03
		Small	Jet Fire	3.53E-05	Explosion	4.24E-06	Flash Fire	3.11E-05	-	0.00E+00	Unignited	9.39E-04
18	IS18_NAPH_TFRDUP_V	Medium	Jet Fire	1.04E-05	Explosion	1.25E-06	Flash Fire	9.18E-06	-	0.00E+00	Unignited	2.77E-04
		Large	Jet Fire	1.31E-05	Explosion	2.63E-06	Flash Fire	6.13E-06	-	0.00E+00	Unignited	5.11E-05
		Catastrophic	Jet Fire	1.07E-05	Explosion	2.14E-06	Flash Fire	5.00E-06	-	0.00E+00	Unignited	4.17E-05
		Minor	Jet Fire	8.60E-06	Pool Fire	7.74E-05	-	0.00E+00	-	0.00E+00	Unignited	8.52E-03
19	IS19_MEOH_TR_L	Small	Jet Fire	3.36E-05	Pool Fire	3.36E-05	-	0.00E+00	-	0.00E+00	Unignited	2.17E-03
		Medium	Jet Fire	3.60E-05	Pool Fire	2.40E-05	-	0.00E+00	-	0.00E+00	Unignited	6.90E-04

No.	Section ID	Hole Size	Immediate Ignition	Immediate Ignition Frequency (/year)	Delayed Ignition 1	Delayed Ignition 1 Frequency(/year)	Delayed Ignition 2	Delayed Ignition 2 Frequency(/year)	Delayed Ignition 3	Delayed Ignition 3 Frequency(/year)	Un-ignited Release / Toxic Dispersion	Un-ignited / Toxic Frequency(/year)
		Large	Jet Fire	9.90E-06	Pool Fire	6.60E-06	-	0.00E+00	-	0.00E+00	Unignited	1.90E-04
		Catastrophic	Pool Fire	7.27E-06	Pool Fire	4.85E-06	-	0.00E+00	-	0.00E+00	Unignited	1.39E-04
		Minor	Jet Fire	3.56E-06	Pool Fire	3.20E-05	-	0.00E+00	-	0.00E+00	Unignited	3.52E-03
		Small	Jet Fire	1.51E-05	Pool Fire	1.51E-05	-	0.00E+00	-	0.00E+00	Unignited	9.79E-04
20	IS20_NAPH_RWCBP_L	Medium	Jet Fire	4.47E-06	Pool Fire	4.47E-06	-	0.00E+00	-	0.00E+00	Unignited	2.89E-04
		Large	Jet Fire	3.50E-06	Pool Fire	2.33E-06	-	0.00E+00	-	0.00E+00	Unignited	6.71E-05
		Catastrophic	Pool Fire	2.86E-06	Pool Fire	1.90E-06	-	0.00E+00	-	0.00E+00	Unignited	5.47E-05
		Minor	Jet Fire	3.56E-06	Explosion	1.28E-06	Flash Fire	3.08E-05	-	0.00E+00	Unignited	3.52E-03
		Small	Jet Fire	3.53E-05	Explosion	4.24E-06	Flash Fire	3.11E-05	-	0.00E+00	Unignited	9.39E-04
21	IS21_MEOH_RWCUP_V	Medium	Jet Fire	1.04E-05	Explosion	1.25E-06	Flash Fire	9.18E-06	-	0.00E+00	Unignited	2.77E-04
		Large	Jet Fire	1.31E-05	Explosion	2.63E-06	Flash Fire	6.13E-06	-	0.00E+00	Unignited	5.11E-05
		Catastrophic	Jet Fire	1.07E-05	Explosion	2.14E-06	Flash Fire	5.00E-06	-	0.00E+00	Unignited	4.17E-05
		Minor	Jet Fire	1.89E-06	Pool Fire	1.70E-05	-	0.00E+00	-	0.00E+00	Unignited	1.87E-03
		Small	Jet Fire	9.87E-06	Pool Fire	9.87E-06	-	0.00E+00	-	0.00E+00	Unignited	6.38E-04
22	IS22_MEOH_MCFD_L	Medium	Jet Fire	6.18E-06	Pool Fire	6.18E-06	-	0.00E+00	-	0.00E+00	Unignited	4.00E-04
		Large	Jet Fire	4.37E-06	Pool Fire	2.91E-06	-	0.00E+00	-	0.00E+00	Unignited	8.37E-05
		Catastrophic	Pool Fire	2.29E-06	Pool Fire	1.53E-06	-	0.00E+00	-	0.00E+00	Unignited	4.39E-05
		Minor	Jet Fire	1.89E-06	Pool Fire	1.70E-05	-	0.00E+00	-	0.00E+00	Unignited	1.87E-03
		Small	Jet Fire	9.87E-06	Pool Fire	9.87E-06	-	0.00E+00	-	0.00E+00	Unignited	6.38E-04
23	IS23_MEOH_RC_L	Medium	Jet Fire	1.98E-05	Pool Fire	1.32E-05	-	0.00E+00	-	0.00E+00	Unignited	3.79E-04
		Large	Jet Fire	4.37E-06	Pool Fire	2.91E-06	-	0.00E+00	-	0.00E+00	Unignited	8.37E-05
		Catastrophic	Pool Fire	2.29E-06	Pool Fire	1.53E-06	-	0.00E+00	-	0.00E+00	Unignited	4.39E-05
		Minor	Jet Fire	1.34E-05	Explosion	4.82E-06	Flash Fire	1.16E-04	-	0.00E+00	Unignited	1.33E-02
		Small	Jet Fire	3.81E-06	Explosion	1.37E-06	Flash Fire	3.29E-05	-	0.00E+00	Unignited	3.77E-03
24	IS24_MEOH_MC_V	Medium	Jet Fire	2.47E-05	Explosion	2.96E-06	Flash Fire	2.17E-05	-	0.00E+00	Unignited	6.56E-04
		Large	Jet Fire	6.37E-06	Explosion	7.64E-07	Flash Fire	5.60E-06	-	0.00E+00	Unignited	1.69E-04
		Catastrophic	Jet Fire	6.01E-06	Explosion	7.21E-07	Flash Fire	5.28E-06	-	0.00E+00	Unignited	1.60E-04
		Minor	Jet Fire	5.77E-06	Pool Fire	5.19E-05	-	0.00E+00	-	0.00E+00	Unignited	5.71E-03
05		Small	Jet Fire	2.71E-05	Pool Fire	2.71E-05	-	0.00E+00	-	0.00E+00	Unignited	1.75E-03
25	1979_INFOH_MOKD_F	Medium	Jet Fire	6.80E-06	Pool Fire	6.80E-06	-	0.00E+00	-	0.00E+00	Unignited	4.39E-04
		Large	Jet Fire	4.77E-06	Pool Fire	3.18E-06	-	0.00E+00	-	0.00E+00	Unignited	9.13E-05

No.	Section ID	Hole Size	Immediate Ignition	Immediate Ignition Frequency (/year)	Delayed Ignition 1	Delayed Ignition 1 Frequency(/year)	Delayed Ignition 2	Delayed Ignition 2 Frequency(/year)	Delayed Ignition 3	Delayed Ignition 3 Frequency(/year)	Un-ignited Release / Toxic Dispersion	Un-ignited / Toxic Frequency(/year)
		Catastrophic	Pool Fire	3.80E-06	Pool Fire	2.54E-06	-	0.00E+00	-	0.00E+00	Unignited	7.29E-05
		Minor	Jet Fire	6.29E-06	Pool Fire	5.66E-05	-	0.00E+00	-	0.00E+00	Unignited	6.23E-03
		Small	Jet Fire	2.74E-05	Pool Fire	2.74E-05	-	0.00E+00	-	0.00E+00	Unignited	1.77E-03
26	IS26_MEOH_MGP_L	Medium	Jet Fire	4.77E-05	Pool Fire	3.18E-05	-	0.00E+00	-	0.00E+00	Unignited	9.14E-04
		Large	Jet Fire	1.20E-05	Pool Fire	7.98E-06	-	0.00E+00	-	0.00E+00	Unignited	2.29E-04
		Catastrophic	Pool Fire	6.46E-06	Pool Fire	4.31E-06	-	0.00E+00	-	0.00E+00	Unignited	1.24E-04
		Minor	Jet Fire	2.90E-06	Pool Fire	2.61E-05	-	0.00E+00	-	0.00E+00	Unignited	2.87E-03
		Small	Jet Fire	1.42E-05	Pool Fire	1.42E-05	-	0.00E+00	-	0.00E+00	Unignited	9.20E-04
27	IS27_MEOH_MMUSD_L	Medium	Jet Fire	6.39E-06	Pool Fire	6.39E-06	-	0.00E+00	-	0.00E+00	Unignited	4.13E-04
		Large	Jet Fire	4.65E-06	Pool Fire	3.10E-06	-	0.00E+00	-	0.00E+00	Unignited	8.92E-05
		Catastrophic	Pool Fire	2.59E-06	Pool Fire	1.73E-06	-	0.00E+00	-	0.00E+00	Unignited	4.97E-05
		Minor	Jet Fire	3.91E-06	Explosion	1.41E-06	Flash Fire	3.38E-05	-	0.00E+00	Unignited	3.87E-03
		Small	Jet Fire	1.24E-06	Explosion	4.46E-07	Flash Fire	1.07E-05	-	0.00E+00	Unignited	1.23E-03
28	IS28_MEOH_MDD_V	Medium	Jet Fire	4.40E-07	Explosion	1.58E-07	Flash Fire	3.80E-06	-	0.00E+00	Unignited	4.35E-04
		Large	Jet Fire	1.03E-07	Explosion	3.71E-08	Flash Fire	8.90E-07	-	0.00E+00	Unignited	1.02E-04
		Catastrophic	Jet Fire	2.11E-06	Explosion	2.53E-07	Flash Fire	1.86E-06	-	0.00E+00	Unignited	5.61E-05
		Minor	Pool Fire	3.91E-06	Pool Fire	3.52E-05	-	0.00E+00	-	0.00E+00	Unignited	3.87E-03
		Small	Pool Fire	1.24E-06	Pool Fire	1.11E-05	-	0.00E+00	-	0.00E+00	Unignited	1.23E-03
29	IS29_HC_HCDD_L	Medium	Pool Fire	6.60E-06	Pool Fire	6.60E-06	-	0.00E+00	-	0.00E+00	Unignited	4.27E-04
		Large	Pool Fire	1.54E-06	Pool Fire	1.54E-06	-	0.00E+00	-	0.00E+00	Unignited	9.99E-05
		Catastrophic	Pool Fire	2.89E-06	Pool Fire	1.93E-06	-	0.00E+00	-	0.00E+00	Unignited	5.55E-05
		Minor	Jet Fire	5.60E-06	Pool Fire	5.04E-05	-	0.00E+00	-	0.00E+00	Unignited	5.55E-03
		Small	Jet Fire	2.69E-05	Pool Fire	2.69E-05	-	0.00E+00	-	0.00E+00	Unignited	1.74E-03
30	IS30_NAPH_SGB_L	Medium	Jet Fire	6.57E-06	Pool Fire	6.57E-06	-	0.00E+00	-	0.00E+00	Unignited	4.25E-04
		Large	Jet Fire	4.01E-06	Pool Fire	2.68E-06	-	0.00E+00	-	0.00E+00	Unignited	7.69E-05
		Catastrophic	Pool Fire	4.11E-06	Pool Fire	2.74E-06	-	0.00E+00	-	0.00E+00	Unignited	7.88E-05
		Minor	Jet Fire	4.99E-06	Pool Fire	4.49E-05	-	0.00E+00	-	0.00E+00	Unignited	4.94E-03
		Small	Jet Fire	2.10E-05	Pool Fire	2.10E-05	-	0.00E+00	-	0.00E+00	Unignited	1.36E-03
31	IS31_NAPH_FSD_L	Medium	Jet Fire	8.28E-06	Pool Fire	8.28E-06	-	0.00E+00	-	0.00E+00	Unignited	5.36E-04
		Large	Jet Fire	7.07E-06	Pool Fire	4.71E-06	-	0.00E+00	-	0.00E+00	Unignited	1.35E-04
		Catastrophic	Pool Fire	4.03E-06	Pool Fire	2.69E-06	-	0.00E+00	-	0.00E+00	Unignited	7.73E-05

No.	Section ID	Hole Size	Immediate Ignition	Immediate Ignition Frequency (/year)	Delayed Ignition 1	Delayed Ignition 1 Frequency(/year)	Delayed Ignition 2	Delayed Ignition 2 Frequency(/year)	Delayed Ignition 3	Delayed Ignition 3 Frequency(/year)	Un-ignited Release / Toxic Dispersion	Un-ignited / Toxic Frequency(/year)
		Minor	Jet Fire	4.81E-06	Pool Fire	4.33E-05	-	0.00E+00	-	0.00E+00	Unignited	4.76E-03
		Small	Jet Fire	2.20E-05	Pool Fire	2.20E-05	-	0.00E+00	-	0.00E+00	Unignited	1.42E-03
32	IS32_NAPH_FD_L	Medium	Jet Fire	4.47E-05	Pool Fire	2.98E-05	-	0.00E+00	-	0.00E+00	Unignited	8.57E-04
		Large	Jet Fire	1.08E-05	Pool Fire	7.18E-06	-	0.00E+00	-	0.00E+00	Unignited	2.06E-04
		Catastrophic	Pool Fire	5.67E-06	Pool Fire	3.78E-06	-	0.00E+00	-	0.00E+00	Unignited	1.09E-04
		Minor	Jet Fire	8.09E-06	Explosion	2.91E-06	Flash Fire	6.99E-05	-	0.00E+00	Unignited	8.01E-03
		Small	Jet Fire	2.46E-06	Explosion	8.84E-07	Flash Fire	2.12E-05	-	0.00E+00	Unignited	2.43E-03
33	IS33_H2_H2PR_V	Medium	Jet Fire	1.81E-05	Explosion	2.17E-06	Flash Fire	1.59E-05	-	0.00E+00	Unignited	4.81E-04
		Large	Jet Fire	3.71E-06	Explosion	4.45E-07	Flash Fire	3.26E-06	-	0.00E+00	Unignited	9.85E-05
		Catastrophic	Jet Fire	2.13E-05	Explosion	4.27E-06	Flash Fire	9.96E-06	-	0.00E+00	Unignited	8.30E-05
		Minor	Jet Fire	4.81E-06	Explosion	1.73E-06	Flash Fire	4.15E-05	-	0.00E+00	Unignited	4.76E-03
		Small	Jet Fire	1.47E-06	Explosion	5.29E-07	Flash Fire	1.27E-05	-	0.00E+00	Unignited	1.45E-03
34	IS34_H2_HD_V	Medium	Jet Fire	3.26E-05	Explosion	3.91E-06	Flash Fire	2.87E-05	-	0.00E+00	Unignited	8.66E-04
		Large	Jet Fire	7.85E-06	Explosion	9.42E-07	Flash Fire	6.91E-06	-	0.00E+00	Unignited	2.09E-04
		Catastrophic	Jet Fire	2.13E-05	Explosion	4.25E-06	Flash Fire	9.92E-06	-	0.00E+00	Unignited	8.27E-05
		Minor	Jet Fire	3.75E-06	Pool Fire	3.37E-05	-	0.00E+00	-	0.00E+00	Unignited	3.71E-03
		Small	Jet Fire	1.84E-05	Pool Fire	1.84E-05	-	0.00E+00	-	0.00E+00	Unignited	1.19E-03
35	IS35_ISOM_CGB_L	Medium	Jet Fire	2.04E-05	Pool Fire	1.36E-05	-	0.00E+00	-	0.00E+00	Unignited	3.91E-04
		Large	Jet Fire	4.19E-06	Pool Fire	2.79E-06	-	0.00E+00	-	0.00E+00	Unignited	8.03E-05
		Catastrophic	Pool Fire	3.20E-06	Pool Fire	2.13E-06	-	0.00E+00	-	0.00E+00	Unignited	6.13E-05
		Minor	Jet Fire	6.24E-06	Explosion	2.24E-06	Flash Fire	5.39E-05	-	0.00E+00	Unignited	6.17E-03
		Small	Jet Fire	1.89E-06	Explosion	6.80E-07	Flash Fire	1.63E-05	-	0.00E+00	Unignited	1.87E-03
36	IS36_H2_FIR_V	Medium	Jet Fire	1.76E-05	Explosion	2.12E-06	Flash Fire	1.55E-05	-	0.00E+00	Unignited	4.69E-04
		Large	Jet Fire	3.84E-06	Explosion	4.60E-07	Flash Fire	3.38E-06	-	0.00E+00	Unignited	1.02E-04
		Catastrophic	Jet Fire	1.79E-05	Explosion	3.58E-06	Flash Fire	8.36E-06	-	0.00E+00	Unignited	6.97E-05
		Minor	Jet Fire	4.37E-07	Pool Fire	3.93E-06	-	0.00E+00	-	0.00E+00	Unignited	4.32E-04
		Small	Jet Fire	3.80E-06	Pool Fire	3.80E-06	-	0.00E+00	-	0.00E+00	Unignited	2.46E-04
37	IS37_NAPH_SIRBP_L	Medium	Jet Fire	7.35E-06	Pool Fire	4.90E-06	-	0.00E+00	-	0.00E+00	Unignited	1.41E-04
		Large	Jet Fire	1.18E-06	Pool Fire	7.89E-07	-	0.00E+00	-	0.00E+00	Unignited	2.27E-05
		Catastrophic	Pool Fire	6.08E-07	Pool Fire	4.05E-07	-	0.00E+00	-	0.00E+00	Unignited	1.17E-05
38	IS38_H2_SIRUP_V	Minor	Jet Fire	1.07E-06	Explosion	3.85E-07	Flash Fire	9.25E-06	-	0.00E+00	Unignited	1.06E-03

No.	Section ID	Hole Size	Immediate Ignition	Immediate Ignition Frequency (/year)	Delayed Ignition 1	Delayed Ignition 1 Frequency(/year)	Delayed Ignition 2	Delayed Ignition 2 Frequency(/year)	Delayed Ignition 3	Delayed Ignition 3 Frequency(/year)	Un-ignited Release / Toxic Dispersion	Un-ignited / Toxic Frequency(/year)
		Small	Jet Fire	3.48E-07	Explosion	1.25E-07	Flash Fire	3.00E-06	-	0.00E+00	Unignited	3.44E-04
		Medium	Jet Fire	7.67E-06	Explosion	9.20E-07	Flash Fire	6.75E-06	-	0.00E+00	Unignited	2.04E-04
		Large	Jet Fire	1.77E-06	Explosion	2.13E-07	Flash Fire	1.56E-06	-	0.00E+00	Unignited	4.71E-05
		Catastrophic	Jet Fire	4.79E-06	Explosion	9.58E-07	Flash Fire	2.23E-06	-	0.00E+00	Unignited	1.86E-05
		Minor	Jet Fire	9.36E-06	Explosion	3.37E-06	Flash Fire	8.09E-05	-	0.00E+00	Unignited	9.27E-03
		Small	Jet Fire	2.64E-06	Explosion	9.52E-07	Flash Fire	2.28E-05	-	0.00E+00	Unignited	2.62E-03
39	IS39_LPG_S_V	Medium	Jet Fire	2.27E-05	Explosion	2.73E-06	Flash Fire	2.00E-05	-	0.00E+00	Unignited	6.04E-04
		Large	Jet Fire	5.53E-06	Explosion	6.63E-07	Flash Fire	4.86E-06	-	0.00E+00	Unignited	1.47E-04
		Catastrophic	Jet Fire	2.63E-05	Explosion	5.27E-06	Flash Fire	1.23E-05	-	0.00E+00	Unignited	1.02E-04
		Minor	Jet Fire	2.90E-06	Pool Fire	2.61E-05	-	0.00E+00	-	0.00E+00	Unignited	2.87E-03
		Small	Jet Fire	1.35E-05	Pool Fire	1.35E-05	-	0.00E+00	-	0.00E+00	Unignited	8.74E-04
40	IS40_ISOM_SRDBP_L	Medium	Jet Fire	1.09E-05	Pool Fire	7.28E-06	-	0.00E+00	-	0.00E+00	Unignited	2.09E-04
		Large	Jet Fire	2.64E-06	Pool Fire	1.76E-06	-	0.00E+00	-	0.00E+00	Unignited	5.05E-05
		Catastrophic	Pool Fire	1.68E-06	Pool Fire	1.12E-06	-	0.00E+00	-	0.00E+00	Unignited	3.23E-05
		Minor	Jet Fire	1.07E-06	Explosion	3.85E-07	Flash Fire	9.25E-06	-	0.00E+00	Unignited	1.06E-03
		Small	Jet Fire	1.22E-05	Explosion	1.46E-06	Flash Fire	1.07E-05	-	0.00E+00	Unignited	3.23E-04
41	IS41_LPG_SRDUP_V	Medium	Jet Fire	7.67E-06	Explosion	9.20E-07	Flash Fire	6.75E-06	-	0.00E+00	Unignited	2.04E-04
		Large	Jet Fire	9.11E-06	Explosion	1.82E-06	Flash Fire	4.25E-06	-	0.00E+00	Unignited	3.54E-05
		Catastrophic	Jet Fire	4.79E-06	Explosion	9.58E-07	Flash Fire	2.23E-06	-	0.00E+00	Unignited	1.86E-05
		Minor	Jet Fire	4.64E-06	Pool Fire	4.17E-05	-	0.00E+00	-	0.00E+00	Unignited	4.59E-03
		Small	Jet Fire	2.04E-05	Pool Fire	2.04E-05	-	0.00E+00	-	0.00E+00	Unignited	1.32E-03
42	IS42_ISOM_DRD_L	Medium	Jet Fire	7.77E-06	Pool Fire	7.77E-06	-	0.00E+00	-	0.00E+00	Unignited	5.02E-04
		Large	Jet Fire	5.94E-06	Pool Fire	3.96E-06	-	0.00E+00	-	0.00E+00	Unignited	1.14E-04
		Catastrophic	Pool Fire	4.14E-06	Pool Fire	2.76E-06	-	0.00E+00	-	0.00E+00	Unignited	7.94E-05
		Minor	Jet Fire	7.55E-06	Explosion	2.72E-06	Flash Fire	6.52E-05	-	0.00E+00	Unignited	7.47E-03
		Small	Jet Fire	2.07E-06	Explosion	7.46E-07	Flash Fire	1.79E-05	-	0.00E+00	Unignited	2.05E-03
43	IS43_H2_CS_V	Medium	Jet Fire	6.39E-07	Explosion	2.30E-07	Flash Fire	5.52E-06	-	0.00E+00	Unignited	6.32E-04
		Large	Jet Fire	6.03E-06	Explosion	7.24E-07	Flash Fire	5.31E-06	-	0.00E+00	Unignited	1.60E-04
		Catastrophic	Jet Fire	2.13E-05	Explosion	4.27E-06	Flash Fire	9.95E-06	-	0.00E+00	Unignited	8.29E-05
11		Minor	Jet Fire	1.09E-05	Pool Fire	9.78E-05	-	0.00E+00	-	0.00E+00	Unignited	1.08E-02
44	1044_1AIVIE_101_L	Small	Jet Fire	3.98E-05	Pool Fire	3.98E-05	-	0.00E+00	-	0.00E+00	Unignited	2.57E-03

No.	Section ID	Hole Size	Immediate Ignition	Immediate Ignition Frequency (/year)	Delayed Ignition 1	Delayed Ignition 1 Frequency(/year)	Delayed Ignition 2	Delayed Ignition 2 Frequency(/year)	Delayed Ignition 3	Delayed Ignition 3 Frequency(/year)	Un-ignited Release / Toxic Dispersion	Un-ignited / Toxic Frequency(/year)
		Medium	Jet Fire	2.07E-05	Pool Fire	2.07E-05	-	0.00E+00	-	0.00E+00	Unignited	1.34E-03
		Large	Jet Fire	1.93E-05	Pool Fire	1.29E-05	-	0.00E+00	-	0.00E+00	Unignited	3.70E-04
		Catastrophic	Pool Fire	1.05E-05	Pool Fire	7.02E-06	-	0.00E+00	-	0.00E+00	Unignited	2.02E-04
		Minor	Jet Fire	1.09E-05	Pool Fire	9.78E-05	-	0.00E+00	-	0.00E+00	Unignited	1.08E-02
		Small	Jet Fire	3.98E-05	Pool Fire	3.98E-05	-	0.00E+00	-	0.00E+00	Unignited	2.57E-03
45	IS45_ISOM_IST_L	Medium	Jet Fire	2.07E-05	Pool Fire	2.07E-05	-	0.00E+00	-	0.00E+00	Unignited	1.34E-03
		Large	Jet Fire	1.93E-05	Pool Fire	1.29E-05	-	0.00E+00	-	0.00E+00	Unignited	3.70E-04
		Catastrophic	Pool Fire	1.05E-05	Pool Fire	7.02E-06	-	0.00E+00	-	0.00E+00	Unignited	2.02E-04
		Minor	Jet Fire	6.44E-06	Pool Fire	5.80E-05	-	0.00E+00	-	0.00E+00	Unignited	6.38E-03
		Small	Jet Fire	2.42E-05	Pool Fire	2.42E-05	-	0.00E+00	-	0.00E+00	Unignited	1.57E-03
46	IS46_NAPH_MST_L	Medium	Jet Fire	3.38E-05	Pool Fire	2.25E-05	-	0.00E+00	-	0.00E+00	Unignited	6.47E-04
		Large	Jet Fire	9.93E-06	Pool Fire	6.62E-06	-	0.00E+00	-	0.00E+00	Unignited	1.90E-04
		Catastrophic	Pool Fire	5.57E-06	Pool Fire	3.71E-06	-	0.00E+00	-	0.00E+00	Unignited	1.07E-04
	IS47_TAME_PIPESTPU_L	Minor	Jet Fire	2.48E-04	Pool Fire	2.23E-03	-	0.00E+00	-	0.00E+00	Unignited	2.45E-01
		Small	Jet Fire	1.50E-03	Pool Fire	1.50E-03	-	0.00E+00	-	0.00E+00	Unignited	9.71E-02
47		Medium	Jet Fire	2.65E-04	Pool Fire	2.65E-04	-	0.00E+00	-	0.00E+00	Unignited	1.71E-02
		Large	Jet Fire	0.00E+00	Pool Fire	0.00E+00	-	0.00E+00	-	0.00E+00	Unignited	0.00E+00
		Catastrophic	Pool Fire	0.00E+00	Pool Fire	0.00E+00	-	0.00E+00	-	0.00E+00	Unignited	0.00E+00
		Minor	Jet Fire	9.60E-05	Pool Fire	8.64E-04	-	0.00E+00	-	0.00E+00	Unignited	9.51E-02
		Small	Jet Fire	2.14E-04	Pool Fire	2.14E-04	-	0.00E+00	-	0.00E+00	Unignited	1.38E-02
48	IS48_TAME_PIPEPUST_L	Medium	Jet Fire	1.50E-04	Pool Fire	1.50E-04	-	0.00E+00	-	0.00E+00	Unignited	9.70E-03
		Large	Jet Fire	1.89E-04	Pool Fire	1.26E-04	-	0.00E+00	-	0.00E+00	Unignited	3.62E-03
		Catastrophic	Pool Fire	1.01E-04	Pool Fire	6.76E-05	-	0.00E+00	-	0.00E+00	Unignited	1.94E-03
		Minor	Jet Fire	9.60E-05	Pool Fire	8.64E-04	-	0.00E+00	-	0.00E+00	Unignited	9.51E-02
		Small	Jet Fire	2.14E-04	Pool Fire	2.14E-04	-	0.00E+00	-	0.00E+00	Unignited	1.38E-02
49	IS49_ISOM_PIPEPUST_L	Medium	Jet Fire	1.50E-04	Pool Fire	1.50E-04	-	0.00E+00	-	0.00E+00	Unignited	9.70E-03
		Large	Jet Fire	1.89E-04	Pool Fire	1.26E-04	-	0.00E+00	-	0.00E+00	Unignited	3.62E-03
		Catastrophic	Pool Fire	1.01E-04	Pool Fire	6.76E-05	-	0.00E+00	-	0.00E+00	Unignited	1.94E-03
		Minor	Jet Fire	9.60E-05	Pool Fire	8.64E-04	-	0.00E+00	-	0.00E+00	Unignited	9.51E-02
50	IS50_NAPH_PIPESTPU_L	Small	Jet Fire	2.14E-04	Pool Fire	2.14E-04	-	0.00E+00	-	0.00E+00	Unignited	1.38E-02
		Medium	Jet Fire	1.50E-04	Pool Fire	1.50E-04	-	0.00E+00	-	0.00E+00	Unignited	9.70E-03

No.	Section ID	Hole Size	Immediate Ignition	Immediate Ignition Frequency (/year)	Delayed Ignition 1	Delayed Ignition 1 Frequency(/year)	Delayed Ignition 2	Delayed Ignition 2 Frequency(/year)	Delayed Ignition 3	Delayed Ignition 3 Frequency(/year)	Un-ignited Release / Toxic Dispersion	Un-ignited / Toxic Frequency(/year)
		Large	Jet Fire	1.89E-04	Pool Fire	1.26E-04	-	0.00E+00	-	0.00E+00	Unignited	3.62E-03
		Catastrophic	Pool Fire	1.01E-04	Pool Fire	6.76E-05	-	0.00E+00	-	0.00E+00	Unignited	1.94E-03
		Minor	Jet Fire	8.41E-05	Pool Fire	7.57E-04	-	0.00E+00	-	0.00E+00	Unignited	8.32E-02
		Small	Jet Fire	1.87E-04	Pool Fire	1.87E-04	-	0.00E+00	-	0.00E+00	Unignited	1.21E-02
51	IS51_NAPH_PIPEPUST_L	Medium	Jet Fire	1.31E-04	Pool Fire	1.31E-04	-	0.00E+00	-	0.00E+00	Unignited	8.50E-03
		Large	Jet Fire	1.65E-04	Pool Fire	1.10E-04	-	0.00E+00	-	0.00E+00	Unignited	3.17E-03
		Catastrophic	Pool Fire	8.88E-05	Pool Fire	5.92E-05	-	0.00E+00	-	0.00E+00	Unignited	1.70E-03
		Minor	Jet Fire	8.41E-05	Pool Fire	7.57E-04	-	0.00E+00	-	0.00E+00	Unignited	8.32E-02
		Small	Jet Fire	1.87E-04	Pool Fire	1.87E-04	-	0.00E+00	-	0.00E+00	Unignited	1.21E-02
52	IS52_NAPH_PIPEPUMHST_L	Medium	Jet Fire	1.31E-04	Pool Fire	1.31E-04	-	0.00E+00	-	0.00E+00	Unignited	8.50E-03
		Large	Jet Fire	1.65E-04	Pool Fire	1.10E-04	-	0.00E+00	-	0.00E+00	Unignited	3.17E-03
		Catastrophic	Pool Fire	8.88E-05	Pool Fire	5.92E-05	-	0.00E+00	-	0.00E+00	Unignited	1.70E-03
		Minor	Jet Fire	4.66E-07	Explosion	1.68E-07	Flash Fire	2.01E-06	Pool Fire	2.01E-06	Unignited	4.62E-04
	IS53_ETHY_EST_L	Small	Jet Fire	1.63E-07	Explosion	5.87E-08	Flash Fire	7.05E-07	Pool Fire	7.05E-07	Unignited	1.61E-04
53		Medium	Jet Fire	5.04E-07	Explosion	6.05E-08	Flash Fire	2.22E-07	Pool Fire	2.22E-07	Unignited	3.26E-05
		Large	Jet Fire	9.45E-08	Explosion	1.13E-08	Flash Fire	4.16E-08	Pool Fire	4.16E-08	Unignited	6.11E-06
		Catastrophic	BLEVE	2.16E-07	Explosion	4.32E-08	Flash Fire	1.01E-07	-	0.00E+00	Unignited	4.14E-06
		Minor	Jet Fire	3.88E-06	Explosion	1.40E-06	Flash Fire	3.35E-05	-	0.00E+00	Unignited	3.84E-03
		Small	Jet Fire	3.86E-05	Explosion	4.63E-06	Flash Fire	3.40E-05	-	0.00E+00	Unignited	1.03E-03
54	IS54_ETHY_BOGC_V	Medium	Jet Fire	1.11E-05	Explosion	2.22E-06	Flash Fire	5.18E-06	-	0.00E+00	Unignited	4.32E-05
		Large	Jet Fire	4.87E-06	Explosion	9.73E-07	Flash Fire	2.27E-06	-	0.00E+00	Unignited	1.89E-05
		Catastrophic	Jet Fire	4.62E-06	Explosion	9.23E-07	Flash Fire	2.15E-06	-	0.00E+00	Unignited	1.80E-05
		Minor	Jet Fire	1.26E-07	Explosion	4.52E-08	Flash Fire	1.08E-06	-	0.00E+00	Unignited	1.24E-04
		Small	Jet Fire	1.97E-06	Explosion	2.37E-07	Flash Fire	1.74E-06	-	0.00E+00	Unignited	5.24E-05
55	IS55_ETHY_HPEBOGLR_V	Medium	Jet Fire	6.23E-06	Explosion	1.25E-06	Flash Fire	2.91E-06	-	0.00E+00	Unignited	2.42E-05
		Large	Jet Fire	1.17E-06	Explosion	2.34E-07	Flash Fire	5.46E-07	-	0.00E+00	Unignited	4.55E-06
		Catastrophic	Jet Fire	6.08E-07	Explosion	1.22E-07	Flash Fire	2.84E-07	-	0.00E+00	Unignited	2.36E-06
		Minor	Jet Fire	1.26E-07	Pool Fire	1.13E-06	-	0.00E+00	-	0.00E+00	Unignited	1.24E-04
F 2		Small	Jet Fire	8.45E-07	Pool Fire	8.45E-07	-	0.00E+00	-	0.00E+00	Unignited	5.47E-05
56	IS56_ETHY_LPEBUGLR_L	Medium	Jet Fire	1.66E-06	Pool Fire	1.11E-06	-	0.00E+00	-	0.00E+00	Unignited	3.18E-05
		Large	Jet Fire	3.12E-07	Pool Fire	2.08E-07	-	0.00E+00	-	0.00E+00	Unignited	5.98E-06

No.	Section ID	Hole Size	Immediate Ignition	Immediate Ignition Frequency (/year)	Delayed Ignition 1	Delayed Ignition 1 Frequency(/year)	Delayed Ignition 2	Delayed Ignition 2 Frequency(/year)	Delayed Ignition 3	Delayed Ignition 3 Frequency(/year)	Un-ignited Release / Toxic Dispersion	Un-ignited / Toxic Frequency(/year)
		Catastrophic	Pool Fire	1.62E-07	Pool Fire	1.08E-07	-	0.00E+00	-	0.00E+00	Unignited	3.11E-06
		Minor	Jet Fire	5.02E-07	Explosion	1.81E-07	Flash Fire	2.17E-06	Pool Fire	2.17E-06	Unignited	4.97E-04
		Small	Jet Fire	2.25E-07	Explosion	8.11E-08	Flash Fire	9.74E-07	Pool Fire	9.74E-07	Unignited	2.23E-04
57	IS57_PROPY_PSV_L	Medium	Jet Fire	2.08E-06	Explosion	2.49E-07	Flash Fire	9.13E-07	Pool Fire	9.13E-07	Unignited	1.34E-04
		Large	Jet Fire	3.90E-07	Explosion	4.68E-08	Flash Fire	1.72E-07	Pool Fire	1.72E-07	Unignited	2.52E-05
		Catastrophic	BLEVE	6.48E-07	Explosion	1.30E-07	Flash Fire	3.02E-07	-	0.00E+00	Unignited	1.24E-05
		Minor	Jet Fire	5.02E-07	Explosion	1.81E-07	Flash Fire	2.17E-06	Pool Fire	2.17E-06	Unignited	4.97E-04
		Small	Jet Fire	3.38E-06	Explosion	4.06E-07	Flash Fire	1.49E-06	Pool Fire	1.49E-06	Unignited	2.19E-04
58	IS58_BUTD_BSV_L	Medium	Jet Fire	2.08E-06	Explosion	2.49E-07	Flash Fire	9.13E-07	Pool Fire	9.13E-07	Unignited	1.34E-04
		Large	Jet Fire	1.25E-06	Explosion	2.50E-07	Flash Fire	5.82E-07	Pool Fire	0.00E+00	Unignited	2.39E-05
		Catastrophic	BLEVE	6.48E-07	Explosion	1.30E-07	Flash Fire	3.02E-07	-	0.00E+00	Unignited	1.24E-05
		Minor	Pool Fire	1.26E-07	Pool Fire	1.13E-06	-	0.00E+00	-	0.00E+00	Unignited	1.24E-04
	IS59_ETHY_CFKOD_L	Small	Pool Fire	5.64E-08	Pool Fire	5.07E-07	-	0.00E+00	-	0.00E+00	Unignited	5.58E-05
59		Medium	Pool Fire	5.19E-07	Pool Fire	5.19E-07	-	0.00E+00	-	0.00E+00	Unignited	3.36E-05
		Large	Pool Fire	9.75E-08	Pool Fire	9.75E-08	-	0.00E+00	-	0.00E+00	Unignited	6.30E-06
		Catastrophic	Pool Fire	1.62E-07	Pool Fire	1.08E-07	-	0.00E+00	-	0.00E+00	Unignited	3.11E-06
		Minor	Jet Fire	9.60E-06	Pool Fire	8.64E-05	-	0.00E+00	-	0.00E+00	Unignited	9.51E-03
		Small	Jet Fire	2.14E-05	Pool Fire	2.14E-05	-	0.00E+00	-	0.00E+00	Unignited	1.38E-03
60	IS60_ETHY_PIPEU2100U5220_L	Medium	Jet Fire	4.80E-05	Pool Fire	3.20E-05	-	0.00E+00	-	0.00E+00	Unignited	9.20E-04
		Large	Jet Fire	1.89E-05	Pool Fire	1.26E-05	-	0.00E+00	-	0.00E+00	Unignited	3.62E-04
		Catastrophic	Pool Fire	1.01E-05	Pool Fire	6.76E-06	-	0.00E+00	-	0.00E+00	Unignited	1.94E-04
		Minor	Jet Fire	7.21E-06	Pool Fire	6.49E-05	-	0.00E+00	-	0.00E+00	Unignited	7.14E-03
		Small	Jet Fire	1.61E-05	Pool Fire	1.61E-05	-	0.00E+00	-	0.00E+00	Unignited	1.04E-03
61	IS61_ETHY_PIPEU5220PDT2_L	Medium	Jet Fire	3.61E-05	Pool Fire	2.40E-05	-	0.00E+00	-	0.00E+00	Unignited	6.91E-04
		Large	Jet Fire	1.42E-05	Pool Fire	9.46E-06	-	0.00E+00	-	0.00E+00	Unignited	2.72E-04
		Catastrophic	Pool Fire	7.62E-06	Pool Fire	5.08E-06	-	0.00E+00	-	0.00E+00	Unignited	1.46E-04
		Minor	Jet Fire	9.60E-06	Explosion	3.46E-06	Flash Fire	8.30E-05	-	0.00E+00	Unignited	9.51E-03
		Small	Jet Fire	4.99E-05	Explosion	5.99E-06	Flash Fire	4.39E-05	-	0.00E+00	Unignited	1.33E-03
62	IS62_ETHY_PIPEU5220BLU_V	Medium	Jet Fire	3.50E-05	Explosion	4.20E-06	Flash Fire	3.08E-05	-	0.00E+00	Unignited	9.30E-04
		Large	Jet Fire	7.09E-05	Explosion	1.42E-05	Flash Fire	3.31E-05	-	0.00E+00	Unignited	2.76E-04
		Catastrophic	Jet Fire	3.80E-05	Explosion	7.61E-06	Flash Fire	1.78E-05	-	0.00E+00	Unignited	1.48E-04

No.	Section ID	Hole Size	Immediate Ignition	Immediate Ignition Frequency (/year)	Delayed Ignition 1	Delayed Ignition 1 Frequency(/year)	Delayed Ignition 2	Delayed Ignition 2 Frequency(/year)	Delayed Ignition 3	Delayed Ignition 3 Frequency(/year)	Un-ignited Release / Toxic Dispersion	Un-ignited / Toxic Frequency(/year)
		Minor	Jet Fire	9.60E-06	Explosion	3.46E-06	Flash Fire	8.30E-05	-	0.00E+00	Unignited	9.51E-03
		Small	Jet Fire	4.99E-05	Explosion	5.99E-06	Flash Fire	4.39E-05	-	0.00E+00	Unignited	1.33E-03
63	IS63_PROPY_PIPEU5210U5220_V	Medium	Jet Fire	1.80E-04	Explosion	3.60E-05	Flash Fire	8.40E-05	-	0.00E+00	Unignited	7.00E-04
		Large	Jet Fire	7.09E-05	Explosion	1.42E-05	Flash Fire	3.31E-05	-	0.00E+00	Unignited	2.76E-04
		Catastrophic	Jet Fire	3.80E-05	Explosion	7.61E-06	Flash Fire	1.78E-05	-	0.00E+00	Unignited	1.48E-04
		Minor	Jet Fire	1.51E-05	Explosion	5.44E-06	Flash Fire	1.31E-04	-	0.00E+00	Unignited	1.50E-02
		Small	Jet Fire	7.87E-05	Explosion	9.44E-06	Flash Fire	6.92E-05	-	0.00E+00	Unignited	2.09E-03
64	IS64_PROPY_PIPEU5220J_V	Medium	Jet Fire	2.83E-04	Explosion	5.66E-05	Flash Fire	1.32E-04	-	0.00E+00	Unignited	1.10E-03
		Large	Jet Fire	1.12E-04	Explosion	2.23E-05	Flash Fire	5.21E-05	-	0.00E+00	Unignited	4.34E-04
		Catastrophic	Jet Fire	5.99E-05	Explosion	1.20E-05	Flash Fire	2.79E-05	-	0.00E+00	Unignited	2.33E-04
		Minor	Jet Fire	3.12E-06	Explosion	1.12E-06	Flash Fire	2.70E-05	-	0.00E+00	Unignited	3.09E-03
		Small	Jet Fire	1.26E-06	Explosion	4.55E-07	Flash Fire	1.09E-05	-	0.00E+00	Unignited	1.25E-03
65	IS65_PROPY_PIPEMURP_V	Medium	Jet Fire	7.80E-06	Explosion	9.36E-07	Flash Fire	6.87E-06	-	0.00E+00	Unignited	2.07E-04
		Large	Jet Fire	0.00E+00	Explosion	0.00E+00	Flash Fire	0.00E+00	-	0.00E+00	Unignited	0.00E+00
		Catastrophic	Jet Fire	0.00E+00	Explosion	0.00E+00	Flash Fire	0.00E+00	-	0.00E+00	Unignited	0.00E+00
		Minor	Jet Fire	9.60E-06	Pool Fire	8.64E-05	-	0.00E+00	-	0.00E+00	Unignited	9.51E-03
		Small	Jet Fire	2.14E-05	Pool Fire	2.14E-05	-	0.00E+00	-	0.00E+00	Unignited	1.38E-03
66	IS66_BUTD_PIPEU5210U5220_L	Medium	Jet Fire	4.80E-05	Pool Fire	3.20E-05	-	0.00E+00	-	0.00E+00	Unignited	9.20E-04
		Large	Jet Fire	1.89E-05	Pool Fire	1.26E-05	-	0.00E+00	-	0.00E+00	Unignited	3.62E-04
		Catastrophic	Pool Fire	1.01E-05	Pool Fire	6.76E-06	-	0.00E+00	-	0.00E+00	Unignited	1.94E-04
		Minor	Jet Fire	1.44E-05	Pool Fire	1.29E-04	-	0.00E+00	-	0.00E+00	Unignited	1.42E-02
		Small	Jet Fire	3.20E-05	Pool Fire	3.20E-05	-	0.00E+00	-	0.00E+00	Unignited	2.07E-03
67	IS67_BUTD_PIPEU5220JLI_L	Medium	Jet Fire	7.19E-05	Pool Fire	4.79E-05	-	0.00E+00	-	0.00E+00	Unignited	1.38E-03
		Large	Jet Fire	2.83E-05	Pool Fire	1.89E-05	-	0.00E+00	-	0.00E+00	Unignited	5.43E-04
		Catastrophic	Pool Fire	1.52E-05	Pool Fire	1.01E-05	-	0.00E+00	-	0.00E+00	Unignited	2.91E-04
		Minor	Jet Fire	1.44E-05	Pool Fire	1.29E-04	-	0.00E+00	-	0.00E+00	Unignited	1.42E-02
		Small	Jet Fire	3.20E-05	Pool Fire	3.20E-05	-	0.00E+00	-	0.00E+00	Unignited	2.07E-03
68	IS68_BUTD_PIPEU5220JCLI_L	Medium	Jet Fire	7.19E-05	Pool Fire	4.79E-05	-	0.00E+00	-	0.00E+00	Unignited	1.38E-03
		Large	Jet Fire	2.83E-05	Pool Fire	1.89E-05	-	0.00E+00	-	0.00E+00	Unignited	5.43E-04
		Catastrophic	Pool Fire	1.52E-05	Pool Fire	1.01E-05	-	0.00E+00	-	0.00E+00	Unignited	2.91E-04

APPENDIX 3

QUANTITATIVE RISK ASSESSMENT

SUB-APPENDIX 3D: INDIVIDUAL RISK (IR) CONTOUR

C	5

		NT0	
10	1.5 km	Δ λ	
		E CONTRACTOR	
		5-19	
72287 767			
-7562 - 87			
1.0125			
38) 38)			
·- 1.13			
-u-			
24.26%			
ila:			
77.865			
.u			
9672 (1021			
- 12.97 612			
- 1787 E (3			
- rock a alay			

Figure D2: Individual Risk Contour for Olefins Storage Tanks

C	5

2 3 km	N° S	

> APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Figure D4: Cumulative Contour for EURO MOGAS Units, Olefins Storage Tankages, Refinery & Cracker Complex and Petrochemical Complex

C	5

2.0 3.0 km	N° SP	

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

SUB-APPENDIX 3E: WORST CASE SCENARIO (WCS) AND WORST CASE CREDIBLE SCENARIO (WCCS) FOR EURO MOGAS AND OLEFIN STORAGE TANKS.

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Figure E1: WCS and WCCS for Fire (Jet Fire due to Catastrophic Release at HP Ethylene BOG Liquid Receiver – Olefins Storage Tank)

> **APPENDIX 3** QUANTITATIVE RISK ASSESSMENT

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

APPENDIX 3

QUANTITATIVE RISK ASSESSMENT

SUB-APPENDIX 3F: WORST CASE SCENARIO (WCS) AND WORST CASE **CREDIBLE SCENARIO (WCCS) FOR PETROCHEMICAL COMPLEX**

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Figure F1: WCS and WCCS for Toxic Dispersion Event (Toxic Gas Dispersion due to Catastrophic Release at Carbon Dioxide Absorber – EOEG Unit, Petrochemical Complex)

5	
	5

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Figure F2: WCS for Explosion Event (Explosion due to Ignited Release of Catastrophic Release at Distillation Column – FHDPE Unit, Petrochemical Complex)

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Figure F4: WCS and WCCS for Fire Event (Jet Fire due to Catastrophic Release at Gas Phase Reactor – Polypropylene Unit, Petrochemical Complex)

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

SUB-APPENDIX 3G: WORST CASE SCENARIO (WCS) AND WORST CASE **CREDIBLE SCENARIO (WCCS) FOR REFINERY CRACKER COMPLEX**

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Figure G1: WCS and WCCS for Fire Event (Flash Fire at Lower Flammable Limit due to Catastrophic Release at Residue Fluid Catalytic Cracking Unit- Refinery Tank Farm, Refinery Cracker Complex)

APPENDIX 3 QUANTITATIVE RISK ASSESSMENT

Figure G2: WCS and WCCS for Fire Event (Jet Fire due to Catastrophic Release at LPG Intermediate Storage Vessel – Refinery Tank Farm, Refinery Cracker Complex)

)	5	

Chemical Handling Study

ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS

Prepared For:

PETRONAS REFINERY AND PETROCHEMICAL CORPORATION SDN. BHD.

Prepared By:

INTEGRATED ENVIROTECH SDN. BHD. (650387-K)

MARCH 2017

Table of Contents

1.0	INTRODUCTION	1
1.1	Scope of Study	2
2.0	REGULATORY REQUIREMENTS	2
2.1	Malaysian Regulations and Guidelines	2
3.0	STUDY APPROACH AND METHODOLOGY	5
3.1	Definitions	6
3.2	Assumptions and Limitations	7
3.3	Chemical Handling and Management Philosophy	7
3.3.1	Chemical/ Hazardous Waste Disposal	12
3.3.2	Spill Stream Drainage	12
4.0	SAFETY AND ENVIRONMENTAL DESIGN REQUIREMENTS	14
5.0	RESIDUAL IMPACTS	15
6.0	CONCLUSION	15
7.0	REFERENCES	15

List Of Tables

Table 2-1: Summary of Key Regulations and Guidelines for Chemical Handling	2
Table 3-1: EURO 5 MOGAS Unit Chemical Inventory	13
Table 3-2: Olefin Tank Chemical Inventory	13

List Of Figures

Figure 3-1: Common Chemical Warehouse Location Within RAPID Plot Plan Layout	9
Figure 3-2: Typical Layout of Chemical Storage	. 10

ABBREVIATIONS

%	-	Percentage
°C	-	Degree Celsius
3R	-	Reduce, reuse and recycle
ALARP	-	As Low As Reasonably Practicable
CPL	-	Classification, Packaging and Labelling
CSDS	-	Chemical Safety Data Sheets
DEIA	-	Detail Environmental Impact Assessment
DOE	-	Department of Environment
DOSH	-	Department of Occupational Safety and Health
ETP	-	Effluent Treatment Plant
FIBC	-	Flexible Intermediate Bulk Containers
HCD	-	Hydrocarbon Discharge
HP	-	High Pressure
HPN	-	High Pressure Nitrogen
IBCs	-	Intermediate Bulk Containers
MSDS	-	Material Safety Data Sheet
OSH	-	Occupational Safety And Health
PTS	-	Petronas Technical Standards
RAPID	-	Refinery And Petrochemical Integrated Development Project
SOP	-	Standard Operating Procedure
USECHH	-	Use and Standards Exposure of Chemicals Hazardous to Health

1.0 INTRODUCTION

The units within Refinery & Cracker Complex as in DEIA RAPID 2012 are maintained. The RAPID Refinery Cracker Complex was originally designed to produce diesel that meet the EURO 5 specifications and MOGAS (motor gasoline) that meet EURO 4 specifications. To upgrade and meet the EURO 5 MOGAS specifications, Refinery Cracker Complex has been expanded to include additional units as listed below :

- 1. 2nd Stage Cracked Naphta Hydrotreating (CNHT 2) Unit
- 2. Etherification Unit Tertiary-Armyl-Methyl-Ether (TAME) Unit
- 3. Isomerization Unit
- 4. Additional Storage Tanks which consist of:
 - i. Two Tertiary-Armyl-Methyl-Ether (TAME) storage tanks
 - ii. Two Isomerate storage tanks
 - iii. One Medium Cracked Naptha (MCN) Storage Tank

Besides that, there will be new olefin storage tankages located in the current refinery tank farms which consists of:

- 1. Four mounded bullets for Butadiene Storage
- 2. One Ethylene Tank
- 3. Four sphere for Propylene Storage

Details of the additional units are described in **Volume 1, Chapter 2**. This additional information report conducted studies to assess the impacts from these new process units and tank farms in the Refinery and Cracker Complex.

1.1 Scope of Study

The objective of the Chemical Handling Study is to present the chemical management philosophy for the EURO 5 MOGAS Units and Olefins Tankages which include the storage and handling of chemicals at the Centralized Chemical Warehouse

Impacts on the handling and management of the chemical spillage and leakage at process areas within each of the process units will not be covered under this section. This is due to all areas where identified to have potential spillage or leakages of chemicals will either be contained and managed as scheduled waste or routed for treatment at the Centralised Effluent Treatment Plant (ETP), depending on the toxicity of the chemicals as specified in the MSDS.

2.0 REGULATORY REQUIREMENTS

2.1 Malaysian Regulations and Guidelines

A review of key legislative requirements related to the chemical handling was conducted and a summary of the key regulations and guidelines are provided in **Table 2-1**.

Regulations and Guidelines	Summary of Requirements
The Environmental Quality	Provides a list of controlled substances that are banned by the
(Prohibition on the Use of	Department of Environment (DOE) for use as propellants (for
Chlorofluorocarbons and	manufacturing, trade and industry of aerosol and portable fire
Other Gases as Propellants	extinguishers) and blowing agents (for manufacturing, trade or
and Blowing Agents) Order,	industry involved in production of polystyrene foam, thermoformed
1993	plastic packaging and moulded flexible polyurethane foam). The list
	of controlled substances are:

Table 2-1: Summary of Key Regulations and Guidelines for Chemical Handling

APPENDIX 5B CHEMICAL HANDLING STUDY

Regulations and Guidelines	Summary of Requirements
	Trichlorofluoromethane
	Dichlorodifluoromethane
	Trichlorotrifluoroethane
	Dichlorotetrafluoroethane
	Chloropentafluoroethane
	Bromochlorodifluoromethane
	Bromotrifluoromethane
	Dibromotetrafluoroethane
	Chlorotrifluoromethane
	Pentachlorofluoroethane
	Tetrachlorodifluoroethane
	Heptachlorofluoropropane
	Hexachlorodifluoropropane
	Pentachlorotrifluoropropane
	Tetrachlorotetrafluoropropane
	Trichloropentafluoropropane
	Dichlorohexafluoropropane
	Chloroheptafluoropropane
	Carbon Tetrachloride
	 1,1,1- trichloroethane (methyl chloroform)
The Environmental Quality	Provides a list of 'refrigerant environmentally hazardous substances'
(Refrigerant Management)	that are banned by the Department of Environment (DOE) for use as
Regulations, 1999	a refrigerant in any new installation of building chillers, refrigeration
	systems, vehicle air conditioners or air conditioning equipment. The
	list of refrigerants that are prohibited are:
	Trichlorofluoromethane
	Dichlorodifluoromethane
	Trichlorotrifluoroethane
	Dichlorotetrafluoroethane
	Chloropentafluoroethane

APPENDIX 5B CHEMICAL HANDLING STUDY

The Environmental QualityThis regulation stipulates the prohibition on the use of portaHalonManagement)Halon fire extinguishers and the installation of new fixed Halon	م ا ما ،		
 Regulations, 1999 extinguishing systems. The list of Halons that are prohibited are follows: Bromochlorodifluoromethane Bromotrifluoromethane Dibromotetrafluoroethane 	 This regulation stipulates the prohibition on the use of portable Halon fire extinguishers and the installation of new fixed Halon fire extinguishing systems. The list of Halons that are prohibited are as follows: Bromochlorodifluoromethane Bromotrifluoromethane Dibromotetrafluoroethane 		
DescriptionalSafetyandThis regulation stipulates the requirements related to classificationHealth(Classification,chemicals, packaging requirements, chemical labelling requirementPackagingandLabellingofIncludingtheminimumdimensionsofHazardousChemicals)supplying information on chemicals in the form of a chemical saRegulations, 2013 (CLASS)data sheet (CSDS)/MSDS and minimum information required to shown on a CSDS/MSDS.	n of ents on fety be		
DccupationalSafetyandThis order prescribes a list of substances and the extent to whether the substances and the extent to whether the substances are listed below:Health (Prohibition of Use of their use is prohibited. These are listed below:	hich		
Substance) Order, 1999Description of SubstanceExtent to which use of			
substance is prohibited			
4-Aminodiphenyl; Manufacture and use for all			
Benzidine; purposes including any			
2-Naphthylamine; manufacturing process in			
4-Nitrodiphenyl; which the substances			
Their salts; and any substance described is formed, except			
containing any of their for research or analytical			
compounds in any other purposes			
substance in a total			
concentration exceeding 0.1%t			
Crocidolite All purposes except fo	r		
research and analytica	I		
purposes.			
Benzene; Cleaning and degreasing			
Benzene; Cleaning and degreasing Carbon disulphide; Cleaning and degreasing			
Benzene; Cleaning and degreasing Carbon disulphide; Carbon tetrachloride and			

White phosphorus

Use in the manufacture of

APPENDIX 5B CHEMICAL HANDLING STUDY

Regulations and Guidelines	Summary of Requirements			
	matches			
Occupational Safety and	This regulation stipulates the requirements for development of a			
Health (Use and Standards of	register of chemicals hazardous to health, permissible exposure			
Exposure of Chemicals	limits, labelling and re-labelling, assessment of risk to health, actions			
Hazardous to Health)	Hazardous to Health) to control exposure, monitoring of exposure, and provision of CSDS,			
Regulations, 2000	warning signs and record keeping requirements.			
Guidelines on Storage of	This guideline provides measures on the design, construction,			
Hazardous Chemicals: A	operation and maintenance of storage areas and buildings used for			
Guide for Safe Warehousing	storing packaged hazardous chemicals when they are contained in			
of Packaged Hazardous	packages such as drums, gas cylinders, bottles, boxes, intermediate			
Chemicals, 2005 issued by the	bulk containers (IBCs) and sacks.			
Department of Occupational				
Safety and Health				

Spent chemicals are classified as scheduled waste and therefore, shall be managed in accordance to the Environmental Quality (Scheduled Waste) Regulations, 2005.

3.0 STUDY APPROACH AND METHODOLOGY

The Chemical Handling Study will be conducted based on the following approach:

- Review of key legislative requirements and guidelines and the chemical management philosophy adopted by the Refinery and Cracker Complex;
- b) Characterisation of chemicals utilised by the EURO 5 MOGAS Units and Olefins Storage Tankages via review of Material Safety Data Sheets (MSDS). The review of MSDS will also serve to identify the toxicity effect of these chemicals to the aquatic environment. Additionally, a qualitative assessment of potential impacts from odour based on a review of toxicity data will also be conducted;

 Development of a chemical inventory for the EURO 5 MOGAS Units and Olefins Storage Tankages;

3.1 Definitions

A list of key definitions provided by the Occupational Safety and Health (Classification, Packaging and Labelling of Hazardous Chemicals) Regulations, 2013 (CLASS) and the Occupational Safety and Health (Control of Industrial Major Accident Hazards) Regulations, 1996 and used throughout this study is provided below:

- "Chemicals" means the entire chemical used in the process plants apart from hydrocarbon, feedstock product and catalyst.
- "Hazardous chemical" means any chemical which possess any of the properties categorised in Schedule I of the Occupational Safety and Health (Classification, Packaging and Labelling of Hazardous Chemicals) Regulations, 1997, and any chemicals which is specified in Schedule 1 or Schedule 2 (Part 1) of the Occupational Safety and Health (Control of Industrial Major Accident Hazards) Regulations, 1996, or for which relevant information exists to indicate that the chemical is hazardous.
- "Flammables" are those chemicals, which have low flash points i.e. they are easy to catch fire.
- "Oxidising chemicals" or oxidisers are those chemicals, which can react violently with flammable and combustible materials.
- "Toxic" is those chemicals and preparations, which if inhaled or ingested or penetrated into the skin may involve serious acute or chronic health risks or even death.
- When a chemical / hazardous substance is no longer used for its original purpose and is intended for disposal, but still has hazardous properties, it is considered a hazardous waste (or more commonly referred to as "scheduled waste").

3.2 Assumptions and Limitations

The assumptions and limitations in the development of the Chemical Handling Study in this report are :

- a) The study assesses the potential impacts of chemical management and handling from the chemical warehouse and the Refinery & Cracker Complex to the environment. This study does not include an assessment of impacts from these chemicals to human health and surrounding communities;
- b) Impacts on the handling and management of the chemical spillage and leakage where usage of chemical packages within each of the process units will not be covered under this section. This is due to all areas where identified to have potential spillage or leakages of chemicals will either be contained and managed as scheduled waste or routed for treatment at the Centralised Effluent Treatment Plant (ETP), depending on the toxicity of the chemicals.

3.3 Chemical Handling and Management Philosophy

The operational phase of the EURO 5 MOGAS Units and Olefins Storage Tankages will involve the use of various chemicals for the operations of the process units, utility systems as well as during regular maintenance and plant start-up/ shutdown and turnaround. The typical use of chemicals may include but not limited to the followings:

- a) Chemicals used for equipment maintenance such as solvents, oils, fuel and paints; and
- b) Chemicals utilised in chemical injection packages to enhance the processes.

RAPID Complex operating philosophy is such that all of the chemicals delivered via bulk container by trucks/land transportation for use in the RAPID Complex (including Refinery and Cracker Complex) is to be delivered and managed at the common chemical storage warehouse, which location is as indicated in **Figure 3-1** below. All of the chemicals delivered via the vessel/marine transportation shall be piped from the terminal into the chemical tanks located in the plant tank farm area.

The propose common chemical storage warehouse shall be design to store and segregated chemicals according to the types of chemical and their reactivity with each other. Chemicals shall be segregated based on the reactivity to prevent them from reacting with each other causing safety and health concerns. The RAPID Complex chemical segregation philosophy is guided by the PETRONAS policy and technical standards as shown in **Figure 3-2**.

Material Safety Data Sheets (MSDS) shall be provided for all chemicals in accordance with the requirements of Occupational Safety and Health (Classification, Packaging and Labelling of Hazardous Chemicals) Regulations, 2013 (CLASS).

APPENDIX 5B CHEMICAL HANDLING STUDY

RO	5

The chemical types and their reactivity that determine the design of the separate cells in the chemical warehouse are :

- a) Toxicants (In the event of a fire these can contaminate firefighting water):
 - Separate from other flammable products and aerosols
 - Segregate oxidising agents and corrosives
 - Segregate flammable from non-flammable toxicants
- b) Aerosols (These can explode in a fire, thereby increasing the danger to fire fighters and the risk of fire spread)
 - Separate from toxicants and flammables
 - Segregate oxidising agents and corrosives
- Flammables (These will not normally contaminate firefighting water if they are non-toxic but by definition will greatly increase the risk of a toxicant fire if stored in the same area as toxicants)
 - Separate from toxicants and aerosols
 - Segregate oxidising agents and corrosives
- d) Oxidising Agents (These can react violently with other products stored in the warehouse)
 - Segregate from toxicants, aerosols, flammables and corrosives
- e) Corrosives (Leakage from packages containing corrosives can damage other packages with potentially hazardous consequences)
 - Segregate from toxicants, aerosols, flammables and oxidising agents
- f) Combustibles (These generally constitute low fire risk and reactivity hazards. They can therefore be used to enhance segregation, e.g. to provide a barrier between other groups of products which require segregation)

3.3.1 Chemical/ Hazardous Waste Disposal

Spent chemical at each of the EURO 5 MOGAS Units and Olefins Storage Tankages shall be treated as scheduled waste and to be stored at the scheduled waste storage area as described in **VOLUME 2, Appendix 5A**. The waste is to be disposed by a licensed scheduled waste operator.

3.3.2 Spill Stream Drainage

In RAPID, the drainage design philosophy is developed to cater for the following spillage and leak scenario:

- Chemicals that are defined as very toxic or toxic based on MSDS specification, either to physical and biological environment or the biological treatment in the effluent treatment plant, shall be fully contained in sump or pit. The collection sumps or pits are not to be connected to any drainage network in RAPID complex or find its way to the surrounding water bodies.
- Chemicals which are defined as non- toxic shall be connected to the Accidentally Chemical Containment Drainage (ACC) routed to the Centralized Effluent Treatment Plant for treatment.

At the centralized Chemical Warehouse, design of the chemical storage area is such a way that the spillage within the specific type of chemical storage area will be directed and contain in a pit to be removed as scheduled waste by licensed contractor and any spillage from different storage cell cannot be mixed due to chemical reactivity and safety requirement. Chemical list for chemicals utilised at the EURO 5 MOGAS Units and Olefins Storage Tankages are shown in **Table 3-1 and Table 3-2.** The chemical list provide information on the key hazards, characteristics/ appearance, toxicity and ecology as well as the chemical incompatibility of chemicals utilised.

> **APPENDIX 5B** CHEMICAL HANDLING STUDY

Table 3-1: EURO 5 MOGAS Unit Chemical Inventory

No	Name of Chemical	Appearance	Characteristics	Health Effect	
1	PROPANE	Colorless liquid under pressure. Faint hydrocarbon odor unless odorant is added.	Toxic, Flammable	May cause damage to nervous system and heart	Wate affectir
2	ISOBUTANE	Colorless liquid under pressure. Faint hydrocarbon odor unless odorant is added.	Toxic, Flammable	May cause damage to central nervous system	No k
3	n-BUTANE	Colorless liquid under pressure. Faint hydrocarbon odor unless odorant is added.	Toxic, Flammable	Acute Toxicity	No k
4	n-PENTANE	Clear, Colorless liquid with sweet petroleum odor.	Toxic, Flammable	Acute oral toxicity	
5	METHANOL	Clear, Colorless, Flammable, Poisonous liquid, Pungent odor	Toxic, Flammable	Irritation in case of skin or eye contact, hazardous if inhaled. Can cause damage to human organs	Toxic
6	N-HEPTANE	Colorless watery liquid with a gasoline-like odor	Toxic, Flammable	Irritation in case of skin or eye contact, hazardous if inhaled or ingested	
7	1-DECENE	Colorless watery liquid with a pleasant odor. Floats on water.	Toxic, Flammable	May cause skin dessication.May cause fatality if ingested or inhaled	Very
8	DIMETHYL ETHER	Colorless. Liquid. (volatile, mobile liquid) Sweetish. Pungent. Ethereal	Flammable	May cause drowsiness or dizziness	No k
9	TERTIARY AMYL METHYL ETHER	Liquid, strong odour, colorless	Flammable	Irritation in case of skin or eye contact, hazardous if inhaled or ingested	No k
10	TERTIARY AMYL ALCOHOL	Liquid, pungent and unpleasant odor, colorless	Flammable	Irritation in case of skin or eye contact, hazardous if inhaled or ingested. Can cause damage to internal organs	No k

Table 3-2: Olefins Tankages Chemical Inventory

No	Name of Chemical	Appearance	Characteristics	Health Effect	
1	TERTIARY BUTYL CATECHOL (TBC)	Colorless light yellow liquid with phenolic odor. Flammable liquid and vapor.	Flammable	Acute Toxicity	
2	SODIUM HYPOCHLORITE	Green to Yellowish Liquid, odor chlorine-like	Non-Flammable, Toxic	Irritation in case of skin or eye contact, hazardous if inhaled or ingested	lt is

Ecological effects

er quality standards and physical properties ng water contamination potential. Toxicity to aquatic organisms.

nown significant effects or critical hazards

nown significant effects or critical hazards

Toxic to aquatic life

to aquatic life. Biodegrades easily in water

Toxic to aquatic life.

toxic to aquatic life with long lasting effects

known significant effects or critical hazards

nown significant effects or critical hazards

known significant effects or critical hazards

Ecological effects

Highly toxic to fish

toxic to fish and aquatic organisms.

4.0 SAFETY AND ENVIRONMENTAL DESIGN REQUIREMENTS

The common chemical warehouse design takes into account the followings health and safety requirements to ensure the operation of the warehouse does not cause any environment, worker's and public's safety and health concern.

- All of the spillages from each of the segregated storage cell has its own collection pits to contain the potential chemical spillage. The collected spill at the pits shall be treated as schedule waste and to be stored in the schedule waste storage facility;
- A groundwater and soil monitoring locations shall be established on operation commences to monitor any potential contamination to the groundwater and soil for preventive actions to be taken;
- c) Specific storage requirement and safety systems shall be provided in the design of the warehouse and these include dedicated storage room or cells for flammable chemicals, oxidation agents, combustible chemicals, toxic chemicals and corrosive chemicals.
- d) The specific storage cells will also be provided with fire rated wall and bunding. Other safety system identified includes :
 - Automatic Sprinkler System
 - Internal Hose Reel System
 - Portable Fire Extinguisher
 - Emergency Response System, namely chemical spill kit, first aid kit, wind sock, safety shower and eye wash station and cabinet / locker for protective equipment and clothing.
- e) Hazardous shall be defined to ensure electrical equipment is of appropriate design, sources of ignition are segregated from sources of

flammable gas and locating the best location of clean air inlets for ventilation systems or combustion equipment;

5.0 RESIDUAL IMPACTS

The design and management philosophy of the chemical used in RAPID Refinery & Cracker Complex is such any spillage and leakages will be contained accordingly based on the definition of the chemical toxicity to environment and human health under MSDS. As such any spills or leakages of spent chemical shall be treated as scheduled waste and the impact shall be evaluated under the scheduled waste management.

Any chemical which is defined as nontoxic under MSDS, the leakages or spillage is to be routed to the centralized effluent treatment plant for treatment. As such the residual impact shall be evaluated under the effluent discharge from this centralized effluent treatment plant.

6.0 CONCLUSION

The selection of the chemicals to be used shall avoid prohibited chemical list. With the implementation of all mitigation and management measures described above, impact from chemical handling and management to the environmental components are expected to be insignificant.

7.0 REFERENCES

Environmental Quality Act, 1974 (Act 127) Environmental Quality (Prohibition on the Use of Chlorofluoro-carbons and Other Gases as Propellants and Blowing Agents) Order, 1993 Occupational Safety and Health (Classification, Packaging and Labelling of Hazardous Chemicals) Regulations, 2013 (CLASS) Environmental Quality (Refrigerant Management) Regulations, 1999 Environmental Quality (Halon Management) Regulations, 1999

Occupational Safety and Health (OSH) Use and Standards Exposure of Chemicals Hazardous to Health (USECHH) Regulations, 2000

Guidelines on Storage of Hazardous Chemicals: A Guide for Safe Warehousing of Packaged Hazardous Chemicals, Department of Occupational, Safety and Health, 2005

Chemical Management Program, PETRONAS Technical Standards (Health, Safety and Environment), PTS 18.33.01 February 2016.

Waste Management Study

ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS

Prepared For:

PETRONAS REFINERY AND PETROCHEMICAL CORPORATION SDN. BHD.

Prepared By:

INTEGRATED ENVIROTECH SDN. BHD. (650387-K)

MARCH 2017

APPENDIX 5A WASTE MANAGEMENT STUDY

Table Of Contents

1	INTRO	DUCTIO	ON	1
	1.1	SCOP	PE OF STUDY	1
	1.2	REVIE	EW OF LEGISLATIVE REQUIREMENTS AND GUIDELINES.	1
2	WAST	E MAN	AGEMENT PHILOSOPHY	2
3	INVE	NTORY	OF SCHEDULED WASTE	6
	3.1	EURC	0 5 MOGAS Units	6
4	IMPA	CT ASSI	ESSMENT AND MITIGATION MEASURES	12
	4.1	Poten	tial Impact	12
	4.2	Mitiga	tion Measures	12
		4.2.1	Scheduled Wastes Storage Requirements	13
		4.2.2	Segregation between incompatible scheduled wastes	13
		4.2.3	Drainage	13
		4.2.4	Waste Spillage Containment	14
		4.2.5	Packaging and Labelling	14
		4.2.6	Surveillance Monitoring	15
		4.2.7	Residual Impact	15
5	CONC	LUSION	۷	15

List of Tables

Table 2-1: Proposed SW Segregation at the Schedule Waste Storage	3
Table 3-1: Scheduled Waste Inventory for Isomerization Unit	9
Table 3-2: Scheduled waste Inventory for Etherification TAME Unit	10
Table 5-1: Estimated Amount of SW Generated from Units in Refinery and	Cracker
Complex	16
Table 5-2: Estimated Amount of SW Generated from Refinery and Cracker	17

List of Figures

Figure 2-1: Proposed Schedule Waste Storage Area Layout Design	4
Figure 2-2: Refinery Cracker Complex Main Waste Storage Area	5
Figure 3-1: Sources of Scheduled Waste from Isomerization Unit	7
Figure 3-2: Sources of Scheduled Waste from Etherification (TAME) Unit	8

APPENDIX 5A WASTE MANAGEMENT STUDY

1 INTRODUCTION

The waste management study in this report describe the generation, handling, storage and disposal of the scheduled waste from the EURO 5 MOGAS Units and Olefins Storage Tankages operation and identify the potential impacts to the surrounding environmental from the schedule waste management. The study will also propose the relevant and applicable mitigation measures to prevent the impacts onto the environment components.

1.1 SCOPE OF STUDY

The Waste Management Study under this report will highlight the schedule waste management to be adopted for the EURO 5 MOGAS Units and Olefins Storage Tankages upon operation. This will include the generation, handling, storage and disposal of the waste. The study scope shall only be limited to management of the scheduled wastes generated from the operations at the EURO 5 MOGAS and Olefins Storage Tankages in the process area.

The domestic and non-scheduled waste shall not be included as this report as these type of waste will be generated outside of the Refinery and Cracker Complex areas, at the centralized Administration Building located at the northeast of the RAPID complex. All of the domestic and non-scheduled waste generated from the main Administration and Control Building will be stored in the vicinity of the buildings for easy removal by the licensed contractor.

1.2 REVIEW OF LEGISLATIVE REQUIREMENTS AND GUIDELINES

The development of the waste handling and management study will be guided by the relevant legislative requirements and guidelines. A list of key legislation and guidelines are provided below:

APPENDIX 5A WASTE MANAGEMENT STUDY

- a) Environmental Quality Act 1974 Act 127
- b) Solid Waste and Public Cleansing Management Act 2007
- c) Environmental Quality (Scheduled Waste) Regulations, 2005 (Amendment 2007)
- d) Environmental Quality (Prescribed Premises) (Scheduled Waste Treatment and Disposal Facilities) Regulations, 1989 (Amendment 2006)
- e) Environmental Quality (Prescribed Conveyance) (Scheduled Waste) Order, 2005
- f) Guidelines for Packaging, Labelling and Storage of Scheduled Wastes in Malaysia 2014

2 WASTE MANAGEMENT PHILOSOPHY

In RAPID DEIA 2012, the RAPID Complex operating philosophy is such that all of the waste generated from the RAPID Complex is to be send and managed at the centralised waste management facility in RAPID Complex known as RAPID Resource and Recovery Facility (RRF). The proposed facility will collect, store and treat the waste from the transit and temporary storages located in the operating plants with the objective to reduce the schedule waste volume for disposal at licensed schedule waste disposal facility.

Due to the revised number of the petrochemical plants, the waste volume to be sent to the RAPID Resource and Recovery Facility (RRF) had decreased significantly hence does not provide the economics for the RAPID Resource and Recovery Facility (RRF) to be constructed in RAPID. Hence, each of the operating plants in RAPID Complex including the Refinery and Cracker Complex has to manage their own waste and the waste is to be stored within their operating premise prior to disposal by licensed schedule waste operator.

The propose schedule waste segregation at the schedule waste storage area shall be by the following type of wastes so as to ensure waste compatibility and that they do not react with each other causing safety concerns:

WASTE MANAGEMENT STUDY

Table 2-1: Proposed SW Segregation at the Schedule Waste Storag	je
---	----

Cell No	Category of Waste
Cell No. 1	Toxic (Solid)
Cell No. 2	Corrosive (Solid)
Cell No. 3	Combustible (Liquid)
Cell No. 4	Combustible (Solid)
Cell No. 5	Flammable (Solid + Liquid)
Cell No. 6	Toxic Liquid

The scheduled waste volume which will be generated continuously at frequency of less than a year (daily, weekly, monthly, quarterly and once in 6 months) will be taken as the basis of waste storage area sizing. Waste storage area design is also limited by DOE's requirement for storage to be 20 tonnes or less or 180 days storage, whichever is first. In the event where DOE storage requirements are exhausted, the waste need to be removed on a more frequent basis.

Schedule waste generated from turn around or scheduled maintenance activities is not considered for the sizing of the schedule waste storage. These waste will be managed separately during the plant turnaround or scheduled maintenance.

The typical layout of the proposed scheduled waste storage and the allocation of cells for the waste separation is as in **Figure 2-1**. The location of the main scheduled waste storage for the Refinery and Cracker Complex shall be at location indicated in **Figure 2-2** near to the Sulphur Solidification Unit (SSU). All of the scheduled waste generated from EURO 5 MOGAS unit, Olefin Storage Tank and other Refinery Cracker Units shall be sent to this location for collection and disposal by a DOE licensed 3rd party scheduled waste operator.

PETRONAS ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS

APPENDIX 5A WASTE MANAGEMENT STUDY

Figure 2-2: Refinery Cracker Complex Main Waste Storage Area

APPENDIX 5A WASTE MANAGEMENT STUDY

INVENTORY OF SCHEDULED WASTE 3

The details of schedule waste generated from the EURO 5 MOGAS Units and Olefins Storage Tankages covered in this report are as per the following sub sections.

3.1 **EURO 5 MOGAS Units**

The scheduled waste generated from the EURO 5 MOGAS Units shall be stored temporarily at the Refinery Main Waste Storage Area (Figure 2-2) prior to being sent to the DOE Licensed Scheduled Waste Facility. The scheduled waste generated from EURO 5 MOGAS Units which shall be recycled or reused are not being considered in this study.

The scheduled waste generated from EURO 5 MOGAS units shall be sent to the DOE Licensed Scheduled Waste Facility and described in Figure 3-1, Figure 3-2, Table 3-1 and Table 3-2.

5		INTEGRATED					
	10000 d 1	LEGEND					
amic Ba	eves / lls ¼″	Product					
		Scheduled Waste					
		ABBREVIATION					
		ETP - Effluent Treatment Plant HCDU - Hydrogen Collection &					
		LN - Light Naptha NHT - Naphta Hydrotreating Unit SGP - Saturated Gas Plant Unit					

APPENDIX 5A

APPENDIX 5A WASTE MANAGEMENT STUDY

No	Source	Description of Scheduled Waste Scheduled	of Waste Code Scheduled Waste Category as per First Schedule, Regulation 2, Environmental Quality (SW) Regulations 2005	Estimated Quantity (metric tonne, MT)	Frequenc	ey of generation	Packaging	Final Destination
					Normal operation	Turnaround and Schedule Maintenance		
1	Sulfur Guard Bed	Ceramic Balls 1/4"	SW 409	0.00046		4 years	Container/Drum	
2	Sulfur Guard Bed	Molecular Sieves	SW 409	6.417		3 years	Container/Drum	
3	Sulfur Guard Bed	Ceramic Balls 1/4"	SW 409	0.00056		4 years	Container/Drum	
4	Feed Dryers	Molecular Sieves	SW 409	6.417		3 years	Container/Drum	DOE Licensed Scheduled Waste Facility
5	Feed Dryers	Ceramic Balls 1/4"	SW 409	0.00056		4 years	Container/Drum	
6	H2 Purification Reactor	First layer Membrane	SW 409	1.015		5 years	Container/Drum	_
7	H2 Purification Reactor	Second layer Membrane	SW 409	0.00133		5 years	Container/Drum	
8	H2 Purification Reactor	Ceramic Balls 1/4"	SW 409	0.00032		4 years	Container/Drum	
9	Hydrogen Dryers	Molecular Sieves	SW 409	0.00250		3 years	Container/Drum	
10	Hydrogen Dryers	Ceramic Balls 1/4"	SW 409	0.00012		4 years	Container/Drum	
11	Hydrogen Dryers	Molecular Sieves	SW 409	0.00250		3 years	Container/Drum	DOE Licensed
12	Hydrogen Dryers	Ceramic Balls 1/4"	SW 409	0.00012		4 years	Container/Drum	Scheduled Waste Facility
13	Chloride Guard Bed	Spent Catalyst	SW202	6.417		3 years	Container/Drum	
14	Chloride Guard Bed	Ceramic Balls 1/4"	SW 409	0.00060		4 years	Container/Drum	
15	2 nd ISOM Reactor	Spent Catalyst	SW202	0.02060		4 years	Container/Drum	

Table 3-1: Scheduled Waste Inventory for Isomerization Unit

APPENDIX 5A WASTE MANAGEMENT STUDY

Νο	Source	Description of Scheduled Waste	Waste Code Scheduled Waste Category as per First Schedule, Regulation 2	Estimated Quantity (metric	Frequency of generation		Packaging	Final Destination
		Scheduled	Environmental Quality (SW) Regulations 2005		Normal operation	Turnaround and Schedule Maintenance		
16	2 nd ISOM Reactor	Ceramic Balls 1/4"	SW 409	0.00068		4 years	Container/Drum	_
17	2 nd ISOM Reactor	Spent Catalyst	SW202	0.02060		4 years	Container/Drum	DOE Licensed
18	2 nd ISOM Reactor	Ceramic Balls 1/4"	SW 409	TBC		4 years	Container/Drum	Scheduled Waste Facility
19	Caustic Scrubber	Spent Support Material	SW411	1.4m ³		5 years	TBC	
Total Estimated Quantity (During Turnaround & Scheduled Maintenance)					A	pproximately 20.31 Tonnes		

Table 3-2: Scheduled waste Inventory for Etherification TAME Unit

No	Source	Description of Scheduled	Waste Code Scheduled Waste Category as per First Schedule,	Estimated Quantity (Metric Tonne, MT)	Frequency of generation		Packaging	Final Destination
		Scheduled	Environmental Quality (SW) Regulations 2005		Normal operation	Turnaround and Schedule Maintenance		Final Destination
1	First reactor	Catalyst bed (Sulfonic acid resin/amberlyst)	SW202	110.88		18month	TBC	
2	Feed filter	Catridge filter (Polyproplene cartridge 99% +1% oil)	SW410	ТВС	ТВС		TBC	
3	Feed filter	Catridge filter (Polyproplene cartridge 99% +1% oil)	SW410	TBC	TBC		TBC	DOE Licensed Scheduled Waste Facility
5	First reactor resin filter	Cartridge Filter	SW410	ТВС	TBC		TBC	r donity
6	First reactor resin filter	Cartridge Filter	SW410	ТВС	ТВС		TBC	

APPENDIX 5A WASTE MANAGEMENT STUDY

No	Source	Description of Scheduled Waste	Waste Code Scheduled Waste Category as per First Schedule, Regulation 2	Estimated Quantity (Metric Tonne, MT)	Frequency of generation		Packaging	Final Destination
		Scheduled	Environmental Quality (SW) Regulations 2005		Normal operation	Turnaround and Schedule Maintenance		
7	Second reactor filter	Cartridge Filter	SW410	ТВС	TBC		TBC	
8	Second reactor filter	Cartridge Filter	SW410	TBC	TBC		TBC	
9	Second reactor	Catalyst Bed	SW202	110.88		2 years	Sealed drum	
10	Third reactor resin filter	Cartridge Filter	SW410	ТВС	TBC		TBC	
11	Third reactor resin trap	Cartridge Filter	SW410	твс	TBC		TBC	
12	Third reactor	Catalyst Bed	SW202	ТВС	ТВС		Sealed drum	DOE Licensed Scheduled Waste
13	Third reactor resin filter	Cartridge filter with carbon steel (Polyphenylene Sulphide)	SW410	ТВС	TBC		TBC	Facility
14	Third reactor resin filter	Cartridge filter with carbon steel (Polyphenylene Sulphide)	SW410	ТВС	TBC		TBC	
15	Methanol Guard Pots	Catalyst Bed	SW202	1.771		Every year	Sealed drum	
16	Methanol Guard Pots	Catalyst Bed	SW202	1.771		Every year	Sealed drum	DOE Licensed
17	Methanol Guard filter	Catalyst Bed	SW202	5m ³		Every year	Sealed drum	Scheduled Waste Facility
18	Methanol Guard filter	Catalyst Bed	SW202	5m ³		Every year	Sealed drum	
	Total Estir	nated Quantity (During Turnaround		Approximate	ely 225.302 Tonnes			

APPENDIX 5A WASTE MANAGEMENT STUDY

3.1.1.1 Additional Olefins Storage

For the storage tanks, the scheduled waste generated is expected only during turnaround and tank maintenance where tank cleaning are carried out. Schedule waste during the maintenance and turnaround is not to be stored in the Refinery Main Waste Storage Area and to be managed separately.

4 IMPACT ASSESSMENT AND MITIGATION MEASURES

Impacts from EURO 5 MOGAS and Olefins Storage Tankages were assessed for the operations phase of the project development.

4.1 Potential Impact

During the plant operational, it will involve daily storage, handling, transport and disposal of various types of wastes which any accidental spillage may impact the quality of the surface water, marine water and soil and groundwater. To some extent, the reactivity of the toxic and hazardous waste to be managed may cause worker's and community safety and health impact.

From the assessment of the RAPID Complex design philosophy, the impacts associated with the storage, transfer, handling, transport and disposal of the scheduled wastes during operational phase is expected to be minor and mostly contained from impacting the surrounding environment.

4.2 Mitigation Measures

The mitigation measures proposed to minimise the impacts to the environment from waste management during the operations phase in terms of waste handling practices are provided in the following sections:

4.2.1

Scheduled Wastes Storage Requirements

- a) The storage area shall be sheltered to prevent any intrusion from rainfall and to contained and flammable and explosion within the cell without spreading to the next cell via a firewall design.
- b) Adequate ventilation shall be provided where volatile wastes are stored.
- c) Appropriate bins/skips should be provided at suitable locations in the storage area.
- d) Adequate access to be provided to ensure easy manoeuvrability of the trucks to remove the schedule waste by licensed operator.

4.2.2 Segregation between incompatible scheduled wastes

- a) Waste shall be stored in a manner that prevents the mixing or contact between incompatible wastes, and allows for inspection between containers to monitor leaks or spills (e.g. sufficient space or physical separation such as walls or containment curbs between incompatible wastes).
- b) Flammable substances must be kept separate from sources of ignition or oxidising agent.
- c) Acid must be kept away from substances with which they may react, producing dangerous compound.
- d) Strong corrosive agent must be kept away from gas cylinders or other containers.
- e) Pressurized aerosol cans must be collected separately in a single, suitable marked container

4.2.3 Drainage

a) Scheduled waste storage area shall be isolated from any drainage system.

b) Each of the cell shall be provided with individual pit to collect any potential spillage. The spillage shall be emptied out from the pit and removed as scheduled waste.

4.2.4 Waste Spillage Containment

- a) Containment of the spill from waste storage area should be constructed with materials appropriate for the wastes being contained and adequate to prevent loss to the environment and this include the types of paving to prevent seepage into groundwater and soil.
- b) The design philosophy of the Refinery and Cracker Complex waste storage area has include the bunding to contain 110% of potential total spillage. All spillage within the specific type of wastes storage area will be directed and contain in a pit separated from any drainage network and pits is to be emptied out as scheduled waste by the licensed contractor.

4.2.5 Packaging and Labelling.

The mitigation measures proposed to minimise the impacts to the environment from waste management during the operations phase in terms of packaging and labelling practices is provided below:

- a) An appropriate container should be selected according to the characteristics of the scheduled wastes. The characteristic of scheduled wastes shall be compatible with the type of material used for the container to prevent any reaction which will deteriorate the container.
- b) The container used should be in good condition (free from any damage such as tear or hole).
- For identification and warning purposes, containers of scheduled wastes shall be clearly labelled in accordance with the Third Schedule of the Environmental Quality (Scheduled Wastes) Regulations 2005

APPENDIX 5A WASTE MANAGEMENT STUDY

and marked with the scheduled wastes code as specified in the First Schedule of the Environmental Quality (Scheduled Wastes) Regulations 2005.

4.2.6 Surveillance Monitoring.

Groundwater and soil monitoring should be conducted periodically at the individual units to ensure that no contamination of groundwater has occurred during the operations of the plant.

4.2.7 Residual Impact

Residual impacts are defined as impacts which may remain even after the mitigating measures are adopted into the design and management of the project. These impacts may or may not have any detrimental effect to the surrounding environment. With the implementation of all mitigation and management measures which include the proper storage and handling, packaging and labelling as per the DOE Guidelines, no residual impact from waste management is expected to arise from the operation phase of the proposed Project.

5 CONCLUSION

In conclusion, with the current waste management philosophy adopted in the Refinery and Cracker Complex, the amount of scheduled waste generated is estimated to be approximately **7,562.8 tonnes per year** during the normal operation while approximately **4,723.7 tonnes** will be generated during the turn around and scheduled maintenance activities. Based on **Table 5-1** and **Table 5-2**, the current estimation of scheduled waste's amount to be generated from Refinery & Cracker Complex during normal operation is higher compared to the estimation in RAPID DEIA 2012. This is contributed by the change of RAPID Waste Management Philosophy from having a RAPID centralized waste management centre to each of the operating plants in RAPID Complex has to manage their own waste and waste to be stored

APPENDIX 5A WASTE MANAGEMENT STUDY

within their operating premise prior to disposal by licensed schedule waste operator.

Table 5-1: Estimated Amount of SW Generated from Units in Refinery and Cracker Complex

		RAPID DE	EIA 2012	Current Refinery Cracker Complex		
No	Units	Normal Operation (tonnes/year)	Scheduled Maintenance and Turnaround (tonnes)	Normal Operation (tonnes/year)	Scheduled Maintenance and Turnaround (tonnes)	
1	Residue Fluidized Cracker Unit (RFCC)	-	-	7562.8	6.11	
2	LPG Treating Unit (LTU)	-	-	-	7.6	
3	Atmospheric Residue Desulphurization (ARDS)	-	-	-	3089.6	
4	Crude Distillation Unit (CDU)	-	-	-	0.0001	
5	Operator Shelter Building (OSB) - Common Area nearby CDU	-	-	-	0.065	
6	Saturated Gas Plant (SGP)	-	-	-	0.55	
7	Diesel Hydrotreating (DHT)	-	-	-	24.08	
8	Kerosene Hydrotreating (KHT)	1.0185	-	-	3.29	
9	Cracker Naphta Hydrotreating Unit (CNHT)	-	-	-	31.74	
10	Naphta Hydrotreating Unit (NHT)	-	-	-	6.34	
11	Continuous Catalytic Reformer Unit (CCR)	-	-	-	67.18	
12	Hydrogen Production Unit (HPU)	-	-	-	57.47	
13	Amine Regeneration Unit (ARU)	-	-	-	165.45	
14	Sulphur Recovery Unit (SRU)	-	-	-	523.14	
15	Sour Water Stripping Unit (SWS)	-	-	-	17.72	
16	Hydrogen Collection and Distribution Unit (HCDU)	-	-	-	-	

C5/C6

Isomerization Unit Etherification Unit Tertiary-Armyl-

Methyl-Ether (TAME)

Steam Cracker

Complex (SCC) TOTAL

22

23

24

ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS

20.31

225.302

4.77

4,723.7

Current Refinery Cracker RAPID DEIA 2012 Complex Scheduled Scheduled Units Normal Maintenance Normal Maintenance No Operation Operation and and (tonnes/year) Turnaround (tonnes/year) Turnaround (tonnes) (tonnes) **Refinerv** Pressure 17 _ _ Swing Adsorption 18 **Refinery Tank Farm** _ _ -472.95 **Olefins Storage** 19 _ _ _ _ Tankages Additional EURO 5 20 _ _ _ MOGAS Storages 2nd Stage Cracked Naphta 21 Hydrotreating (CNHT) Unit

_

_

-

-

_

7562.8

Table 5-2: Estimated Amount of SW Generated from Refinery and Cracker

_

_

1.0185

	RAPID D	EIA 2012	Current Refinery Cracker Complex		
Complex	Normal Operation	Scheduled Maintenance and Turnaround	Normal Operation	Scheduled Maintenance and Turnaround	
Refinery Complex	1.0185 tonnes per year	-	7562.8	4 702 7 toppoo	
Steam Cracker Complex	Fully recovered	-	year	4,123.1 LOTINES	

Note: Some of the amount of SW generated is yet to be determine at this stage. The details of the SW list are provided in the inventory list.

With the establishment of waste handling and management procedures and controls, impacts from waste storage, transfer, handling, transport and disposal are not expected to be significant. Furthermore, groundwater and soil monitoring should be conducted periodically at the individual units to ensure that no contamination of groundwater has occurred during the operations of the plant.

Effluent Dispersion Modelling

ADDITIONAL INFORMATION TO THE DEIA REFINERY AND PETROCHEMICAL INTEGRATED DEVELOPMENT (RAPID) PROJECT, PENGERANG JOHOR, 2012 TO INCLUDE EURO 5 MOGAS AND OLEFIN TANK UNITS

Prepared For:

PETRONAS REFINERY AND PETROCHEMICAL CORPORATION SDN. BHD.

Prepared By:

INTEGRATED ENVIROTECH SDN. BHD. (650387-K)

MARCH 2017

EFFLUENT DISPERSION MODELING

Table of Contents

1	Introduction	1
2	Description of the Proposed Marine Outfall	2
3	Study Methodology and Approach	8
3.1	Data Gathering	8
3.1.1	Bathymetric Survey Data	8
3.1.2	Water Quality Sampling	9
3.1.3	Reference Document	11
3.2	Establishment of Numerical Models	12
3.2.1	Model Complex	12
3.2.2	Model Domain	13
3.2.3	Model Setting	15
3.3	Assessment Approach	16
4	Assessment of Effluent Dispersal	17
4.1	Changes in Salinity Variations in the Receiving Waters	17
4.2	Dispersion and Dilution of Effluent	19
4.3	Water Quality	34
5	Conclusions	37

List of Figures

Figure 4.4: Predicted differences in maximum total suspended solids (TSS) during NE
monsoon (top), SW monsoon (middle) and inter monsoon (bottom)23
Figure 4.5: Predicted differences in maximum oil and grease during NE monsoon (top), SW
monsoon (middle) and inter monsoon (bottom)
Figure 4.6: Predicted differences in maximum total phosphorus during NE monsoon (top),
SW monsoon (middle) and inter monsoon (bottom)
Figure 4.7: Predicted differences in maximum total nitrogen during NE monsoon (top), SW
monsoon (middle) and inter monsoon (bottom)
Figure 4.8: Predicted differences in maximum benzene during NE monsoon (top), SW
monsoon (middle) and inter monsoon (bottom)
Figure 4.9: Predicted differences in maximum phenol during NE monsoon (top), SW
monsoon (SW) and inter monsoon28
Figure 4.10: Predicted differences in maximum sulphides during NE monsoon (top), SW
monsoon (middle) and inter monsoon (bottom)
Figure 4.11: Predicted differences in maximum ammoniacal nitrogen during NE monsoon
(top), SW monsoon (middle) and inter monsoon (bottom)
Figure 4.12: Predicted differences in maximum nitrate nitrogen during NE monsoon (top),
SW monsoon (middle) and inter monsoon (bottom)
Figure 4.13: Predicted differences in maximum phosphorus during NE monsoon (top), SW
monsoon (middle) and inter monsoon (bottom)
Figure 4.14: Predicted differences in maximum total coliform bacteria during NE monsoon
(top), SW monsoon (middle) and inter monsoon (bottom)
Figure 4.14: Location of the sampling stations

List of Tables

Table 2.1: Design flow rate to observation pond	5
Table 2.2: Engineering details of the proposed Centralised ETP outfall.	6
Table 2.3: Concentration limit for the RAPID project treatment standard	7
Table 3.1: Details of Bathymetric Survey	8
Table 3.2: MMWQSClassification	9
Table 3.3: Coordinates of the water quality stations.	10
Table 3.4: Measurement of available measured water quality parameters.	11
Table 4.1: Modelled pollutant concentration and loading	19

35
36

1

Introduction

PETRONAS is planning to submit an additional information report to the RAPID DEIA 2012 for the RAPID project approved by the Department of Environment Malaysia (DOE). As part of this resubmission, DHI Water & Environment (M) Sdn Bhd has been appointed to carry out the dispersion modelling and to evaluate potential impacts of the discharged effluent from the marine outfall of the proposed Centralised Effluent Treatment Plant (ETP).

It should be noted that JPS approval is not required for this study as another cumulative hydraulic study is currently being undertaken for a separate EIA study for the RAPID Solid Product Jetty (SPJ) and approval from JPS was obtained for that EIA study. That study will include all RAPID marine structures such as Effluent Treatment Plant (ETP) outfall, Solid Product Jetty (SPJ), Storm Water Outfall (SWO) and Material Offloading Facility (MOLF) at Tanjung Setapa. Cumulative impacts from all RAPID marine structures on the effluent dispersion from the outfall shall be in reference to the studies conducted under the SPJ EIA.

This report describes the dispersion modelling study that has been carried out to assess effluent dispersion discharged from the proposed ETP outfall on the marine environment.

2

Description of the Proposed Marine Outfall

All of the effluent generated from the RAPID Complex shall be routed to be treated in the Centralised Effluent Treatment Plant (ETP) except for the noncontaminated surface runoff where it will be routed to the storm water pond prior to discharge via storm water (STW) outfall to the sea.

The Centralised ETP will be treating various types of effluent to meet the RAPID discharged effluent to meet the RAPID discharged effluent specifications prior to discharge into the ETP outfall. The outfall pipeline which is approximately 3 km in length, will be discharging from offshore into the marine waters (**Figure 2.1**).

APPENDIX 6 EFFLUENT DISPERSION MODELING

In the RAPID Centralised ETP, the final treated effluent is to be discharged into the ETP Observation Pond where effluent from the pond is regulated in regards to the required discharging limit enforced by the Department of Environment (DOE) for the effluent prior to discharge into the marine outfall.

Treated effluent from the observation pond will be pumped to marine outfall at a controlled rate into the sea. At the outlet of the observation pond, automated sampling is provided to monitor the quality of the treated effluent¹. The observation pond will be receiving effluent from the following main treatment units in the Centralised ETP²:

- Accidently Oily Contaminated (AOC) water Storm water which is potentially polluted by oil from spillage and leaks
- Continuously Oily Contaminated (COC) water Effluent polluted with hydrocarbons and dissolved organic pollution partially biodegradable including oily polluted process effluents
- Process Waste Water (PW) effluent with low oil content
- Utilities Effluents (UE) regulated industrial effluent from cooling towers and demineralization and polishing units
- Sanitary Waste Water (SWW) from buildings

It is known that the marine outfall will be discharging effluent regulated by pumping sequence that pumped the effluent from the observation pond after 2 hours retention in the pond. The design flow rate of the outfall is 5,355 m³/hr³. Break down of the total design flow rate is shown in **Table 2.1**.

¹ RAPID-P016A-VWM-PRO-DES-6300-0001_1 (Design Basis - Unit 6300 Common Facilities)

² RAPID-P016A-VWM-PRO-DES-6300-0001_1 (Design Basis - Unit 6300 Common Facilities)

³ RAPID-P016A-VWM-PRO-CAL-6300-0001_0A (Calculation Reports & Notes - Unit 6300 ETP Common Facilities)

Table 2.1: Design Flowrate from ETP tanks into the ETP Observation Pond

Treated effluent from AOC (m ³ /hr)	2,041
Treated effluent from COC/PW (m ³ /hr)	990
Treated effluent from SWW (m ³ /hr)	16
Treated effluent from UE (m ³ /hr)	1,566
Rainfall intensity of 180 mm/hr (m ³ /hr)	743
Total flow rate to observation pond/ marine outfall (m ³ /hr)	5,355

Block flow diagram of the effluent treatment plant to the marine outfall is shown in **Figure 2.2**. It should be noted this study will be focusing on the dispersion of effluent from the outfall into marine waters.

Figure 2.2 Block flow diagram of the effluent treatment plant to an outfall.

The proposed marine outfall will be located south of the site, offshore from Tanjung Setapa as shown in **Figure 2.1**. The outfall will be connected from the observation pond through buried pipeline. More information on the proposed marine outfall is presented in **Table 2.2**. A study on the selection of the suitable location for the outfall has been carried out by the PETRONAS

before⁴ and can be found in the similar study for the RAPID PETCHEM DEIA 2014.

able 2.2 Engineerin	a dotaile of	the proposed	Controlicod ETE) outfall
abie Z.Z. Liigineenin	y uclans or	line proposed	CEIIII allocu LIF	outrail.

The coordinate of the proposed outfall	404277.7E m, 147267.9N m
location in UTM 47 ⁵ .	
Pipeline details	Twin HDPE pipeline with 800m diameter ⁶
	Total length approximately 3km
	(1.5km installed underground at the land side and 1.5 km
	installed in a trenched seabed).
Discharge depth	-4 m chart datum (CD)
Design flow rate	1.49 m ³ /s (for underground and submerged pipe)

The design philosophy for the effluent treatment in RAPID Centralised ETP adopts the combination of the Department of Environment (DOE) Sewage and Industrial Effluent limits and the RAPID Design Limit, whichever is more stringent as below:

- Standard B of Environmental Quality Regulation 2009 for Sewage and Industrial Effluent (Malaysian Standard B).
- RAPID Design Limit

The adopted RAPID project standard is presented in **Table 2.3** with a comparison to the Malaysian Standard B and RAPID Design Limit. Effluent released from the outfall shall be regulated not to exceed limits mentioned in this table.

⁴ RAPID-P0014-S005-ENG-ERP-7650-0001_RevC

⁵ RAPID-P0014-S005-ENG-ERP-7650-0001_RevC

⁶ RAPID_P0014_S005_CVS_DWG_7620_0101

APPENDIX 6 EFFLUENT DISPERSION MODELING

Table 2.3: Concentration limit for the RAPID project treatment standard.

Parameters	Unit RAPID Project		Malaysian	
		Treatment Standard	Standard B	
рН	-	5.5 to 9.0	6	
Chemical Oxygen Demand	[mg/l]	150	200	
(COD)				
Biological Oxygen Demand	[mg/l]	25	50	
(BOD ₅)				
Total Suspended Solid (TSS)	[mg/l]	30	100	
Oil & Grease	[mg/l]	10	10	
Total Phosphorus (P-TOT)	[mg/l]	2	-	
Total Nitrogen	[mg/l]	10	-	
(N-NGL)				
Benzene	[mg/l]	0.05	-	
Phenol	[mg/l]	0.2	1	
Sulphide	[mg/l]	0.5	0.5	
Colour	[ADMI]	200	200	
Ammoniacal Nitrogen	[mg/l]	5	5	
Nitrate Nitrogen	[mg/l]	10	10	
Phosphorus	[mg/l]	2	-	
Total Coliform Bacteria	[MPN/100ml]	400	-	

The effluent treatment philosophy for the Centralised ETP also adopts the concept of recycling treated water and allocation of off-specification tanks for further treatment prior to discharge.

3 Study Methodology and Approach

The following tasks were carried out for the effluent dispersal assessment:

- Gathering of available data from previous studies of the area;
- Modelling and implementation of calibrated 3D hydrodynamic model to describe the effluent dispersal and water exchange at the site;
- Analysis and presentation of results.

3.1 Data Gathering

The relevant information, such as bathymetric survey data and project documents have been collected in order to aid the understanding of the existing physical hydraulic condition and the description of proposed development.

3.1.1 Bathymetric Survey Data

DHI has undertaken hydraulic studies in the area and possesses calibrated models that are readily available for the effluent dispersion assessment. These models have been updated with the following bathymetric survey data from previous studies that carried out at the Pengerang area.

No.	Survey Campaign	Date of Survey
1	Pengerang Deep-water Terminal DEIA	December 2009
2	RAPID DEIA	April 2012
3	Solid Product Jetty FEED	June 2015

Table 3.1: Details of Bathymetric Survey

3.1.2 Water Quality Sampling

Water quality samples for baseline conditions were taken in November 2011 and December 2012 for RAPID PETCHEM DEIA 2014. However due to the on-going development that has been taken place close to the project area, additional set of marine water samples at six locations were taken on 6th June 2016 to represent current condition. Location of the sampling stations are shown in **Figure 3.1** while sampling coordinates is tabulated in **Table 3.3**. The samples were taken during high tide and low. Followings are few of the tested parameters used in this study and presented in **Table 3.4**.

- Nitrate as NO₃
- Phosphate as P
- Total Suspended Solids (TSS)
- Oil and Grease
- Total Nitrogen
- Ammonia
- Phenol

These parameters were compared with the Class 3 of Malaysia Marine Water Quality Standards of 29th November 2010 (MMWQS) in order to have an overview of water quality near the project area. The definition of the Malaysia Marine Water Quality Standard (MMWQS) classes are as follows:

Fable 3.2: Malaysia Marine Water Qual	ty Standard (MMWQS)	Classification
---------------------------------------	---------------------	----------------

MMWQS Class	Beneficial uses
Class 1	Preservation, Marine Protected areas, Marine Parks
Class 2	Marine life, Fisheries, Coral Reefs, Recreational and Marine culture
Class 3	Ports, Oil & Gas Fields
Class E	Mangroves Estuarine & River mouth Water

APPENDIX 6 EFFLUENT DISPERSION MODELING

From **Table 3.4**, it can be observed that the ambient water quality parameters near the project area is below the limit of Class 3 except for nitrate. The average nitrate levels near the project area is approximately 1.8 mg/l which is higher than 1 mg/l limit in Class 3. This may due to the return of nutrients to the water surface from the process of upwelling or from untreated domestic wastewater and nitrate based fertilizers⁷ close to the project area.

Figure 3.1: Water quality sampling stations.

Stations	Longitude (°)	Latitude (°)
CS 1	104.1567	1.3333
CS 2	104.1317	1.3383
CS 3	104.1000	1.3583
CS 4	104.1000	1.4083
CS 5	104.1083	1.3400
CS 6	104.0908	1.3938

Table 3.3: Coordinates of the water quality stations.

⁷ DEIA for the Proposed Petrochemical Plants (Batch 1) in the Refinery and Petrochemical Integrated Development (RAPID) Project, Pengerang Johor.

Table 3.4: Measurement of available measured water quality parameters.

Parameters	Units	Averaged Measurement					Class 3	
								Limit of
								MMWQS
Stations		CS1	CS2	CS3	CS4	CS5	CS 6	
Nitrate as NO3	mg/l	1.9	1.8	1.6	2	1.6	1.8	1
Phosphate as P	mg/l	0.1	0.1	0.1	0.1	0.1	0.1	0.67
Total Suspended Solids	mg/l	22.5	11.5	11.3	13	18.3	10.3	100
Oil and Grease	mg/l	0.04	0.04	0.04	0.04	0.04	0.04	5
Total Nitrogen	mg/l	0.5	0.5	0.5	0.5	0.5	0.5	NA
Ammonia	mg/l	0.1	0.1	0.1	0.1	0.1	0.1	0.32
Phenol	mg/l	0.001	0.001	0.001	0.001	0.001	0.001	0.1

3.1.3 Reference Document

Information from the following documents has been used as reference on the proposed outfall and assessment:

- Hydraulic & Coastal Modelling Report. Detailed Environment Impact Assessment (DEIA) for the proposed Refinery and Petrochemical Integrated Development (RAPID) project at Tg. Setapa, Johor
- Malaysia Marine Water Quality and Standard (MMWQS) of 29th November 2010
- Standard B of Environmental Quality Regulation 2009 for Sewage and Industrial Effluent (Malaysian Standard B)
- RAPID-P016A-VWM-PRO-DES-6300-0001_1 (Design Basis Unit 6300 Common Facilities)
- RAPID-P016A-VWM-PRO-CAL-6300-0001_0A (Calculation Reports & Notes Unit 6300 ETP Common Facilities)

 RAPID-FE1-TPX-HSE-DES-0001-0006_3_S (Job Specification for Design – Environmental & Health Design Basis)

3.2 Establishment of Numerical Models

Numerical modelling has been applied in this study to support the assessments of potential dispersion impacts induced by effluents released from the proposed marine outfall. The dilution of effluent release in open waters occurs due to the mixing process mainly influenced by the ambient current flow conditions. The effluent plume will potentially be diluted and travel further away from the release point during stronger current flow conditions.

Therefore the dispersion of effluent has been modelled using MIKE 3 by DHI (3-dimensional model) to simulate the flow conditions and water levels variations in the study area. This 3D model is useful in describing the vertical flows of density differences in salinity. The release of fresh water from the outfall may produce an upward mixing process from the bottom towards the surface.

3.2.1 Model Complex

A number of different models have been developed to assess the effluent dispersion conditions:

• MIKE 3 Hydrodynamic (HD) Model

The MIKE 3 HD module has been used for modelling of current flows, water levels and salinity variations. The HD module simulates water level variations and flows in response to a variety of forcing functions in oceans, lakes, estuaries, bay and coastal regions. It is applied to a wide range of hydraulics related phenomena including tidal hydraulics, wind and wave generated currents, storm surges and flood waves.

 The MIKE 3 HD module is the base computational hydrodynamics module of the entire MIKE 3 system providing the hydrodynamics basis for MIKE 3 Advection-Dispersion that will be described below.

• MIKE 3 Advection-Dispersion (AD) Model

- The dispersion of pollutant has been modelled using MIKE 3 AD model coupling with HD module.
- The advection-dispersion module simulates the spreading of a dissolved or suspended substance in an aquatic environment under the influence of the fluid transport and associated natural dispersion process. In the present study, the substance is pollutant described in Table 2.3, which is released from the proposed marine outfall and treated as conservative effluent without no decaying.
- This provides conservative input to the environment impact assessment.

3.2.2 Model Domain

The model applied in this study is based on an unstructured mesh; an approach where the bathymetry resolution can be varied depending on modelling requirements. This is a fundamental flexibility of the model that allows the spatial resolution to be increased towards sensitive areas including the nearshore areas and the area of the proposed outfall while maintaining low resolution in open areas, where the scale of processes tends to be larger.

The use of unstructured meshes also provides additional flexibility in the vertical discretization. The sigma layer system attributes a relative percentage of the actual water depth to a user defined number of layers (sum of the layer must equal to one). This means that the actual layer thickness has been used to resolve the water depth in the model domain.

In deeper waters, the element sizes are typically coarser, while in shallower waters (typically near the coastline and in the immediate area of interest) the resolution is higher. This approach has proven to be useful for the present

APPENDIX 6 EFFLUENT DISPERSION MODELING

study as the study area is characterised by its complex coastal developments and morphology. These bathymetrical complexities influence the hydraulic processes and the transformation of current and waves from offshore to nearshore waters. The varying spatial elements enable the model to represent both offshore and detailed nearshore conditions accurately in the same model, whilst maintaining a reasonable computational efficiency.

A model mesh was established from the bathymetric information obtained from digital admiralty charts and from bathymetric data collected on the site. An overview of the model domain is presented in **Figure 3.2**.

Figure 3.2: Overview of the model mesh applied for the effluent dispersion assessment. Location of the study area is outlined in red.

APPENDIX 6 EFFLUENT DISPERSION MODELING

3.2.3 Model Setting

Layout based on this additional information report has been used in this assessment and the area close to the outfall has been updated with bathymetry data from DHI previous study. Overview of the simulated layout is shown in **Figure 3.3**.

Figure 3.3: Modelled layout.

Since impacts may differ depending on the seasonal conditions, it is, therefore, important to establish realistic seasonal conditions for the quantification of impacts. Three (3) seasonal conditions have been defined to assess the potential dispersion assessment.

- Northeast Monsoon conditions (NE) that represent flows during Northeast Monsoon periods when winds and tidal currents interact. The wind from the N-NE is predominant during this monsoon season. The wind with the magnitude of 5 m/s coming from 20 degree has been used.
- Southwest Monsoon conditions (SW) that represent flows during Southwest Monsoon periods when tidal currents interact with

predominant winds from S-SE. For this, wind with the magnitude of 5 m/s coming from 180 degree was used.

 Inter-Monsoon conditions (IM): Represents conditions during Inter-Monsoon events when winds are not significant therefore flows are mainly tidal driven. This scenario is also referred as pure tides.

The seasonal conditions, which include tidal conditions and seasonal weather patterns in the region, are represented in 17 days (3+14) simulation periods for simulation of both neap and spring tidal cycles. This includes 3 days of warm up to avoid any type of numerical instabilities that could occur during the initial stage of the simulations.

3.3 Assessment Approach

Assessment of the effluent dispersal will be focused on the released effluent from the proposed outfall with emphasis on the following key elements:

- Changes in Ambient Salinity
- Salinity changes due to the discharge of combined effluent and fresh water from the outfall.
- Effluent Dispersion
- Dispersion of effluent and capacity of water exchange in the project area. Good water exchange allows effluents to be dispersed in the marine quickly and efficiently.

4

Assessment of Effluent Dispersal

As described in section 2 of this report, treated effluent from the treatment plant will be released into the sea through the marine outfall with a flow rate of 1.49 m³/s. Findings from the numerical modelling on changes in salinity, effluent dispersion and changes in water quality are described in the following sub section. For the presentation of results in this study, only top layer or surface water results has been selected as the results are similar with bottom layer results due to the rapid mixing in the shallow areas.

4.1 Changes in Salinity Variations in the Receiving Waters

The discharged treated effluent may change or reduce the salinity level of the ambient marine water thus changing the density in the water body within the vicinity of the outfall.

The assessment of salinity properties and its distribution has been carried out by quantifying maximum reduction in salinity distribution for the surface layer of the water column. The numerical value were calculated over a 14-day period and compared to the ambient salinity. The maximum reduction in salinity due to the mixing of fresh water with marine water is then quantified and presented in **Figure 4.1**. The figure shows the changes in salinity near the outfall after effluent release.

The predicted modelling results show that:

• Reduction in salinity is below 1.35 PSU (less than 4.5% of ambient salinity) occur only around the outfall area, further 4 km away show smaller variations of less than 1%. So the changes are considered minor and localised around the outfall and within the project area.

4.2 Dispersion and Dilution of Effluent

Regulated effluent load discharged from the outfall were introduced into the model domain for this assessment. Parameters of the effluent, concentration, loading is listed in the **Table 4.1** below. These parameters are assumed to be conservative (non- decaying) in the model thus providing more conservative input. Effect from the diffusers has not included in the modelling as this will be as the conservative approach. Parameters such as pH and colour listed in **Table 2.3** has not been modelled in this study due to the complexity of the model and require more computation time. Results from the modelling are presented as excess of the released effluent concentration from the background concentration. These are presented in **Figure 4.2** to **Figure 4.14**.

Parameters	Flow rate	Concentration	Load per day
COD	3,044 m ³ /hr	150 mg/l	10,960 kg
(from AOC, PW & COC, SWW)			
BOD	3,050 m ³ /hr	25 mg/l	1,830 kg
(from AOC, PW & COC, SWW)			
TSS	4,624 m ³ /hr	30 mg/l	3,329 kg
(from AOC, PW & COC, SWW, UE)			
Oil and Grease	3,047 m ³ /hr	10 mg/l	731 kg
(from AOC, PW & COC, SWW)			
Total Phosphorus	3,031 m ³ /hr	2 mg/l	145 kg
(from AOC, PW & COC)			
Total Nitrogen (from PW & COC)	990 m ³ /hr	10 mg/l	238 kg
Benzene (from PW & COC)	990 m ³ /hr	0.05 mg/l	1 kg
Phenol (from PW & COC)	990 m ³ /hr	0.2 mg/l	5 kg
Sulphide (from PW & COC)	990 m ³ /hr	0.5 mg/l	12 kg
Ammoniacal Nitrogen (from SWW)	16 m ³ /hr	5 mg/l	2 kg
Nitrate Nitrogen (from SWW)	16 m ³ /hr	10 mg/l	4 kg
Phosphorus (from SWW)	16 m ³ /hr	2 mg/l	1 kg
Total Coliform Bacteria (from SWW)	16 m ³ /hr	400 MPN/100ml	-

Table 4.1: Modelled pollutant concentration and loading.

* Accidently Oily Contaminated (AOC), Continuously Oily Contaminated (COC), Process Waste Water (PW), Utilities Effluents (UE), Sanitary Waste Water (SWW).

For this assessment, the background concentration in the model domain has been set to zero throughout the whole modelling period and modelling results were presented as the ratio between the load in the model domain and the load in the effluent from the outfall.

In general, from the presented results, the following can be observed:

- The predicted maximum concentration of pollutant is less than 3% for all climatic conditions.
- During the NE monsoon, the dispersed pollutant concentration tend to move away from the coastline at the east side of the outfall.
- The maximum concentration reduce quickly at area 5 km away from the outfall area with an overall reduction of 97 percent. This shows that the water exchange at the outfall is expected to be good. Any potential impacts to the ambient water quality are predicted to be localised and minor.

EFFLUENT DISPERSION MODELING

4.3 Water Quality

Potential changes in water quality conditions were evaluated with the outfall in operation and compared to the background conditions taken from field measurement in **Table 3.4**. Measurement from sampling station CS1, CS2 and CS5 are located close to the outfall and used in the assessment.

Excess concentration from the effluent dispersal has been added up to the background concentration (in 2012 and 2016) and compared with Class 3 of Malaysia Marine Water Quality Standards of 29th November 2010 (MMWQS). Maximum water quality parameter concentrations at the project site after the release of effluent is shown in **Table 4.2** and **Table 4.3**.

As it can be observed, excess concentration between baseline condition and outfall in place are relatively small. The compliances with the Class 3 of MMWQS remain unchanged. Therefore, impacts on the water quality induced by the proposed ETP release are relatively small and localised.

Table 4.2: Comparison of effluent parameter concentration at location CS1, CS2 andCS5 with Class 3 MMWQS limit using measurement in 2012.

			Ambient		
	Release		concentration	Maximum	Limit
Parameters	concentration	Location	(from	concentration	MMWQS for
	from outfall		measurement	from the model	Class 3
			in 2012)		
Nitrate as NO3 [mg/l]	44	CS1	1.7	2.0	1
		CS2	1.6	2.5	
		CS5	1.6	1.8	
Phosphate as P [mg/l]	2	CS1	0.1	0.1	0.67
		CS2	0.1	0.1	
		CS5	0.1	0.1	
Total Suspended Solid (TSS) [mg/l]	30	CS1	13	13.3	100
		CS2	15	15.6	
		CS5	12	12.1	
Oil and Grease	10	CS1	0.04	0.1	5
		CS2	0.04	0.2	
		CS5	0.04	0.1	
Total Nitrogen	10	CS1	0.5	0.6	NA
		CS2	0.6	0.8	
		CS5	0.5	0.5	
Ammonia	6.1	CS1	NA	NA	0.32
		CS2	NA	NA	
		CS5	NA	NA	
Phenol	0.2	CS1	NA	NA	0.1
		CS2	NA	NA	
		CS5	NA	NA	

Table 4.3: Comparison of effluent parameter concentration at location CS1, CS2 andCS5 with Class 3 MMWQS limit using measurement in 2016.

Parameters	Release concentration from outfall	Location	Ambient concentration (from measurement in 2016)	Maximum concentration from the model	Limit MMWQS for Class 3
Nitrate as NO3 [mg/l]	44	CS1	1.9	2.2	1
		CS2	1.8	2.7	
		CS5	1.6	1.8	
Phosphate as P [mg/l]	2	CS1	0.1	0.1	0.67
		CS2	0.1	0.1	
		CS5	0.1	0.1	
Total Suspended Solid (TSS) [mg/l]	30	CS1	10	10.3	100
		CS2	11	11.6	
		CS5	17	17.1	
Oil and Grease	10	CS1	0.04	0.1	5
		CS2	0.04	0.2	
		CS5	0.04	0.1	
Total Nitrogen	10	CS1	0.5	0.6	NA
		CS2	0.5	0.7	
		CS5	0.5	0.5	
Ammonia	6.1	CS1	0.1	0.1	0.32
		CS2	0.1	0.2	
		CS5	0.1	0.1	
		CS1	0.001	0.002	
Phenol	0.2	CS2	0.001	0.005	0.1
		CS5	0.001	0.002	

5 Conclusions

An analysis of the potential impacts of the effluent dispersal has been carried out. From the analysis it can be concluded that:

• Changes in Salinity

The predicted modelling results show that:

Reduction in salinity is below 1.35 PSU (less than 4.5% of ambient salinity) occur only around the outfall area, further 4 km away show smaller variations of less than 1%. So the changes are considered minor and localised around the outfall and within the project area.

• Dispersion of Effluent

From the presented results, the following can be generally observed:

- The predicted maximum concentration of pollutant is less than 3% for all climatic conditions.
- During the NE monsoon, the dispersed pollutant concentration tend to move away from the coastline at the east side of the outfall.
- The maximum concentration reduce quickly at area 5 km away from the outfall with an overall reduction of 97 percent. This shows that the water exchange at the outfall is expected to be good. Any potential impacts to the ambient water quality are predicted to be localised and minor.

• Water Quality

 As it can be observed, excess concentration between baseline condition and outfall in place are relatively small. The compliances with the Class 3 of MMWQS remain unchanged. Therefore, impacts on the water quality induced by the proposed ETP release are relatively small and localised.